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Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks
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We develop an approach for performing scaling analysis of N -step random walks (RWs). The mean square
end-to-end distance, 〈 �R2

N 〉, is written in terms of inner persistence lengths (IPLs), which we define by the ensemble
averages of dot products between the walker’s position and displacement vectors, at the j th step. For RW models
statistically invariant under orthogonal transformations, we analytically introduce a relation between 〈 �R2

N 〉 and
the persistence length, λN , which is defined as the mean end-to-end vector projection in the first step direction.
For self-avoiding walks (SAWs) on 2D and 3D lattices we introduce a series expansion for λN , and by Monte
Carlo simulations we find that λ∞ is equal to a constant; the scaling corrections for λN can be second- and
higher-order corrections to scaling for 〈 �R2

N 〉. Building SAWs with typically 100 steps, we estimate the exponents
ν0 and �1 from the IPL behavior as function of j . The obtained results are in excellent agreement with those in
the literature. This shows that only an ensemble of paths with the same length is sufficient for determining the
scaling behavior of 〈 �R2

N 〉, being that the whole information needed is contained in the inner part of the paths.
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I. INTRODUCTION

Random walk (RW) models are ubiquitous in the literature
with applications in several areas, such as physics [1], biology
[2], and economy [3]. The simplest case is the walker
displacement in a sequence of independent random steps,
namely ordinary RW [4]. One may also obtain random paths
on a geometrical space with distinct displacement schemes,
leading to other RW models. A fundamental importance of
these models lies in the fact that many real phenomena can be
mapped or directly represented by paths traversed by walkers
in some geometrical space, e.g., a single-strand DNA [5] and
magnetic systems [6]. An example is the self-avoiding walk
(SAW) defined by a walker forming a random path that never
intersects itself; standard SAWs are performed on regular
lattices, where the walker steps to nearest-neighbor sites and
does not visit a site more than once [7].

Because of nonoverlapping paths, the SAW model plays a
central role in polymer physics [8] by capturing the excluded
volume effect in a dilute solution under good solvent condition
or at high temperatures [9]. The SAW model is also well known
in statistical physics context because of its equivalence with
the n-vector model with n → 0, as de Gennes first pointed
out [10]. From this equivalence, with arguments of renormal-
ization and field theories, one expects the following series
expansion for the mean-square end-to-end distance [11,12]:

〈 �R2
N
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where ν0 is the leading exponent. The terms proportional
to N−i with i = 1,2, . . . , are analytical corrections, and the
terms proportional to N−(j+�i ) with noninteger exponents
�i < �i+1 and j = 0,1,2 . . . , are the nonanalytical
corrections to scaling. The leading and corrections to scaling
exponents are universal. The indexed brackets 〈.〉N refers to
the N -step RW ensemble average, and from now on, unless
strictly necessary, we omit the index N . Numerical estimates
of exponents ν0 and �1 are based on either exact counting
techniques [13,14], or in Monte Carlo (MC) simulation
methods [15,16], through the sampling of 〈 �R2

N 〉 [17,18].
Obtaining such estimates for ν0 and �1, especially for

3D SAW, is a challenge from several points of view. The
exponential growth of the number of possible N -step paths
cN ≈ μNNγ−1, where μ is the connectivity constant and
γ > 1, imposes a limit to exact counting. To the best of
our knowledge, the maximum values obtained are N = 79
[19] and N = 36 [14] for SAWs on 2D and 3D square
lattices, respectively. Concerning Monte Carlo simulations,
there exist an appeal to find ν0 and �1 using very long
paths. Obtaining high-quality Monte Carlo data for such path
lengths is an extremely difficult task for the SAW model.
The variable length algorithms suffer from attrition problems,
namely barriers that prevent paths to grow, while the fixed
length algorithms suffer from the decreasing of acceptance
rate to generate a new, non-self-intersecting path, according to
the increase of the (fixed) path length [20].

Numerical drawbacks also take place when one studies
other conformational quantities. An example is the persistence
length, λN , defined as the mean end-to-end vector projection
in a fixed direction along the first step [21,22], as N → ∞.1

1Notice that the persistence length for the wormlike chain model
[23,24] (WLC) for semi-flexible polymers is defined as the character-
istic decaying length of the correlation between unit tangent vectors
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Defining the end-to-end vector as �RN = ∑N
j=1 �uj , where �uj

is the walker displacement at the j th step, the persistence
length can be expressed by λN = 〈 �RN · �u1〉/|�u1| = ∑N

j=1〈�u1 ·
�uj 〉/|�u1|. Numerical results of λN , for 2D SAWs, are con-
troversial in the literature, and for 3D, are scarce [27]. For
2D-SAW, Grassberger [28] obtained the first estimate of λN in
the square lattice, by means of a power law λN ∼ Nθ , with θ =
0.063(10). Since for θ ≈ 0, it is also well fitted by λN ∼ ln(N ),
as suggested by Redner and Privmann [29]. They obtained both
estimates by sampling the displacements projections along the
first step direction, for all possible configurations of SAW
paths with N < 24. This weak divergence has been questioned
recently by Eisenberg and Baram [30], because their MC
estimates of 〈�u1 · �uj 〉 show that λN converges to a constant
when N → ∞. One could employ λN in Monte Carlo [31]
and experimental characterization of certain polymers [32,33],
despite there exist some limitations of λN measures such as
divergence and edge effects [34].

Refined results about the scaling behavior of the afore-
mentioned conformational quantities to study universality are
challenging, and have been the subject of discussion for many
years [11,15]. As usually one does not have exact results for the
SAW model, there exists an appeal for simulations of large,
sometimes very large, paths. Here, one proposes to answer
two questions about a SAW: (i) What is the asymptotic limit
of its persistence length? (ii) Is there some way to find out its
scaling behavior employing relatively small chains? To answer
these questions, we found an approach for performing scaling
analysis of RWs, by focusing in the behavior of 〈 �R2

N 〉.
The structure of the paper is as follows: In Sec. II we

present the analytical results by defining the inner persistence
length and their relation with 〈 �R2

N 〉 and λN , for RW models
statistically invariant under orthogonal transformations. In
Sec. III we provide a series expansion for λN and obtain the
scaling behavior of 2D and 3D-SAW models with Monte Carlo
simulations; we also obtain reliable estimates of the exponents
ν0 and �1 and discuss the contribution of λN to 〈 �R2

N 〉 behavior.
In Sec. IV we give concluding remarks.

II. INNER PERSISTENCE LENGTH AND
ANALYTICAL RESULTS

We define the inner persistence length (IPL) for an N -step
RW, by the average dot product: Ij ≡ 〈 �Rj · �uj 〉. To relate 〈 �R2

N 〉
to Ij , and IN to λN , we write the square distance at the j th
step for an N -step RW as �R2

j = �R2
j−1 + 2 �Rj · �uj − u2

j . Adding

up �R2
j , we have

∑k
j=1

�R2
j = ∑k

j=1
�R2
j−1 + ∑k

j=1 2 �Rj · �uj −∑k
j=1 |�uj |2, where �R0 = �0 leads to

∑k
j=1

�R2
j−1 = ∑k−1

j=1
�R2
j .

Thus, considering |�uj | = 1, we write the average 〈 �R2
k 〉 =

2
∑k

j=1 Ij − k. In particular for k = N , the mean-square

at different points i and j of the chain, separated by a contour length s.
The correlation is given by exp(−s/�p), where the persistence length
�p is mathematically equivalent to λN only for N → ∞ [25,26].

end-to-end distance is

〈 �R2
N

〉 = 2
N∑

j=1

Ij − N. (2)

Now, consider a generic class of RWs, where ensembles
of N -step walks obey the following invariance property: the
probability distributions, of each step �ui , i = 1,2,...,N , which
compose a path, is invariant under orthogonal transformations.
With this, we exclude walks like the tourist model [35],
where the medium disorder [36] breaks down such invariance
symmetries. Particularly, one considers an ensemble of N -step
RWs obeying the mentioned probabilistic symmetry, under a
specific orthogonal transformation T given by �ui

T→ �u′
N−i+1;

the prime denotes the displacement vectors in the transformed
reference frame, and �u′

i = −�uN−i+1, with i = 1,2,...N . Notice
that �u′

i ∈ {�u1,�u2...�uN }, where {.} represents the complete
ensemble of paths. This symmetry operation can be achieved
by a translation followed by inversion of all displacement
vectors. In other words, one does invert each path and change
the origin to the end of the walk. An immediate consequence
for the complete ensemble of random paths is {�ui} = {�u′

i},
with i = 1,2,...N , which leads to { �RN } = { �R′

N }. From the
previous relations, it follows that { �RN · �uN } = { �RN · �u1}, so
the configurational average 〈 �RN · �uN 〉 = 〈 �RN · �u1〉 holds. This
average, for N → ∞, is the persistence length λN . Therefore,
the mean-square end-to-end distance could be rewritten as〈 �R2

N

〉 = 〈 �R2
N−1

〉 + 2λN − 1, (3)

and we have established a relation between 〈 �R2
N 〉 and λN .

We observed Eq. (3) numerically, prior to its proof, by exact
calculations for N � 24. Some RW models that obey such a
relation are the N -step ensemble of ordinary RW and SAW
paths.

III. NUMERICAL RESULTS FOR THE SAW MODEL

From now on, we numerically study Ij for SAWs using
the nonreversed random walk (NRRW) algorithm to generate
the ensemble of N -step nonoverlapping paths. Because of the
attrition problem, i.e., barriers or traps that prevent paths to
achieve N steps, the NRRW is inefficient to generate good
statistics for long SAWs, since the probability decays as
pN ∝ exp[−γN ], where 0 < γ < 1 is the attrition constant.
However, the generated data with this algorithm are surpris-
ingly good enough to validate our approach, showing that we
choose the right corrections to scaling terms in the expansion
of IPLs.

Starting with 〈 �R2
N 〉, we now analyze the persistence length.

For the square lattice, ν0 = 3/4 [37] and a common belief
is that �1 = 3/2 [38]. With these exponent values, from
Eq. (1), using only the first two leading exponents, we see
that 〈 �R2

N 〉 ≈ AN3/2 + BN1/2. The same reasoning leads to
a similar result for cubic lattices, where ν0 ∼ 0.587597(7)
and �1 ∼ 0.528(12) are widely accepted values [17]. Both
averages in Eq. (3), 〈 �R2

N 〉 and 〈 �R2
N−1〉, are obtained considering

the same N -step ensemble. In this sense, we follow our
previous notation by omitting the bracket index. The difference
〈 �R2

N 〉 − 〈 �R2
N−1〉 seems to be the discrete derivative of square
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FIG. 1. SAW persistence length for (a) square and (b) cubic lattices. In both lattices, λN converges to a constant. The inset plot (a) shows
λN fitted by the function α0 + α1N

−0.34 of Ref. [30], where λ∞ = 2.664(3) is compatible with our estimate λ∞ = 2.525(4) from Eq. (4). For
the cubic lattice, λ∞ ∼ √

2 is compatible with the one of Ref. [27]. The inset plot (b) depicts the random pattern of the residual plot for λN

when fitted by Eq. (4).

end-to-end distance, which is not true for the SAW model. One
should evaluate the derivative considering SAW ensembles
of N and (N − 1) steps: 〈 �R2

N 〉N − 〈 �R2
N−1〉N−1. According to

Eq. (1), the leading term of 〈 �R2
N 〉N derivative is N2ν0−1 with

the first two corrections proportional to N2ν0−2 and N2ν0−�1−1,
respectively. From the persistence length plots in Fig. 1, λN

clearly does not diverge as the leading term of 〈 �R2
N 〉 derivative,

instead it seems to converge to a constant as N goes to infinity.2

Thus, we introduce the following series expansion:

λN = α0 + α1N
−w1 + α2N

−w2 + · · · , (4)

where the exponents wi > 0, i = 1,2,3 . . . are linear combi-
nations of ν0 with analytical and nonanalytical corrections to
scaling exponents. As, for example, from the persistence length
data fitting with Eq. (4) (see Fig. 1), we find that w1 = 2ν0 − 2
and w2 = 2ν0 − �1 − 1 are the best choices. The αi and wi

values are shown in Table I. An immediate consequence of
such findings along with Eq. (3) is that λN could contribute
only with second- and higher-order analytic and nonanalytic
corrections for 〈 �R2

N 〉. Our estimate of λN , for square lattices, is
compatible with the one of Eisenberg and Baram [30]. Through

2Notice that if the persistence length has a term proportional to
N 0.063 or ln(N ), it implies that the mean-square end-to-end distance
also has a N 0.063 or a logarithm correction term.

TABLE I. Coefficients and exponents for fitting, with Eq. (4), the
λN data obtained from simulations for 2D and 3D square lattices. The
w1 = 0.34(5) value is an effective exponent, thus depending on the
coefficients αi and exponents wi of Eq. (4) [38].

d α0 α1 α2 w1 w2

2 2.525(4) −2.32(3) 0.81(3) 0.5 1
2a 2.664(3) −1.714(9) — 0.34 —
3 1.422(1) −0.39(6) −0.022(5) 0.8248 0.34

aFitting with equation λN ∼ α0 + α1N
−0.34(5) from Ref. [30].

their estimate of the step-step correlation scaling, 〈�u1 · �uj 〉 =
〈ξ1,j 〉N ∼ 0.6j−1.34(5), and the definition λN = ∑N

j=1〈ξ1,j 〉N ,
we obtained λN ∼ α0 − 1.7N−0.34(5), with which we fitted the
persistence length data, but leaving α1 free, as shown in the
inset of Fig. 1(a).

Now, consider Ij , for 1 < j < N . According to the
collapsed log × log plots of Fig. 2, it is notable that Ij looks
like a straight line up to near the point where it reaches
its maximum value, at the jmax step, with a positive slope
≈2ν0 − 1. From Eqs. (1) and (2), and Fig. 2, assuming Ij

scales as j 2ν0−1 is reasonable, at least for j < jmax. Such
proportionality leads us to look for reliable estimates of ν0, and
corrections to scaling exponents, for SAW ensembles with N

not too large. To accomplish this aim, diminishing the influence
of the N -step ensemble on estimates of scaling exponents is
necessary. In other words, it is necessary to find a cutoff step
j = jc(N ), at which Ij begins to be noticeably influenced by
the N -step SAW ensemble. Surely, we can neglect steps above
jmax. To seek the jc(N ) step, we use the difference between
the IPLs of two N -step ensembles, one that contains N1, and
the other N2 steps,

�Rj (N1,N2) = 〈 �Rj · �uj 〉N2 − 〈 �Rj · �uj 〉N1 , (5)

where N2 > N1. According to Fig. 3(a), the IPL has ap-
proximately the same behavior for the two path lengths,
up to the middle of the shortest path, jc(N1) ∼ N1/2, for
square lattices. Similarly, for cubic lattices, it has the same
behavior, up to a third of the shortest path jc(N1) ∼ N1/3 [see
Fig. 3(b)]. Therefore, using j � jc(N ), with jc(N ) = N/2 and
jc(N ) = N/3 for 2D and 3D lattices, respectively, it is suitable
to estimate the scaling exponents through Ij .

Additional information to do scaling analysis withIj comes
from the expansion of 〈 �R2

N 〉 in powers of N . We have found
no evidence of the linear term in the expansion of 〈 �R2

N 〉 on
square or cubic lattices. The nonexistence of the linear term is
also reported in Refs. [39,40]. From Eq. (2), the only way to
disappear with the linear term in the expansion of 〈 �R2

N 〉 is if
the summation of Ij cancels it out. This finding, with Eq. (1),
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FIG. 2. IPL data collapse in log - log scale for (a) square and (b) cubic lattices with ( N = 30), ( N = 40), ( N = 50), and ( N = 60).
The 〈 �Rj · �uj 〉N behaves as linear increasing function up to ∼ jmax, with a slope ≈(2ν0 − 1). In both lattices jmax ∝ N , with constant of
proportionality close to each other (∼0.7). For j > jmax the scalar products contribute to residual terms of corrections to scaling of 〈 �R2

N 〉.

leads us to write

Ij = β0 + β1(j − τ )ϕ[1 + β2(j − τ )−�1 + ...], (6)

for j � jc(N ), where τ is a smoothing constant [41]. We set
β0 = 1/2 just to cancel the linear term. Also, we did another
ansatz: β2 = −(2ν0 − 1) and τ = 0.5. This was inspired by
results considering only the first nonanalytical correction to
scaling term, and leaving only the parameters β1, β2, and τ

free, which lead us to find β2 ≈ −(2ν0 − 1) for the 3D case.
Notice that, in general, β1 = β1(N ) and β2 = β2(N ); however,
for N not too large, order of hundreds for 2D and 3D cases,
these parameters converged to constants, for j � jc(N ).

The IPL data, containing several N -step ensembles, fitted
by Eq. (6) is depicted in the inset plots of Fig. 3. For both the 2D
and 3D square lattices, the leading and subleading exponents
are in excellent agreement with the believed results. For the
square lattice, we found ν0 = 0.7489(21), and the nonanalyt-
ical first exponent results in �1 = 3/2; because it does not

appear in Eq. (6), showing that there exists a constant in the
expansion of 〈 �R2

N 〉. This is confirmed through the expansion of
λN ; the predicted results are ϕ = 0.5 and �1 = 3/2. For cubic
lattices we found ν0 = 0.58757(140) and �1 = 0.522(52),
while the best predicted results are ν0 = 0.587597(7) and
�1 = 0.528(12) [17]. Using several N -step ensembles seeks
to reduce the error on exponent estimates; however, they may
carry some small biased errors. To check this, for 2D-SAW
we used N = 120 steps obtaining ν0 = 0.7500(63), and for
3D-SAW we used N = 198 steps giving ν0 = 0.58758(450)
and �1 = 0.52(17). However, the errors we get are not as small
as those from literature for the 3D case [17]. We can improve
these results by taking into account the advantage of the
statistical invariance and calculating the IPL starting from the
end of the generated chains, thus doubling the sample. In fact,
it is out of the scope of this paper to find high-precision values
for the exponents, but to validate and evaluate the benefits of
our approach. Moreover, the whole potential of the method to

FIG. 3. IPL differences (�Rj (N1,N2)) for SAWs: (a) for square and (b) cubic lattices, with N1 = 40 and N2 = 60, and N1 = 60 and
N2 = 90, respectively. According to �Rj (N1,N2) depicted here [see Eq. (5)], the Ij starts to be influenced for jc > N1/2 and jc > N1/3, for
2D and 3D square lattices, respectively. Inset plots show IPL nonweighted fit using Eq. (6), within a confidence interval of 95%. The square
lattice data includes N ranging from 90 to 120 with increment of 10. The fitting parameters obtained are ϕ = 0.4979(21) and β1 = 0.6630(50).
The cubic lattice data includes N ranging from 150 to 195 with increment of 15. The fitting parameters obtained are ϕ = 0.1752(14),
�1 = 0.522(52), and β1 = 0.7581(56).
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do the scaling analysis of RWs has not been fully exploited.
We expect that the corrections to scaling exponents are easily
accessible from the study of the monotonically decreasing Ij

terms of 〈 �R2
N 〉, which will readily be tackled.

IV. CONCLUDING REMARKS

In summary, we have proposed an approach to address the
scaling of RW conformational quantities, where the mean-
square end-to-end distance is proportional to the summation
of the inner persistence length, Ij = 〈 �Rj · �uj 〉. For RW
models, where paths obtained by orthogonal transforma-
tions occur with the same probability, we obtained a novel
relation between the mean-square end-to-end distance and
persistence length. Despite the numerical limitations to do
scaling analysis, we introduce a series for the persistence
length λN and show that it converges to a constant, α0,
apart corrections to scaling terms. We also developed a
method to calculate the scaling exponents from Ij with a
path cutoff that diminishes the N -step ensemble influence.
Thus, the method is efficient to obtain the scaling behavior of
SAW.

We conclude that only an ensemble of paths with the
same length is sufficient for performing scaling analysis,
being that the whole information needed are contained in
the inner part of the paths. The scaling method discussed
in this paper can be important for studying universality,
criticality, and conformational properties of systems mapped
on RW models, such as polymers, biopolymers, and magnetic
systems.
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