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We have carried out a Monte Carlo simulation of a modified version of Vicsek model for the motion of
self-propelled particles in two dimensions. In this model the neighborhood of interaction of a particle is a sector
of the circle with the particle at the center (rather than the whole circle as in the original Vicsek model). The
sector is centered along the direction of the velocity of the particle, and the half-opening angle of this sector is
called the “view angle.” We vary the view angle over its entire range and study the change in the nature of the
collective motion of the particles. We find that ordered collective motion persists down to remarkably small view
angles. And at a certain transition view angle the collective motion of the system undergoes a first-order phase
transition to a disordered state. We also find that the reduction in the view angle can in fact increase the order in
the system significantly. We show that the directionality of the interaction, and not only the radial range of the
interaction, plays an important role in the determination of the nature of the above phase transition.
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I. INTRODUCTION

There are many systems, natural as well as artificial, that
consist of moving and interacting “self-propelled” agents.
Biological systems such as schools of fish [1], flocks of
birds [2,3], and bacterial colonies [4–6] and artificial systems
such as Kobots (robots specially developed for the study of
flocking) [7], platinum-silica particles in hydrogen peroxide
solution [8], carbon-coated Janus particles in water-lutidine
mixtures [9], and vibrating rods [10–12] are some examples.
One remarkable characteristic of these systems is that under
certain conditions they are capable of displaying extraordinary
collective dynamics, such as highly cooperative collective
motion and complex moving patterns [13–19].

One of the simplest models proposed to describe the motion
of a collection of agents which have a tendency “to move as
their neighbors do” (birds in a flock is an obvious example)
is the one by Vicsek et al. [13], now commonly known as the
Vicsek model. In this model a collection of point particles
move with the same constant speed, and each particle at
discrete time intervals “adjusts” its direction of motion so as to
move along the mean direction of motion of the particles in its
local (short-range) neighborhood. This direction adjustment
is imperfect due to the presence of noise in the system.
Vicsek et al. found that the nature of the collective motion
of the particles depends on the level of this noise and the
particle density of the system. For high densities and low
noise levels the collective motion attains an ordered state in
which the particles move largely in a common direction. For
low densities and high noise levels there is no such collective
motion and particles essentially perform uncorrelated random
walks. And as the noise level is varied (for a fixed particle
density) or as the particle density is varied (for a fixed noise
level), the system displays a nonequilibrium order-disorder
phase transition. This subject has been recently reviewed by
Vicsek [20] and Menzel [21].
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A number of variants of the Vicsek models have been
studied, and among them of particular interest to the present
work are the ones where certain constraints are imposed on
the angular range of the local neighborhood of a particle, or
on the extent of the reorientation of the particle’s direction of
motion. These studies have found that these restrictions, which
might naively be expected to reduce the degree of order in the
system, can in fact enhance it. Tian et al. [22] as well as Li
et al. [23] found that restricting the angular range of interaction
can reduce the “consensus time” (the time taken by the system
to attain the stationary value of the order parameter). Similarly
Gao et al. [24] found that restricting the angle of velocity
reorientation can increase the order parameter. In the model
that they studied, in a single update particle directions are
allowed to change within a limited range. And Yang et al. [25]
found that discarding short-range interactions can increase the
order parameter.

In this work we too study the effects of variation in
the angular range of interaction on the collective motion of
the particles in the Vicsek model. One of the motivations
for the Vicsek model was to understand the collective motions
of the large moving groups of living beings, such as flocks of
bird or schools of fish, where each agent is expected to move,
as far as possible, in the same direction as its close neighbors.
In the Vicsek model the neighborhood observed by the agent is
a circle (for a two-dimensional system) centered on the current
position of that agent, regardless of its direction of motion. This
is quite unrealistic, because an agent such as a bird or a fish
does not have a 360◦ view of its surroundings. For example, the
cyclopean field of view (i.e., combined field of view of both
eyes [26]) of the grey-headed albatross is about 270◦ in the
horizontal plane [27], and that of Dasyatis sabina fish is about
327◦ in the horizontal plane [26]. This kind of restricted view
of the neighborhood also plays a role in the phototactic motion
of certain marine organisms such as Platynereis larvae [28].
Thus exploration of the effects of limitation of the angular
range of interaction neighborhood should be of interest in the
study of all those processes where the Vicsek model is relevant.

In this report we present the results of the numerical
simulations of the Vicsek model in which the angular range of
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the interaction neighborhood is restricted. We have measured
the order parameter of the system as a function of the
angular range of the interaction neighborhood (radius of the
neighborhood held fixed). We find that the order parameter
of the system varies nonmonotonically as the angular range
of the interaction neighborhood is decreased, and at a certain
point the system undergoes a first-order (i.e., discontinuous)
phase transition to a disordered state. We have also measured
the variation of the order parameter as the radius of the
interaction is reduced (without restricting the angular range
of the interaction neighborhood) and find that the resulting
change in the nature of the collective motion is qualitatively
different.

II. MODEL

The model of self-propelled particles we have studied is a
modification of the Vicsek model. In this model the interaction
neighborhood of a particle is not a circle centered on that
particle, but a sector of this circle, as illustrated in Fig. 1. The
neighborhood sector Si has an opening angle of 2φ and is
centered about the direction of velocity of the ith particle. We
shall call the half opening angle φ the “view angle,” which can
vary from 0 to π . For φ = π this model reduces to the original
Vicsek model.

Simulations are carried out in a box of size L × L with
N particles, with the usual periodic boundary conditions in
both directions. The mean particle density is given by ρ =
N/L2. The initial positions ri (i = 1,2,3, . . . ,N ) are assigned
randomly with uniform probability within the box. The initial
directions of the particles θi are also assigned randomly in the
range [−π,π ] with uniform probability. All the particles have
the same constant speed v0. The velocities and positions of
the particles at time t + 1 are obtained from the velocities and
positions at time t using the following update rules. First we
update velocities of all the particles simultaneously with

vi(t + 1) = v0R(θ )v̂(t), (1)

FIG. 1. The neighborhood Si of the ith particle. The ith particle
is shown at the center of the circle, and Si is the sector bound by the
two radii marked as R. The solid black circles (including the particle
at the center of the circle) indicate the particles lying within the
neighborhood, and the open black circles indicate particles outside it.
The vector v indicates the direction of the velocity of the ith particle.
The view angle φ is the half opening angle of the neighborhood at
the center.

where v̂(t) is the unit vector in the direction of the mean
velocity of the particles in the neighborhood Si of the ith
particle, including the ith particle itself (see Fig. 1), and is
given by

v̂(t) =
∑

j∈Si
vj (t)

∣∣ ∑
j∈Si

vj (t)
∣∣ . (2)

Here | . . . | denotes the norm of the vector, R(θ ) is the rotation
operator which rotates the vector it acts upon [i.e., v̂(t)] by
an angle θ . The angle θ is a random variable uniformly
distributed over the interval [−ηπ,ηπ ], where η is the level
(i.e., amplitude) of the noise that can be varied from 0 to 1.

Following the velocity updates, the positions are updated
with

ri(t + 1) = ri(t) + vi(t + 1)�t, (3)

where �t = 1. This update scheme is known as the “forward
update” in the literature [29].

To quantify the degree of order in the collective motion of
the particles a scalar order parameter ψ(t) is defined as

ψ(t) = 1

Nv0

∣∣∣∣∣

N∑

i=1

vi(t)

∣∣∣∣∣. (4)

It can be readily seen that in the perfectly ordered state when all
the particles are moving in the same direction ψ(t) = 1, and in
the completely disordered state when the directions of motion
are completely random ψ(t) = 0 (in the limit of N → ∞).
In this report we use the phrase “ordered state” to mean the
stationary state of the system for which ψ(t) > 0 in the limit
of N → ∞.

III. SIMULATION DETAILS

In this work the data presented in Figs. 2–6 are produced
with the following parameters fixed: the number density ρ =
N/L2 = 1, the particle speed v0 = 0.5, the noise level η =
0.3, and the interaction neighborhood radius R = 1. For the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

View Angle φ

O
rd

er
 P

ar
am

et
er

 〈 
ψ

 (
t)

 〉

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

View Angle φ

O
rd

er
 P

ar
am

et
er

 〈 
ψ

 (
t)

 〉

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

View Angle φ

O
rd

er
 P

ar
am

et
er

 〈 
ψ

 (
t)

 〉

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

View Angle φ

O
rd

er
 P

ar
am

et
er

 〈 
ψ

 (
t)

 〉

(d)

FIG. 2. Order parameter 〈ψ(t)〉 vs view angle φ (in units of π )
for system sizes (a) L = 16, (b) L = 20, (c) L = 24, and (d) L = 28.
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data presented in Figs. 7 and 8 the parameter R is varied
from 0 to 1, with all other parameters the same as above (the
parameter values for the data in Fig. 9 are described later).
Box sizes L in the range of 16 to 36 (i.e., particle numbers
N in the range 256 to 1296) were used. We have measured
the order parameter ψ(t) as a function of the view angle φ,
which was varied over the entire range 0 to π . Measurements
were averaged over 20 independent realizations, with each
realization consisting of 105 to 107 time steps. In the results
we present in the following section we have used the time-
averaged order parameter 〈ψ(t)〉, measured as a function of
the view angle φ. For satisfactory averages we have to have a
time series ψ(t) of a length T much larger than the correlation
time for that series. The length of the time series T is effectively
the length of a single realization multiplied by the number of
independent realizations. Near the transition value of φ, the
T values are 5.2 × 105, 4.9 × 106, 1.3 × 107, and 1.9 × 108

for system sizes L = 16, 20, 24, and 28, respectively. The
correlation time τ can be estimated from the autocorrelation
function C(�t) for ψ(t), which is defined as

C(�t) = 〈[(ψ(t + �t) − ψ][ψ(t) − ψ]〉
σ 2

ψ

, (5)

where ψ and σ 2
ψ are the mean and variance of ψ(t) for a

single time series. The angular brackets indicate averaging
over all the initial time instants t . The correlation time τ can
be estimated by fitting the autocorrelation function C(�t) to
the exponential decay function e−�t/τ (when that is possible),
or by using the “integrated correlation time” definition

τ =
∑

�t=1

C(�t), (6)

where the sum is cut off at the first negative value of C(�t).
We have used this definition to estimate τ [30]. Near a phase
transition the correlation time τ increases rapidly with the
system size L, and for a given system size it increases rapidly
as the phase transition is approached. We estimate that close
to the transition (i.e., for |φ − φc| � 0.01) τ ≈ 4 × 102, 3 ×
103, 2.7 × 104, and 5.5 × 105 for L = 16, 20, 24, and 28,
respectively. Thus we have the total length of the time series T

much larger than the correlation time. For the results presented
in the following section, T = 13000τ , 1650τ , 510τ , 360τ are
for the system sizes L = 16, 20, 24, 28, respectively, close to
the transition. Farther away from the transition, the T values
come out to be much larger multiples of τ .

IV. RESULTS AND DISCUSSION

Tian et al. [22] and Li et al. [23] have studied one aspect
of the question that interests us in the present work. They
varied the view angle φ and measured the “consensus time,”
that is, the time taken for the system to achieve the stationary
value of the order parameter ψ in the absence and presence
of the noise. They made a counterintuitive observation that
the consensus time can be shorter for φ < π , i.e., restricting
the angular range of the particle interactions can speed up the
establishment of the ordered collective motion. They found
that there is an optimum value for the view angle for which
the consensus time is the shortest. A similar observation was

made by Wang et al. [31], who considered not only variable
view angle but also the interaction strengths weighted by the
separations between the particle and its neighbors.

With the above-mentioned earlier studies in mind, we were
interested in the effect of varying the view angle φ on the nature
of collective motion of the particles in the modified Vicsek
model considered in this study. We have made three important
observations: (i) It is not only that the collective motion
attains consensus faster with a restricted view angle (as
found in the reports [22,23]), but also the stationary value of
order parameter can increase with the decreasing view angle.
(ii) The ordered state can persist down to quite low view angles
for nonzero noise. (iii) As the view angle is reduced, the system
undergoes a first-order phase transition from the ordered state
to the disordered state.

In Fig. 2 we have shown the time-averaged order parameter
〈ψ(t)〉 as a function of the view angle φ for four different
system sizes. (In this and all other plots the symbols are
the data and the connecting lines are guides to the eye.) The
phase transition is clearly seen for all four system sizes, but
there are considerable finite size effects. For the system sizes
L = 24 and L = 28 the transition is quite sharp and recogniz-
ably discontinuous to the eye, but further analysis discussed
below makes it clear that it is indeed of the first order.
It can be noted that as the view angle is decreased, the
order parameter varies slowly but nonmonotonically. It at
first decreases slightly, then increases to a maximum near the
transition, and then drops to low values (not exactly zero, due to
the finite size of the system) that characterize a disordered state.

In numerical simulations it is not a simple matter to
estimate precisely the transition value of the control parameter
and to determine the order of the phase transition, because
the finite size effects “round and shift” the transition. A
complete treatment of the numerical simulation of a phase
transition would require a full-fledged finite size scaling (FSS)
analysis [32,33]. This theory of FSS was originally developed
for the equilibrium phase transition, but now it is known that
much of this analysis is applicable to far-from-equilibrium
phase transitions also, such as the ones observed in the Vicsek
model [14,34–36]. Here we do not wish to carry out a full
finite size scaling analysis for the phase transitions we have
observed, because that would require very large system sizes
and times, and is quite prohibitive for us at present. Here
we only wish to estimate the transition value of the control
parameter φ with moderate accuracy and establish that the
phase transition is of the first order. This can be done using a
function of the moments of the order parameter, known as the
Binder cumulant, defined by [32]

G(η,L) = 1 − 〈ψ4(t)〉
3〈ψ2(t)〉2

, (7)

where 〈ψ2(t)〉 and 〈ψ4(t)〉 are time-averaged second and fourth
moments of the order parameter, for given values of η and L

(for averaging details please see the previous section). For a
second-order phase transition, the Binder cumulant is known
to take a value independent of the system size L, and so if
the Binder cumulant is plotted as a function of the control
parameter for different system sizes all the curves are expected
to cross at the critical value of the order parameter. On the other

052115-3



MIHIR DURVE AND AHMED SAYEED PHYSICAL REVIEW E 93, 052115 (2016)

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

View Angle φ

G

(a)

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

View Angle φ

G

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

View Angle φ

G

(c)

0 0.2 0.4 0.6 0.8 1

−0.8

−0.3

0.2

0.7

View Angle φ

G

(d)

FIG. 3. Binder cumulant G vs view angle φ (in units of π ) for the
system sizes (a) L = 16, (b) L = 20, (c) L = 24, and (d) L = 28.

hand, for first-order phase transitions the Binder cumulant
dips toward the negative values at the transition point, the dip
becoming sharper and deeper as the system size increases. In
Fig. 3 we have shown the plots for the Binder cumulant G as
a function of the view angle φ. For the system size L = 16 we
do not see any dip, as the finite size effects are too large. But
for system sizes L = 20, 24, and 28 we have very clear dips.
Taking the value φ for the minimum of G as the estimated
transition value φc, we get φc = 0.21π , 0.18π , and 0.1625π

for the system sizes L = 20, 24, and 28, respectively. Also,
we get G ≈ 2/3 in the ordered phase and G ≈ 1/3 in the
disordered state [14], as expected.

We have also calculated the distribution of the instantaneous
order parameter ψ(t) in Fig. 4 close to the estimated transition
points. For a first-order phase transition at the transition point
both phases coexist, and over a period of time the system
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FIG. 4. Probability distribution of the instantaneous order
parameter ψ(t) for (a) L = 16, φ = 0.270π , (b) L = 20, φ = 0.217π ,
(c) L = 24, φ = 0.185π , and (d) L = 28, φ = 0.165π .
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FIG. 5. A section of instantaneous order parameter ψ(t) time
series close to the phase transition. The jumps between ordered
state [with 〈ψ(t)〉 ≈ 0.6] and disordered state [with 〈ψ(t)〉 ≈ 0.1]
are clearly seen. Here the system size L = 28 and the view angle
φ = 0.165π .

fluctuates between the ordered and disordered states. The
distribution for the system size L = 16 [Fig. 4(a)] is a broad
unimodal curve, which means that due to the finite size effects,
the distinction between two phases is blurred, consistent with
the Binder cumulant plot for the same system size [Fig. 3(a)].
But for the system sizes L = 20, 24, and 28 [Figs. 4(b), 4(c),
and 4(d), respectively] we have clear bimodal distributions,
showing the presence of both the ordered and disordered
phases. This is also seen in Fig. 5, which gives a sample
of the time series ψ(t) for the system size L = 28. Here we
clearly see the system abruptly and stochastically switching
between the two phases, one with average order parameter
〈ψ(t)〉 ≈ 0.6 (the ordered state) and the one with average order
parameter 〈ψ(t)〉 ≈ 0.1 (the disordered state), which agrees
with the distribution peak positions in Fig. 4.

Another signature of a first-order phase transition is the
presence of hysteresis phenomenon near the transition point.
If the control parameter is ramped up and down across the
transition point at a small, constant ramp rate, the instanta-
neous order parameter shows hysteresis. Figure 6 shows the
hysteresis in the instantaneous order parameter ψ(t) as the
view angle φ is ramped up and down at small ramp rates in
the range of 1.5 × 10−5 to 6.66 × 10−6 radians/unit time. We
obtain the clear hysteresis loops for all four system sizes. The
loops are centered about the view-angle φ values which match
the transition φ values as estimated from Figs. 2 and 3.

The above results show the effects of the variation of the
view angle on the collective motion of the particles. As we
reduce the view angle we are in effect doing two things: we
are reducing the size of the neighborhood, and we are also
introducing an increasing degree of anisotropy or directionality
in the interaction of the particle with its neighbors. Therefore
it would be of interest to know how the effects would differ
if the size of the neighborhood is varied while the interaction
remains isotropic. In Fig. 7 we have shown a comparison of
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FIG. 6. Hysteresis in the variation of the instantaneous order
parameter ψ(t) with the instantaneous view angle φ(t) (in units of
π ) for (a) L = 16, ramp rate 1.15 × 10−4, (b) L = 20, ramp rate
1.50 × 10−5, (c) L = 24, ramp rate 6.66 × 10−6, and (d) L = 28,
ramp rate 6.66 × 10−6. The ramp rate is in radians/unit time. The
arrows indicate ramp-up and ramp-down sections of the hysteresis
curves. Each hysteresis loop is obtained by averaging over 100
independent realizations.

the variation of the order parameter 〈ψ(t)〉 as a function of the
size of the neighborhood. The size, as measured by the area
of the neighborhood A, is varied in two ways: by varying the
view angle φ from 0 to π (as radius R = 1 is held constant),
and by varying the radius R from 0 to 1 (as the view angle
φ = π is held constant). The results differ qualitatively. In the
first case, as we have already discussed above, we have a first-
order phase transition at the transition area Ac ≈ 0.5 (which
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FIG. 7. Order parameter 〈ψ(t)〉 as a function of the area of the
interaction neighborhood A. The symbol circle is for the fixed radius
R = 1 neighborhood (for which A = φ numerically) and the symbol
asterisk is for the fixed view angle φ = π (for which A = πR2). Both
curves are for the system size L = 28.
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FIG. 8. (a) Order parameter 〈ψ(t)〉 vs interaction neighborhood
area A. (b) Variance σ 2(A,L) vs neighborhood area A. The interaction
neighborhood area A is varied by varying the radius R, with view
angle φ = π fixed, so that A = πR2. The symbols cross (red),
circle (black), square (magenta), and diamond (blue) respectively
correspond to L = 24, 28, 32, and 36.

corresponds to φ ≈ 0.16π ) and a nonmonotonic variation of
the order parameter with a maximum around A ≈ 1. In the
second case we have a monotonic fall in the order parameter
as the area of the neighborhood decreases, with no obvious
indication of a phase transition. But in fact there does appear
to be a second-order phase transition which is obscured by
the finite size effects. This can be seen from the behavior of
the variance of the order parameter σ 2(A,L) as a function
of the neighborhood area A, defined by [14,36]

σ 2(A,L) = L2[〈ψ2(t)〉 − 〈ψ(t)〉2]. (8)

This variance is expected to diverge at a second-order phase
transition. In Fig. 8 we have shown both the order parameter
and the variance of the order parameter as functions of the
neighborhood area, which is varied by varying the neighbor-
hood radius holding the view angle fixed at the maximum
value φ = π . In Fig. 8(a), which shows the order parameter
as a function of the neighborhood area A for four different
system sizes L = 24, 28, 32, and 36 the phase transition is not
clearly discernible. But in Fig. 8(b), which shows the variance
of the order parameter as a function of the neighborhood area,
we have a clear peak around A ≈ 1 which becomes more
pronounced as the system size increases (it is expected to
diverge as L → ∞). To establish the presence of this phase
transition conclusively and to characterize its nature (i.e.,
second- or first-order transition) one would need to do detailed
finite size scaling analysis. Here we only wish to underline
the point that the first-order phase transition with the view
angle as the control parameter discussed in this work is not
only the effect of the variation in the size of the interaction
neighborhood, but also the effect of the change in the degree
of directionality of the interaction.

It would be interesting to see the effects of the choice
of the velocity parameter v0 on the phase transition induced
by the view angle φ. To this end we have computed 〈ψ(t)〉
as a function of the view angle φ for a range of velocity
parameter v0 values. These data are presented in Fig. 9. These
calculations are done for a moderate system size of L = 24,
with a relatively short realization of T = 2 × 105 time steps
to obtain each data point, and therefore are not meant to make
any quantitative determinations. Nevertheless, qualitatively
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FIG. 9. Order parameter 〈ψ(t)〉 vs view angle φ for various values
of velocity parameter v0 for the system size L = 24. Number of
realizations = 1, R = 1.0. (a) The symbols cross, circle, and square
respectively correspond to v0 = 0.1, 0.2, and 0.3. (b) The same
symbols correspond to v0 = 0.4, 0.6, 0.8 and diamond corresponds
to v0 = 1.0.

we make the following observations: The first-order phase
transition induced by the variation of the view angle φ is
robustly present over the range 0.4 � v0 � 1.0 (we have not
performed calculations for v0 > 1.0). For v0 � 0.3, there is no
obvious sign of the first-order phase transition. More accurate
determination of the bounds of the velocity parameter v0 for
which this first-order phase transition exists would require
large-scale calculations.

Before concluding, we shall discuss one recent report by
Nguyen et al. [37], who have studied the same model as we
have in this study. In their work they estimate the critical
noise ηc as a function of the view angle φ. Based on their
observations they claim that for φ < 0.5π the critical noise
is zero, or in other words the ordered state does not exist for
the view angles φ < 0.5π in the presence of the noise (i.e,
η > 0). They discuss the implication of this observation to
the presence of the phenomenon of collective motion (which
they call flocking) in certain animal species and its absence in
others. They draw the conclusion that the prey species, which
presumably have view angle φ > 0.5π , do display flocking
behavior; whereas the predator species with view angle φ <

0.5π do not. This claim would be more substantial if this
critical view angle value of 0.5π were robust to some variation

in other parameters (velocity v, density ρ, radius of interaction
R) because the parameter values they have chosen ρ = 1.0,
R = 1, and v = 0.1 have no special physical significance. But
as we have seen in the present study, where ρ and R have the
same values but v = 0.5, the ordered state does persist all the
way down to φ = 0.2π (for nonzero noise, i.e, η = 0.3). In
fact, we obtain a higher degree of order at φ = 0.35π than at
φ = 1.0π .

V. CONCLUSIONS

We have performed a Monte Carlo simulation study of a
modified Vicsek model in two dimensions. We have studied
the effect of the variation of the view angle on the collective
motion of the particles. We have found that as the view angle is
reduced, the order in the system varies nonmonotonically; the
order parameter at first decreases slowly and then increases,
attaining a maximum at a remarkably low view angle, just
before the system undergoes a first-order phase transition to
a disordered state. The results are qualitatively different when
we reduce the radius of the (circular) neighborhood; in this
case the order parameter decreases monotonically and goes
to zero continuously. And the variance of the order parameter
shows a peak for a certain value of the neighborhood radius,
suggesting there could be a second-order order-disorder phase
transition. Considering the importance of the limited view
angle in modeling the motion of real world systems, such as
flocks of birds, it would be interesting to study if similar phase
transitions arise in other models of self-propelled particles,
when the angular range of interparticle interaction in such
models is varied.
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[14] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev. E
77, 046113 (2008).

052115-6

http://dx.doi.org/10.1016/j.physa.2005.11.041
http://dx.doi.org/10.1016/j.physa.2005.11.041
http://dx.doi.org/10.1016/j.physa.2005.11.041
http://dx.doi.org/10.1016/j.physa.2005.11.041
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1016/j.anbehav.2008.02.004
http://dx.doi.org/10.1016/j.anbehav.2008.02.004
http://dx.doi.org/10.1016/j.anbehav.2008.02.004
http://dx.doi.org/10.1016/j.anbehav.2008.02.004
http://dx.doi.org/10.1209/0295-5075/87/48011
http://dx.doi.org/10.1209/0295-5075/87/48011
http://dx.doi.org/10.1209/0295-5075/87/48011
http://dx.doi.org/10.1209/0295-5075/87/48011
http://dx.doi.org/10.1016/j.bpj.2010.01.053
http://dx.doi.org/10.1016/j.bpj.2010.01.053
http://dx.doi.org/10.1016/j.bpj.2010.01.053
http://dx.doi.org/10.1016/j.bpj.2010.01.053
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1007/s11721-008-0016-2
http://dx.doi.org/10.1007/s11721-008-0016-2
http://dx.doi.org/10.1007/s11721-008-0016-2
http://dx.doi.org/10.1007/s11721-008-0016-2
http://dx.doi.org/10.1021/jp101193u
http://dx.doi.org/10.1021/jp101193u
http://dx.doi.org/10.1021/jp101193u
http://dx.doi.org/10.1021/jp101193u
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevE.75.051301
http://dx.doi.org/10.1103/PhysRevE.75.051301
http://dx.doi.org/10.1103/PhysRevE.75.051301
http://dx.doi.org/10.1103/PhysRevE.75.051301
http://dx.doi.org/10.1088/1742-5468/2006/01/P01005
http://dx.doi.org/10.1088/1742-5468/2006/01/P01005
http://dx.doi.org/10.1088/1742-5468/2006/01/P01005
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113


FIRST-ORDER PHASE TRANSITION IN A MODEL OF . . . PHYSICAL REVIEW E 93, 052115 (2016)
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