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Minority-spin dynamics in the nonhomogeneous Ising model: Diverging time scales and exponents
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We investigate the dynamical behavior of the Ising model under a zero-temperature quench with the initial
fraction of up spins 0 � x � 1. In one dimension, the known results for persistence probability are verified;
it shows algebraic decay for both up and down spins asymptotically with different exponents. It is found that
the conventional finite-size scaling is valid here. In two dimensions, however, the persistence probabilities
are no longer algebraic; in particular for x � 0.5, persistence for the up (minority) spins shows the behavior
Pmin(t) ∼ t−γ exp[−(t/τ )δ] with time t , while for the down (majority) spins, Pmaj(t) approaches a finite value.
We find that the timescale τ diverges as (xc − x)−λ, where xc = 0.5 and λ � 2.31. The exponent γ varies as
θ2d + c0(xc − x)β where θ2d � 0.215 is very close to the persistence exponent in two dimensions; β � 1. The
results in two dimensions can be understood qualitatively by studying the exit probability, which for different
system size is found to have the form E(x) = f [( x−xc

xc
)L1/ν], with ν ≈ 1.47. This result suggests that τ ∼ Lz̃,

where z̃ = λ

ν
= 1.57 ± 0.11 is an exponent not explored earlier.
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I. INTRODUCTION

Dynamical phenomena associated with the ordering process
of spin systems have been studied for a long time. While the
domain growth and behavior of correlation functions were
the original issues of interest [1,2], other phenomena such
as persistence and its variants have been extensively studied
more recently [3,4]. It is indeed astonishing to note that even
after decades of research on these topics, newer features have
been revealed. For example, in the zero-temperature quenching
dynamics of the Ising model, frozen states [5,6] and blinkers
[7–10] as nonequilibrium steady states have been shown to
occur in dimensions greater than one. Recent studies of the
zero-temperature quenching dynamics in the two-dimensional
Ising model indicated that the domain growth behavior can be
explained in the framework of percolation theory [11–13].
Different ways of employing the zero-temperature quench
have also been explored in some very recent works in the Ising
model [14–16]. Models with more complicated interactions
with binary spin variables have often indicated the existence
of dynamical universality classes other than the simple Ising
model even in one dimension [17].

Prior to the discovery of the persistence phenomena [3] in
the Ising and other spin models, it was believed that there is
only one dynamical exponent that governs the behavior of the
system during the ordering dynamics. The persistence proba-
bility showed a power-law decay with an exponent that could
not be related to other known static or dynamic exponents. This
indicated that there is a second independent dynamic exponent.
Since the domain size and persistence show power-law
behavior, there is essentially no timescale associated with these
quantities. Physically this means that there are finite probabil-
ities existing even at very large timescales. On the other hand,
diverging timescales can be associated with dynamical behav-
ior close to the critical point. The typical relaxation behavior of
the order parameter m as a function of time t is exponentially
close to the critical temperature, m(t) ∼ exp(−t/τ ), with τ

diverging as the critical temperature is approached.
In the present work, we consider the zero-temperature

single-spin flip Glauber dynamics of Ising model with nearest
neighbor interaction when the initial configuration is non-

homogeneous, i.e., the fraction of up and down spins are
different. x is the fraction of up spins ranging between 0
and 1. x = 0.5 is the homogeneous case and due to up- and
down-spin symmetry, it is sufficient to take x � 0.5. The
spins are otherwise uncorrelated. Three types of persistence
behavior are studied: P+ (persistence for up spins), P−
(persistence for down spins), and Ptotal (persistence for the
total system). The exact expression for the variation of the
above-mentioned quantities are known in one dimension in
the thermodynamic limit. We have numerically evaluated the
persistence probabilities for finite systems and checked that
the familiar finite-size scaling [18,19] is valid for all values of
x. Our main results are for the two-dimensional model, here
we have numerically obtained the behavior of P+, P−, and
Ptotal and find the presence of a diverging timescale associated
with P+ or P−, whichever corresponds to the initial minority.

Another quantity associated with the ordering process that
has been studied quite intensely in recent years is the exit
probability. As a function of x (the initial fraction of up spins),
the exit probability E(x) is defined as the probability that
the final state comprises all up spins. The behavior of the exit
probability helps in understanding qualitatively the persistence
probability in the Ising model. Hence, we have also conducted
a detailed study of the exit probability in two dimensions to
gain more insight into the problem.

In the next two sections, the results for one- and two-
dimensional Ising models are discussed, respectively. In the
last section, summary and some discussions are presented.

II. RESULTS IN ONE DIMENSION AND
FINITE-SIZE SCALING

For systems with nonuniform initial condition, i.e., with
unequal initial fraction of up and down spins, the exact result
for the Ising model in one dimension shows that the density of
persistent spins decays algebraically as [20]

P±(t) ∼ t−θ± . (1)
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The exponents are different for the up and down spins,

θ± = θ (x±) = 2

π2

[
cos−1

(√
2x± − 1√

2

)]2

− 1

8
, (2)

where x+ (x−) is the initial concentration of up (down) spins.
For equal initial fraction of up and down spins (i.e., for x± =
0.5) we have θ+ = θ− = 3

8 [3]. In this paper we follow the
notation x = x+ unless otherwise specified.

During the coarsening, the typical domain size D shows a
power-law growth with time,

D(t) ∝ t1/z, (3)

z being the domain growth exponent. For the Ising model,
z = 2 in all dimensions [1].

While the persistence exponents are x-dependent, the
domain growth exponent z is identical for all x. This is easy
to explain. Consider, e.g., the growth phenomena for x = 0.5.
Immediately after the time evolution starts, x will attain a
different value. One might as well consider this to be the
initial state, hence z = 2 for all x [1,2].

In one dimension, it is known that for the homogeneous
case, the persistence probability obeys finite-size scaling. The
behavior of the persistent probability P (t,L) in a system with
linear dimension L can be summarized as [18]

P (t,L) = L−zθf (t/Lz) = L−αf (t/Lz), (4)

with α = zθ . We check whether this is also valid when
x �= 0.5. Obviously, if valid, the associated exponent α should
vary with x, since z is constant. Finite-size scaling analysis
in one dimension was performed for all three variants of the
persistence probability for x � 0.5. Simulations were made
for system sizes L � 1000 taking average over at least 1000
configurations. In each Monte Carlo step, L spins are chosen
randomly and updated. Asynchronous updating rule is used
and periodic boundary condition imposed. We find that indeed
the finite-size scaling Eq. (4) is valid, as the curves for different
values of L collapsed with proper choice of α, keeping z � 2
(Fig. 1). It is checked that these values of α are consistent
with the relation α = zθ . In Table I we have summarized the
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FIG. 1. Data collapse for persistence probability of up spins for
systems with x = 0.3 in the one dimensional Ising model. This
particular collapse was obtained with α+ = 1.0 and z = 1.95. Similar
data collapse can be obtained for P− and Ptotal for other values of
x. Inset shows variation of P0(t) and Ptotal(t) for x = 0.4; these
calculations were made for a system size L = 1000.

TABLE I. Persistence and other exponents obtained for Ising
model in one dimension using numerical simulation.

x θ0 θ+ θ− α0 α+ α−

0.3 0.227 0.562 0.212 0.42 1.0 0.40
0.4 0.318 0.463 0.285 0.64 0.94 0.57

values of θ and α obtained for two different values of x. The
values of θ+ and θ− differ from the exact values by less than
0.05%. As for the up, down, and total spins θ is different,
the corresponding values α+, α−, and α0 also turn out to be
different.

Ptotal(t), the total persistence is expected to be a weighted
average of P+ and P−. We calculate the quantity

P0(t) = x+P+(t) + x−P−(t) (5)

to check whether P0(t) and Ptotal(t) are equal and find a very
good agreement indeed (inset of Fig. 1). Even though Eq. (5)
is valid, it is interesting to note that the exponent θ0 associated
with the total persistence probability is different from the
min[θ+,θ−], albeit close to it (see Table I).

Qualitatively, the algebraic decay of P+ and P− can be
explained from the behavior of the exit probability E(x), which
in the one-dimensional Ising model is given by E(x) = x.
This indicates that there is a finite probability of ending up
with either all up or all down spins even for values of x �= 0.5
(except for x = 0 and 1).

III. RESULTS IN TWO DIMENSIONS

In the ordering dynamics of the two-dimensional Ising
model, the three variants of persistence were studied for vari-
ous values of x less than 0.5 on L × L square lattices with L �
256. Simulations were performed for 1000 configurations.
Here also one Monte Carlo time step comprises L2 updates
and random asynchronous updating rule is used. Helical
boundary condition has been imposed for the simulation in two
dimensions. In Fig. 2, the results for x close to 0.5 are shown.
As x deviates from 0.5, P+ shows a faster decay while both P−
and Ptotal saturate at higher values. No appreciable finite-size
dependence is found for these two persistence probabilities
(inset of Fig. 2).

By the present convention, P− is the persistence probability
for the down spins, which is the initial majority. Generalizing
the notation for initial majority and minority spins, we have
Pmaj saturating to a finite value and Pmin going to zero. To
explain why Pmaj does not show system-size dependence, we
can argue like this: had it been decreasing with size, it would
ultimately go to zero. On the other hand, had it been increasing
for larger sizes, it would approach 1. Both the possibilities are
unrealistic and hence no system-size dependence is observed.
Since Ptotal is basically a weighted average of P+ and P−, its
nature is dominated by that of P−, the majority spins, and
hence it does not show finite-size dependence also.

The persistence probabilities do not show algebraic behav-
ior unlike in the one-dimensional Ising model. The persistence
probability for majority spins as well as for the total spins do
not show much interesting behavior as they decay to rather
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FIG. 2. Behavior of three types of persistence probabilities for
two-dimensional Ising model for two different initial fraction of up
spins with L = 256. The darker (red) curves correspond to x = 0.482
and the lighter (green) ones to x = 0.492. Inset shows persistence
probabilities for total spins and down spins for x = 0.482 for two
different system sizes. The lighter (red) curves correspond to L = 256
and the darker (black) ones to L = 128.

high saturation values and show no finite-size dependence.
However, in the case of the minority spins, finite-size effect is
apparent and a number of interesting features are revealed on
further analysis. The decay of the persistence probability Pmin

can be fitted to the form

Pmin(t) ∼ t−γ exp[−(t/τ )δ], (6)

which is a combination of an algebraic decay accompanied by a
stretched exponential cutoff (Fig. 3). We find that this fit is valid
almost up to the time where Pmin saturates to a finite value.
The fits become more accurate as x approaches 0.5. It is clear
that Pmin extrapolates to a zero value for L → ∞. However,
the Pmin versus t curves for different values of L (shown in the
inset of Fig. 3) shows that the finite-size dependence is evident
only at times beyond which Pmin saturates. This is very similar
to what happens for x = 0.5. Thus, it is sufficient to use Eq. (6)
for the maximum size (L = 256) only.

No exact result is known for the persistence exponent even
for x = 0.5 and one depends only on approximate estimates,

10-3

10-2

10-1

100

100 101 102 103 104

P m
in

t

x = 0.48

x = 0.485

x = 0.49

x = 0.495

Data 

10-3

10-2

10-1

100

100 102 104

L = 256

L = 128

L = 96

L = 64

L = 32

FIG. 3. Pmin(t) against time t for several values of x along with the
best fit curves according to Eq. (6) are shown. Inset shows persistence
probabilities for x = 0.48 for five different system sizes.

most of which are numerical [4,21–23]. However, the behavior
of the persistence probability has been found to be strictly a
power law even for finite system sizes. The resultant exponent
has been shown to have some finite time dependence on closer
examination [23]. In the present case, therefore, we have varied
the range of time when Eq. (6) is used. Noting there is not much
variation in the values of τ and δ for different ranges, we have
used the average values for further analysis.

In order that Eq. (6) is valid for x → 0.5, τ must diverge
at that limit. Also, the associated exponent should be close to
0.20 according to the more recent estimates of the persistence
exponent in two dimensions. To check this, we analyzed the
behavior of γ and τ as a function of (xc − x), where xc = 0.5.

The variation of τ with (xc − x) is found to be of the form

τ ∼ (xc − x)−λ, (7)

thus showing the divergence at x → 0.5 (Fig. 4). The value of
λ is numerically equal to 2.31 ±0.16. On the other hand, the
data for γ shows some fluctuations but apparently has a linear
variation with x − xc. In general, γ can be written as θ2d + c,
where

c = c0(xc − x)β. (8)

Putting β = 1, we obtain θ2d = 0.215 ± 0.004, which is in-
deed very close to the persistence exponent in two dimensions;
c0 = 4.11 ± 0.37. The data is shown in Fig. 4 (inset). The value
of θ2d is quite insensitive to the value of β, which may vary
between 0.8 to 1.2 due to the scatter in the data. Thus, we
find the presence of two quantities τ and c, which diverge and
vanish, respectively, as x → 0.5. The value of δ is O(10−1)
and it also shows a slow decrease with x. However, it remains
finite (≈ 0.4) even at values of x very close to 0.5.

The nature of the persistence probabilities in the two-
dimensional Ising model can also be explained qualitatively
by studying the exit probability. It is known that exactly at
x = 0.5, the system may not reach the all spins up or down
configuration always due to freezing [7–9]. Since for finite
sizes it is possible that such frozen states may persist at
small deviation from x = 0.5 as well, we considered only
those configurations that led to the true ground states while
calculating E(x). E(x) for the two-dimensional Ising model
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FIG. 4. Divergence of τ as (xc − x)−λ with λ = 2.37. Inset shows
variation of γ with (xc − x) as θ2d + c0(xc − x)β , with θ2d = 0.215,
c0 = 4.11, and β = 1.
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FIG. 5. The data collapse for exit probability using ν = 1.47
for different system sizes in two-dimensional Ising model. The
collapsed plot was fitted according to h(y) = [tanh(ay) + 1]/2, where
y = ( x−xc

xc
)L1/ν with a = 1.67. Inset shows the unscaled data against

initial concentration x of up spins.

shows strong finite-size effect and the data indicate that
there is a step-function behavior in the thermodynamic limit.
Finite-size scaling analysis of E(x) was done using the scaling
form valid for such a behavior [24],

E(x,L) = h

[
(x − xc)

xc

L1/ν

]
, (9)

where h(y) → 0 for y << 0 and h(y) = 1 for y >> 0 (i.e.,
a step-function-like behavior) shown in Fig. 5. This scaling
argument indicates that L−1/ν is basically the factor by which
the width of the region, where E(x) is not equal to 0 or 1,
decreases. The value of ν from our data collapse is estimated
to be 1.47 ± 0.05. The scaling function h is found to fit with
the form

h(y) = [tanh(ay) + 1]/2, (10)

with a � 1.67.
Since E(x) shows a step-function-like behavior in the

thermodynamic limit, for an initial concentration of up spins
less than 0.5, the probability to reach a configuration with all
spins up is simply zero. Hence all the minority spins eventually
flip state and therefore Pmin(t → ∞) = 0.

As already noted, the scaling form Eq. (9) suggests |x −
xc| scales as L−1/ν and using this in Eq. (7) we get τ ∼ Lz̃,
where z̃ = λ

ν
. Hence, z̃ = 1.57 ± 0.11 can be interpreted as a

dynamic exponent connecting time and length scales. The only

other known dynamic exponent is z = 2 [Eq. (3)] associated
with the domain growth phenomena and is clearly different
from z̃.

The scaling function h in Eq. (10) has the same form
as found for a class of models with dynamical rules quite
different from the Ising model [25]. The value of ν, however,
is completely different.

IV. SUMMARY AND DISCUSSION

In summary, we obtained the persistence probability of
up, down, and total spins for Ising spin systems using the
zero-temperature Glauber dynamics in both one and two
dimensions. In the initial state, the up-spin density x varies
between 0 and 1, while the spins are otherwise uncorrelated. In
one dimension, the exact results for the persistence exponents
are known and we find that the well-known finite-size scaling
form is valid even in the nonhomogeneous case.

In two dimensions, the results differ drastically, no algebraic
decay is observed for the three types of persistence probabil-
ities. The persistence probability Pmin corresponding to the
initial minority spin vanishes. Pmaj saturates to a finite value
consistent with the behavior of the exit probability. The most
significant finding is the diverging timescale associated with
the minority-spin persistence probability. This timescale is
related to the system size through an exponent z̃ = 1.57 ±
0.11, not explored so far to the best of our knowledge. In
addition we obtain two other exponents β � 1 and ν � 1.47.
The values of the exponents obtained in the present study are
all close to multiples of 0.5 (within error bars), which suggests
that these may be related to the growth exponent z = 2. If
this can be shown directly it will lead to a very important and
striking result that domain growth and persistence probability
are no longer independent for x = 0.5. However, this a difficult
proposition as exact analytical estimate of persistence has
been possible in one dimension only. Hence, the existence of
yet another independent dynamical exponent in the ordering
process in the two-dimensional Ising model remains an open
question as of now.
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