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Driven diffusive systems such as the zero-range process (ZRP) and the pair-factorized steady states (PFSS)
stochastic transport process are versatile tools that lend themselves to the study of transport phenomena on
a generic level. While their mathematical structure is simple enough to allow significant analytical treatment,
they offer a variety of interesting phenomena. With appropriate dynamics, the ZRP and PFSS models feature a
condensation transition where, for a supercritical density, the translational symmetry breaks spontaneously and
excess particles form a single-site or spatially extended condensate, respectively. In this paper we numerically
study the typical time scales of the two stages of this condensation process: Nucleation and coarsening. Nucleation
is the first stage of condensation where the bulk system relaxes to its stationary distribution and droplet nuclei
form in the system. These droplets then gradually grow or evaporate in the coarsening regime to coalesce in a
single condensate when the system finally relaxes to the stationary state. We use the ZRP condensation model
to discuss the choice of the estimation method for the nucleation time scale and present scaling exponents for
the ZRP and PFSS condensation models with respect to the choice of the typical droplet nuclei mass. We then
proceed to present scaling exponents in the coarsening regime of the ZRP for partially asymmetric dynamics and
the PFSS model for symmetric and asymmetric dynamics.
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I. INTRODUCTION

Stochastic transport processes have been studied for a
long time to understand fundamental principles in various
physical and nonphysical systems on a wide range of length
scales. Originally introduced to study properties of inter-
acting Markov processes by Spitzer [1], they were found
to be versatile enough to provide mappings or models of
more realistic systems. For instance, extended versions of
the asymmetric exclusion process and related models have
been used to model intracellular locomotion of molecular
motors [2] as well as vehicular and other traffic [3–5]. To
us, another interesting field of application is the modeling
and understanding of general condensation phenomena that
are observed in a broad range of physical systems, such as
colloidal and granular systems [6], the formation of breath fig-
ures [7], the condensation on inhomogeneous networks [8–10],
and the aggregation of links in networks [11], as well as
in a variety of other contexts [3,5,12]. Some stochastic
transport processes, in general driven far from equilibrium,
lend themselves to this domain due to their relative simplicity,
the occurrence of phase separation and the resulting rich phase
structures being present already in one dimension [13]. For
example, the asymmetric simple exclusion process features
a phase diagram with a maximum current, as well as a
low-density and a high-density phase induced by externally
driven particle exchange at the system boundaries [14–18].
Another well-known example for the occurrence of phase
separation in a one-dimensional stochastic transport model
is the zero-range process (ZRP) [1,13,19,20], where particles
on the same site interact nonexclusively: With appropriate
dynamics, this model features a condensation transition with
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a coexisting localized particle condensate and a “fluid”
background or bulk phase. For sufficiently high particle density
ρ, the translational symmetry breaks down spontaneously
and a condensate containing a finite fraction of particles
emerges at a single site in the system while the remaining
particles form the bulk of the system. This condensation
model within the ZRP has been extensively discussed in
the literature, so a wide host of properties is well known
and many related models were proposed and studied. For
example, a model with nearest-neighbor interactions proposed
by Evans et al. [21] features formation of spatially extended
condensates, a property the ZRP lacks due to its interaction
range being zero. In this model, the stationary state factorizes
over lattice bonds instead of sites as for the ZRP, which
is why it is often referred to as the pair-factorized steady
states (PFSS) model, mainly to distinguish it from the fully
factorized steady state of the ZRP. Many stationary properties
of the condensed state in this family of models, such as the
condensate’s shape and length scale [22–24], mobility [25,26],
metastability of the condensate [27], and boundary-induced
phase separation [28–30], have been studied.

Besides these interesting stationary properties of the con-
densed state of these models, the dynamics that lead to it are
of interest to the study of general condensation phenomena. In
this paper we will discuss the dynamics of the condensation
process for the PFSS model as well as the ZRP. Specifically
we will determine and discuss the time scales of the two main
steps of the relaxation process from a random initial state
to the final stationary distribution where a single condensate
contains the entire excess particles of the system. These
general steps are the nucleation and coarsening processes as
in the well-known picture of Ostwald ripening [31]. Classical
theories of precipitation in this context are the Szilard-Farkas
and Becker-Döring models [32,33] for nucleation and the
Lifshitz-Slyozov-Wagner model [34] in the coarsening regime.
Nucleation is the initial diffusive accumulation of several
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particles to small droplets that are larger than the typical
fluctuations in the critical background of the relaxed system.
Coarsening refers to the growth of some droplets and the
evaporation of smaller ones until only a single large droplet
persists and the steady state is reached. While the steady state
might be in nonequilibrium due to an external drive and particle
transport, this process irreversibly relaxes the system from a
nonequilibrium state towards the stationary distribution. The
time scale of these processes refers to the dependence of the
nucleation and coarsening times to the size of the system.

For the ZRP, the nucleation and coarsening steps and
the corresponding time scales have been treated analytically
for symmetric as well as totally asymmetric dynamics by
Grosskinsky et al. [35]. In an earlier study the coarsening
time scale of a finite ZRP has been determined by interpreting
the size of the largest condensate as a bounded and biased
random walk and calculating the first-passage time when
the largest condensate absorbed any particles of a smaller
condensate [25,36].

In this article we will extend these considerations for the
ZRP to the generalized PFSS condensation model proposed
by Evans et al. [21] featuring short-range interactions. While
this allows us to create more realistic models of transport
phenomena, its mathematical structure remains simple and
similar to the ZRP. Most importantly here is that the intro-
duction of nearest-neighbor interactions allows the emergence
of spatially extended condensates. In fact, variations of the
hopping dynamics have been proposed that lead to interesting
properties of the condensate, such as a tunable envelope shape
and scaling of the condensate width [22–24]. In a recent
contribution, we discussed another variant as a toy model in
the context of thin-film growth [37], where the system starts
empty and condensation gradually takes place as particles
are deposited from the outside. We are therefore interested
in comparing the nucleation and coarsening processes of
extended droplets in this model to those observed in the ZRP
and specifically determining the respective time scales.

We will continue as follows. We first introduce the ZRP and
PFSS models and discuss the expected time scales in Sec. II.
In Sec. III, we discuss the numerical methods employed to
simulate the dynamics and track the condensation process. We
will further describe our considered methods to compute the
time-scale exponents from the trajectories. In Secs. IV and V,
we compare our results for the condensation time scales of the
ZRP and PFSS processes, respectively. Finally, the last Sec. VI
contains the conclusions of our work.

II. MODELS

We consider condensation phenomena in two related mod-
els of stochastic transport processes: The ZRP and the PFSS
models. The ZRP is a minimal model of a particle-hopping
stochastic transport process with local interactions only.
The PFSS model introduces nearest-neighbor interactions
additionally to the zero-range interactions of the ZRP. We
will use the simpler ZRP to set up and validate our methods
to estimate the time scales of the condensation process in the
latter model.

In both models the system consists of a number of indistin-
guishable particles that occupy the sites of a lattice or graph.

i
mi 1 2 1 0 0 3 5 3

u 1 − pleftpleft

FIG. 1. Schematics of the discussed models. From a randomly
selected site i a particle is taken with probability uZRP =
u(mi)/umax,ZRP or uPFSS = u(mi |mi−1,mi+1)/umax,PFSS and then
moved to sites i − 1 or i + 1 with probability pleft or 1 − pleft,
respectively.

The number of particles occupying a specific site i is called the
occupation number mi and can be any integer value 0 � mi �
M , where M = ∑L

i=1 mi = ρL is the total particle number in
a system of L sites. At every step of the stochastic process a site
i in the lattice is randomly selected for trial of particle hopping.
If the site is occupied, hopping of a single particle succeeds
with the hopping rate u per unit time and the particle hops to a
neighbor of its departure site. Random choice of the hopping
target leads to an equilibrium system, while a biased choice can
lead to a system driven far from equilibrium. We will consider
the case of the one-dimensional periodic lattice, where such a
drive is easily implemented by a probability pleft of the particle
to hop to the nearest neighbor in the negative direction of the
lattice and in the positive direction with probability 1 − pleft.
For any given lattice and number of particles M the individual
dynamics of the particles in these models are therefore fully
described by the hopping rate function and the strength of the
bias in the hopping direction. The general update scheme of
this family of processes is given in Fig. 1.

A. The zero-range process

The ZRP was originally proposed to model a set of
nonexclusively interacting random walks by Spitzer [1]. It is
constructed to be analytically tractable and has, for symmetric
as well as asymmetric dynamics, always the same factorized
stationary distribution

PZRP({m}) = 1

Z
M,L
ZRP

[
L∏

i=1

p(mi)

]
δ∑L

i=1 mi,M
, (1)

where {m} = (m1, . . . ,mL) is a specific configuration of the
system. The factorization of the steady state is carried out
over the single-site weight functions p(m) for all sites. The
normalization constant ZM,L

ZRP used here has the same role as the
partition function in an equilibrium model and the Kronecker
symbol δ∑L

i=1 mi,M
ensures the conservation of particles. With

the choice of the weight function

p(m) =
m∏

n=1

[
1

u(n)

]
, p(0) = 1 (2)

the hopping rate function then becomes

u(m) = p(m − 1)

p(m)
. (3)
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It is easy to check that this leads to the steady state (1) by
inserting (2) and (3) into the master equation

∂

∂t
P ({m}) = 0 =

∑
{m}′

[W ({m}′ → {m})P ({m}′,t)

−W ({m} → {m}′)P ({m},t)], (4)

where the transition rates are W ({m} → {m}′) = u(mi)pleft

for a hop to the left ({m}′ = {m1, . . . ,mi−1 + 1,mi −
1, . . . ,mL}), W ({m} → {m}′) = u(mi)(1 − pleft) for a hop to
the right ({m}′ = {m1, . . . ,mi − 1,mi+1 + 1, . . . ,mL}), and
W ({m} → {m}′) = 0 otherwise.

In this work we consider the well-known ZRP condensation
model [13,19] with hopping rate function

u(m) = 1 + b

m
. (5)

For this choice of dynamics, condensation occurs for b > 2
above a critical density of ρc = 1/(b − 2). When the total
number of particles is increased above the condensation
threshold M > ρcL, the translational symmetry breaks down
and the excess particles M ′ = M − ρcL condense at a single
site in the system. The occupation number of the rest of the
system remains on average at the critical density ρc. For
illustration, the average mass of the largest droplet M ′(t)
during a complete condensation is shown in Fig. 2 for a number
of system sizes with totally asymmetric dynamics. Note how,
for small times, the largest droplets grow very similarly, while
coarsening takes much longer for larger lattices.
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FIG. 2. The nucleation (bottom right) and coarsening (top left)
processes for various system sizes in the ZRP as observed in the
average mass of the largest droplet at time t . The two groups of curves
show the same data. The upper group, plotted versus the top and left
axes, is merely rescaled in time by 1/M2 and in mass by 1/M in order
to collapse the trajectories of different system sizes to a single master
curve for late times, as shown in the upper inset. The lower group,
plotted versus the lower and right axes, is shown without rescaling.
The lower inset shows the weak dependence of droplet growth on
system size in the early condensation dynamics. The curves were
determined for totally asymmetric dynamics pleft = 1 using 1000
trajectories per size L = M .

The scaling of the nucleation and coarsening times as
determined by Grosskinsky et al. [35] assumes a power law in
the system size of the form

τ = aMδ, (6)

which is also observed for other relaxation processes in the
ZRP with different dynamics [38]. To estimate the nucleation
time scale, Grosskinsky et al. propose a mass threshold
mt for a droplet nuclei and calculate the time it takes to
populate the system with such nuclei. For the choice of a
threshold linear in the system size mt = αlin(ρ − ρc)L, with
some constant αlin�1, they estimate the scaling exponent of
the nucleation time as δnucl,ZRP = 3 for symmetric (pleft = 1/2)
and δnucl,ZRP = 2 for totally asymmetric (pleft = 1) dynamics.
The coarsening time is dominated by the typical time for a
droplet to loose all particles, which is determined using the
fact that for the ZRP the evaporation rate of a droplet is simply
the hopping rate for the droplet mass.

B. The PFSS transport process

The basic PFSS short-range interaction transport process
differs from the ZRP by taking the interactions between
particles on adjacent sites into account. This is realized by
replacing the single-site weight p(m) of the ZRP with a
two-point weight function g(m,n) for each bond in the system.
The stationary distribution of this process then assumes the
form

P ({m}) = 1

Z
M,L
PFSS

L∏
i=1

g(mi,mi+1)δ∑L
i=1 mi,M

, (7)

i.e., it factorizes over pairs of sites, giving rise to the name
pair-factorized steady states transport process. Here the bond
weight function g(m,n) is a positive and, in our case, sym-
metric function. The corresponding hopping rate function that
controls the dynamics of the process is determined similarly
as for the ZRP using the master equation (4) with appropriate
transition rates W ({m} → {m}′) = u(mi |mi−1,mi+1)pleft for a
hop to the left ({m}′ = {m1, . . . ,mi−1 + 1,mi − 1, . . . ,mL}),
W ({m} → {m}′) = u(mi |mi−1,mi+1)(1 − pleft) for a hop to
the right ({m}′ = {m1, . . . ,mi − 1,mi+1 + 1, . . . ,mL}), and
W ({m} → {m}′) = 0 otherwise. The resulting hopping rate
function is then given by

u(mi |mi−1,mi+1) = g(mi − 1,mi−1)

g(mi,mi−1)

g(mi − 1,mi+1)

g(mi,mi+1)
. (8)

A compelling general choice of the bond weight is to use
the factorized form g(m,n) = √

p(m)p(n)K(|m − n|), with a
zero-range site weight function p(m) as in the ZRP and a
short-range part K(x). Thus, the ZRP is easily reproduced
as a special case by setting K(x) ≡ 1 and a broad range of
interactions can be implemented by interpreting the partial
weights p(m) as a particle-site potential and K(|m − n|)
as a particle-particle interaction term. Due to the ranged
interactions there is now the possibility that spatially extended
condensates emerge in the system. A number of specific
weights and thus dynamics have been considered in the
literature for this model, such as that suggested in its original
proposition by Evans et al. [21] or the tunable interactions
resulting in various condensate shapes [22–24].
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FIG. 3. Sample time series of a PFSS condensation process in a system of L = 500 sites and M = 500 particles for totally asymmetric
dynamics (pleft = 1, “particles cyclically move down”) and interaction parameters U = J = 1. Each vertical slice in the plot corresponds to
the occupation number vector at time t . The time axis is logarithmic to show the different stages of the condensation process. Starting with
a disordered state in the leftmost slice, small droplets emerge and gradually coarsen on every time scale until a single condensate remains at
about t ≈ 107.

The main question that we are going to resolve in this
work is whether the nucleation and coarsening dynamics of
condensation in this model with short-range interactions takes
place on the same time scale as for the ZRP. To do this, we
will consider the dynamics suggested in Ref. [21] given by the
partial weights

p(m) = eUδm,0 , K(x) = e−Jx. (9)

Here U gives the strength of an on-site potential and J can be
interpreted as a surface energy. In this work, we will only
explicitly discuss the case U = 1,J = 1, although we did
check different parametrizations as well as different dynamics
with pair-factorized steady states featuring condensation.
Inserting this into the Eq. (8) gives the hopping rate function

u(mi |mi−1,mi+1) =

⎧⎪⎨
⎪⎩

e−2J+Uδmi ,1 mi � mi−1,mi+1,

e2J+Uδmi ,1 mi > mi−1,mi+1,

eUδm,1 otherwise.

(10)

As an illustration of this dynamics, Fig. 3 shows a time series
of configurations from a random initial state to the stationary
state with a single condensate.

For this choice of dynamics the critical density can be
determined as ρc = 0.2397 for parameters U = 1, J = 1
[22]. Above this density an extended condensate of roughly
parabolic shape containing the excess particles (ρ − ρc)L
emerges. The exact shape can be determined as well [23].
The extension of the condensate scales as the square root of its
mass M ′ for sufficiently large systems [21,22]. Because of the
spatial extension as well as the smooth shape of the droplets,
and ultimately the remaining single condensate, it is nontrivial
to reproduce either the analytical or the qualitative arguments
for the nucleation and coarsening time scales in this case.
Therefore, in this work, we perform numerical simulations of
both the ZRP and PFSS model to calibrate our methods by the

ZRP results and determine the time-scale exponents for the
PFSS process using the same power-law ansatz (6) as for the
ZRP.

III. NUMERICAL SIMULATIONS

We employ a kinetic Monte Carlo method with discrete
time steps that directly simulates the dynamics of the consid-
ered transport processes. Per time step, every lattice site is
considered on average once for a local update that consists of
the following steps: A site i with 1 � i � L is randomly and
uniformly chosen and, if occupied, the hopping rate ui for that
site is determined according to (5) or (10). A particle leaves
the site, with the probability ui/umax, where

umax =
{
b + 1 ZRP

e2J+U PFSS for U,J > 0
(11)

is the maximal hopping rate for the given model. The particle
then enters the left (i − 1) or right (i + 1) neighbor with
probability pleft and 1 − pleft, respectively. At the boundary
sites i = 1,L we consider periodic boundary conditions, so
the left neighbor of the first site and the right neighbor
of the last site are identified as the last and first sites,
respectively. Because of the definition of the hopping rate
in events per physical time unit, a Monte Carlo sweep of L

single-site updates corresponds to 1/umax units of physical
time. By repeating this update procedure, a single trajectory
of configurations {m}(t) is generated.

In contrast to steady-state simulations, where an observable
can be estimated from a large number of observations in a
single trajectory, here every trajectory contributes only a single
observation to the estimation of the typical nucleation and
coarsening times. To determine a sufficiently good estimate
for the scaling exponents, we hence generated on the order of
several thousand trajectories for every parametrization.
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IV. NUCLEATION

Nucleation is the first stage of the condensation process,
covering the formation of particle droplet nuclei from the bulk
system until the bulk phase is relaxed and coarsening takes
over. Since the number of particles in the system M = ρL is
conserved, the initial configuration is prepared using a uniform
distribution of particles. For any supercritical density ρ > ρc,
the system then contains (ρ − ρc)L excess particles that settle
at random sites forming droplets. In the case of the ZRP, such a
droplet is just a larger number of particles on a single site with
respect to the occupation number distribution in the bulk of the
system. The mass of a droplet, that is, the number of contained
particles, is therefore equal to the occupation number at its
location for the ZRP. In the PFSS model, where droplets are
in general extended, we require separation by at least one site
with occupation below the critical density mi < ρc, that is
mi = 0 in both models for the parameters considered in this
paper. The sum of occupation numbers in the droplet region
then defines its mass.

To gain a basic understanding of the involved time scales
determining the nucleation process, we can somewhat gener-
alize the heuristic approximation of the scaling exponent for
the ZRP by Grosskinsky et al. [35]. When the typical cluster
mass is assumed to be linear in the system size α(ρ − ρc)L,
it follows that there are on the order of 1/α droplets in the
system. The density of droplets in turn determines the average
free distance that particles travel to a nuclei. The time, in
units of single hops, for on the order of L particles to travel a
distance of order L is then roughly L2 for totally asymmetric
dynamics and L3 including diffusive motion due to symmetric
dynamics. The choice of the typical droplet mass being linear
in the system size ensures that droplets are distinctly larger than
random fluctuations, which are of order [�(b − 1)L]1/(b−1) for
the ZRP [35], where �(x) is the gamma function. However,
assuming a different functional dependence of the typical
droplet mass, such as a proportionality to the square root of
the excess particles αsqrt

√
(ρ − ρc)L, results in a change of the

time scale as well: On the order of L1/2 particles travelling for
a mean free distance of order L1/2 sites yields a time scale of
order L for asymmetric and L3/2 for symmetric dynamics.

Because of this, we will first reproduce and compare the
time scale for nucleation in the ZRP before proceeding to the
PFSS model. Furthermore, we will consider three types of
typical droplet masses of the form

mt =
⎧⎨
⎩

αlin(ρ − ρc)L mt,lin

αsqrt
√

(ρ − ρc)L mt,sqrt

const mt,const

(12)

to check our former assumptions and compare the resulting
kinetics. The additional threshold mt,const independent of the
system size is motivated as follows. The critical droplet size
in the nucleation regime is the size of a droplet for which
its growth rate becomes faster than its decay rate. For the
single-site droplets in the ZRP, we can determine this size by
evaluating the droplet growth in the vicinity of the critical
droplet size mc,

∂m

∂t

∣∣∣∣
m≈mc

= 0 =
∞∑

n=1

P (m±1 = n)u(n) − u(mc), (13)

where P (m±1 = n) is the probability to find n particles on the
adjacent sites. As the bulk should relax within the nucleation
time, we can assume that P (m±1 = n) = π (m) is the mass
distribution of the ZRP, that is, π (m) = p(m) exp(−μm), with
the chemical potential μ in the grand-canonical system and
thus π (m) ∝ p(m) ≈ �(b + 1)m!/�(b + 1 + m) for a fixed
number of particles. We can now find the critical value as mc ≈
b�(b − 1)/[�(b − 1) + �(b − 2)] which is mc = 15/2 for the
interaction strength b = 5 used here and set our threshold
including a small safety margin to mt,const = 10.

To determine the nucleation time scale using numerical
simulations, we will compute the transition time when the
coarsening of droplets starts to dominate the kinetics of the
system; that is, the formation of new droplets of at least
the typical mass mt becomes smaller than the evaporation
of existing ones. This is achieved by counting the number of
droplets that have at least the typical mass (threshold mass)
at every time in the trajectory and computing its average over
many trajectories. The scaling exponent is then determined
visually for the best data collapse assuming the power law (6).

A. ZRP

To compare with the results of Grosskinsky et al. [35] and
validate our numerical methods, we use a similar parameter
set with system sizes of L = 320,640,1280, and 2560 sites,
interaction strength b = 5, yielding ρc = 1/(b − 2) = 1/3,
and somewhat more variation in the particle density ρ =
1,2,4,8, and 12. To compute the average droplet-count func-
tion nc(t), we simulated 1200 trajectories for each combination
of parameters with totally asymmetric (pleft = 1) as well
as symmetric (pleft = 1/2) dynamics. We then rescaled the
average droplet counts to achieve a good collapse for different
system sizes and get the scaling with respect to the mass
thresholds (12).

Figure 4 shows that these results indeed reflect the heuristic
approximations made for the different assumptions of the
typical droplet mass mt. The curves of the droplet counts
collapse in two ways. First, for identical values of the particle
density ρ there is a collapse for individual system sizes L.
Second, for the size-dependent thresholds and asymmetric
dynamics, this collapse increases with the particle density and
a common master curve is approached. For typical droplet
masses mt,const independent of the system size, the collapse
for different L within the same density is remarkable perfect.
While this might to some extent reflect the higher absolute
value of droplet counts and thus greater amount of self-
averaging in that situation, it also suggests that this assumption
is indeed physical. The rescaling factors in the vertical axis for
the mass thresholds mt,const and mt,sqrt reflect the respective
expected number of droplets per system size according to
the heuristic approximation. Comparing with Ref. [35], that
is, specifically for typical droplet sizes mt,lin = αlin(ρ − ρc)L
linear in the system size with αlin = 1/40, our value of
the scaling exponent δnucl = 2 is consistent with the value
determined for the assumption therein.

While the droplet mass threshold in the original work by
Grosskinsky et al. [35] is chosen to ensure that such droplets
are distinct from fluctuations of order [�(b − 1)L]1/(b−1) in
the initial system for any value of the interaction strength
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FIG. 4. Droplet counts nc(t) for the ZRP with b = 5 in the nucleation regime for thresholds in the droplet mass that are constant [mt,const = 10
in (a) and (d)], grow as the square root [mt,sqrt = √

(ρ − ρc)L in (b) and (e)] of, or linearly [mt,lin = (1/40)(ρ − ρc)L in (c) and (f)] to the total
number of particles. Results for totally asymmetric dynamics (pleft = 1) are shown with empty symbols in the top row, and those for symmetric
dynamics (pleft = 1/2) with filled symbols in the bottom row. Symbols represent the different system sizes L = 320,640,1280, and 2560;
colors indicate different particle densities ρ = 1,2,4,8, and 12. For readability, symbols are only sparsely plotted and mark the corresponding
lines that fully reflect the available data. The resulting time scales on the x axis roughly correspond to the heuristic approximation.

b, our assumption mt,sqrt fulfills this requirement as well for
the considered interaction strength of b = 5. Additionally, we
performed a similar amount of simulations for b = 4, yielding
very similar results. Considering that the data collapse for
mt,sqrt and mt,lin is equally good, we would then suggest that
if the duration of the nucleation regime can be limited in this
approach, then the systematically smaller yet valid assumption
of the typical droplet size should be physical.

Finally, as the third assumption for the typical droplet size
mt,const, we use our estimate of the critical droplet size for
the ZRP mt,const = 10, although it becomes smaller than the
expected fluctuations in the initial configuration for larger
systems. This is visible in Figs. 4(a) and 4(d), where for large
densities the droplet count indeed approaches from higher
values and does not reach a local maximum. Using a threshold
with a larger margin to the critical droplet size, such as
mt,const = 20, mitigates this effect so the droplet counts for
large densities become similar to those for lower densities
ρ � 8. Without any rescaling in time, the data collapse in
the observed droplet counts for systems of different sizes is
excellent within the same particle density.

Our results show that, in order to determine a meaningful
time scale for the nucleation process using this method, it is
crucial to carefully select a relation of the typical droplet mass
mt to the system size with respect to the considered system and,
to some extent, the desired properties of the forming droplets.
With respect to that, we only visually determined estimates
of the nucleation exponents instead of performing extensive
analysis to find numerical values for maximum overlap. A

summary of the determined scaling exponents is given in
Table I. Furthermore, we validated our numerical methods
to proceed to the nucleation time of the PFSS model in the
next section.

B. PFSS

For the PFSS we use a fixed set of interaction parameters
U = J = 1 for the weights (9) and resulting hopping rate func-
tion (10). The remaining parameters are comparable to those
for the ZRP with a range of system sizes of L = 400,800,1600,
and 3200 sites and particle densities of ρ = 1,2, and 4. We use
the same method as for the ZRP to determine the scaling
exponents δnucl for the typical droplet sizes (12) with slightly
larger constants αlin = 1/20 and αsqrt = 5/2 due to the lower
critical density ρc ≈ 0.2397 and the spatial extension of the
droplets. As for the ZRP, we also consider a typical droplet
mass that we merely choose somewhat larger as mt,const = 20

TABLE I. Estimated values of the scaling exponents δnucl of the
typical nucleation time for the ZRP and PFSS models with totally
asymmetric and symmetric dynamics, respectively.

mt,const mt,sqrt mt,lin

ZRP δnucl for pleft = 1 0 1 2
ZRP δnucl for pleft = 1/2 0 3/2 3

PFSS δnucl for pleft = 1 0 3/2 5/2
PFSS δnucl for pleft = 1/2 0 2 7/2
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FIG. 5. Droplet counts nc(t) for the PFSS with U = J = 1 in the nucleation regime for thresholds in the droplet mass that are constant
[mt,const = 20 in (a) and (d)], grow as the square root [mt,sqrt = (5/2)

√
(ρ − ρc)L in (b) and (e)] of, or linearly [mt,lin = (1/20)(ρ − ρc)L in

(c) and (f)] to the total number of particles. Results for totally asymmetric dynamics (pleft = 1) are shown with empty symbols in the top
row, and those for symmetric dynamics (pleft = 1/2) with filled symbols in the bottom row. Symbols represent the different system sizes
L = 400,800,1600, and 3200; colors indicate different particle densities ρ = 1,2, and 4.

instead of estimating the critical droplet size using the bulk
particle distribution given in Ref. [23] and taking the much
more involved particle exchange at the droplet boundaries into
account.

Due to the need of a separating site between individual
droplets to distinctly count them, the initial preparation
must be carried out with care, as a uniform distribution of
particles easily leads to the identification of a number of
large droplets in the initial configuration. This effect is visible
as a small peak before the larger droplet-count maximum
in Figs. 5(a) and 5(d). To eliminate this influence on the
scaling exponents, we cross-checked our results using different
preparation schemes. While there is an influence on the form
of the droplet-count function nc(t), the effect on the rescaling
exponent is negligible.

Figure 5 shows rescaled droplet counts determined for
totally asymmetric as well as symmetric dynamics and
averaged from 1200 individual trajectories. Except for the
constant droplet-mass threshold, the obtained data collapse
for the system sizes that were feasible to simulate is less
convincing than for the ZRP. Due to the extension of droplets,
the finite-size effects are much stronger for the PFSS.

The observed scaling exponents with thresholds mt,lin and
mt,sqrt for the PFSS model, as given in Table I, are larger by
1/2 with respect to those determined for the ZRP. From the
heuristic approximation, one could arguably expect a small
decrease in the exponents, as the distance particles need to
travel to a nuclei is reduced by the droplets’ spatial extension.
For the constant threshold droplet mass mt,const we again
observe a nearly perfect data collapse without any rescaling
in time at all as for the ZRP. We thus obtain δnucl = 0 as the

nucleation exponent independent of the strength of the external
drive pleft.

Again, as for the ZRP, we emphasize that this variety of
time scale depends on the choice of the typical droplet mass.
For a meaningful time scale, this threshold must be selected
carefully.

V. COARSENING

After the relaxation of the bulk system and formation of
droplet nuclei, the coarsening stage dominates the kinetics.
The droplets in the system exchange particles through the
bulk. Because larger droplets emit fewer particles than smaller
ones, the former grow while the latter slowly evaporate and
eventually disappear. As there are fewer remaining droplets,
the difference of the evaporation rates becomes smaller
compared to the droplet mass and the distance of particle
exchange grows. For the ZRP, the droplet evaporation rate is
directly given by the hopping rate function so the coarsening
time scale can be determined quantitatively as δ = 2 for totally
asymmetric and δ = 3 for symmetric dynamics [35].

We will consider the case of the ZRP for totally asymmetric
and symmetric dynamics only to validate our methods and
additionally determine the scaling exponents for the coarsen-
ing time in the situation of partially asymmetric dynamics for
0.5 � pleft � 1. We will then proceed to determine the scaling
exponents for the expected coarsening time in the PFSS model
for asymmetric and symmetric dynamics 0.5 � pleft � 1.

In the remaining section, we will first describe the consid-
ered methods to determine these scaling exponents and then
discuss the respective results for the ZRP as well as the PFSS.
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A simple method to estimate the coarsening time for a single
trajectory is to compare the mass of the largest condensate with
a threshold at the expected value of the excess mass M ′. The
time of first passage above this threshold from an initial state
is recorded as one measurement of condensation time. The
threshold value must be chosen slightly below the expected
mass of the final condensate M ′, so the influence of mass
fluctuations is reduced. The coarsening times τc are measured
for each trajectory and finally averaged to determine the mean
value for a given set of parameters M and pleft. Although being
simple and fairly robust, this method does provide only limited
insight into the coarsening process.

For the second method, we consider the full trajectory of
the relaxation process to estimate the time scale. For each
simulation we record the growth of the largest droplet in
terms of its mass M ′(t) as a function of simulation time. The
quenched average of the droplet-growth functions then directly
reflects the state of the relaxation process. By rescaling M ′(t)
on the mass as well as the time axis, we can then determine the
coarsening time scale. The mass is rescaled by the expected
value of excess in the steady state M ′(t → ∞) and the time is
rescaled by the proposed power law (6). If the proposed scaling
law holds, then the scaling exponent δ can be determined by
collapsing the rescaled droplet growth functions for different
sizes of the system to a master curve. The upper inset in Fig. 2
shows the result of such a collapse. To improve stability and
error estimation, we perform this rescaling method over all
pairs of trajectories to find the scaling exponent δ that yields
the best collapse.

A. ZRP

We estimate the time scale of the coarsening process for
particle density ρ = 1 and several values of the hopping
asymmetry pleft to observe the transition of randomly hopping
to driven particles. Here we present our results determined
by the method of first-passage times as well as rescaling the
function of the largest droplet mass M ′(t) versus time as those
proved to be the most robust of the considered methods [39].
The estimates presented in this section are obtained from 103

to 104 individual simulations of the condensation process for
different system sizes between 100 and 1000 sites (8000 for
totally asymmetric dynamics) and the various strengths of
asymmetric dynamics 1/2 � pleft � 1.

The coarsening times estimated by the first-passage scaling
method are given in Fig. 6. The scaling exponents of the
observed pronounced power-law dependence of the coarsening
time τfps to the total number of particles M = ρL are very
close to the value δfps = 1.999 ± 0.008 for totally asymmetric
dynamics for any sufficiently strong partially asymmetric
hopping pleft > 0.51. For nearly symmetric dynamics 0.5 �
pleft � 0.51, a transition is observed in the exponent of the
coarsening time scale as it grows to δfps,sym = 2.998 ± 0.016.
The specific numerical values of the determined scaling
exponents of the typical coarsening time δfps are given in
Table II.

We also determined the coarsening time scale exponent by
rescaling the time series of the largest droplet’s mass M ′(t).
The obtained rescaled and collapsed data for the ZRP is
shown in Fig. 7. For any strength of asymmetric hopping,
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FIG. 6. Estimation of the coarsening time-scale exponent δfps for
the ZRP using the first-passage method with scaling ansatz (6).

the curves of the rescaled mass of the largest droplet are
collapsed by minimizing the square differences pairwise for
different system sizes. To find the coarsening time, this data
collapse is performed at the end of the coarsening stage, when
the largest droplet’s stationary mass is approached (see the
upper inset for coarsening in Fig. 2). The scaling exponents
determined from the good data collapse shown in Fig. 7 are
given in Table II. Additionally, we can observe the different
values of the constant prefactors a in the scaling law (6). For
asymmetric dynamics, the coarsening time scale is roughly an
order of magnitude faster for strongly asymmetric dynamics
pleft � 0.75 compared with weakly asymmetric dynamics. For
nearly and fully symmetric dynamics pleft > 0.5, however, the
value of this prefactor decreases as the curves shift to the
left and the scaling exponent approaches the value δM ′ = 3.
A plot of the coarsening exponents for different strengths
of asymmetric dynamics (see Fig. 10 below) shows a small
transition region for pleft � 0.5 where the observed scaling
exponents change from δ = 3 to δ ≈ 2. Finally, comparing
our results to the literature (see Table II), we find that our
methods work sufficiently well to proceed to the PFSS model.

TABLE II. Comparison of differently obtained scaling exponents
of the coarsening time δ for various strengths of asymmetric dynamics
1/2 � pleft � 1 with the numerical values of Grosskinsky et al. [35].
To compute these values, we used from 103 to 104 trajectories of
systems of size L = 100 to 1000 sites (8000 for totally asymmetric
hopping) with an overall density of ρ = 1.

pleft δfps δM ′ δGrosskinsky2003

1.0 1.999 ± 0.008 2.0082 ± 0.0052 1.946 ± 0.019
0.9 2.089 ± 0.106 1.993 ± 0.006
0.75 2.060 ± 0.098 1.989 ± 0.005
0.55 1.891 ± 0.030 2.020 ± 0.046
0.51 2.035 ± 0.036 2.035 ± 0.037
0.5075 2.065 ± 0.017 2.102 ± 0.018
0.505 2.197 ± 0.029 2.369 ± 0.032
0.5025 2.539 ± 0.041 2.621 ± 0.041
0.5 2.998 ± 0.016 3.008 ± 0.010 2.994 ± 0.036
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FIG. 7. ZRP coarsening: Overview of rescaled largest condensate
mass trajectories fitted to collapse to master curves in the final
coarsening dynamics. Groups of curves with identical strength of
asymmetry are shifted on the vertical axis for readability, as indicated
by the right-hand side labels for the strength of asymmetric dynamics
pleft. Curves (blue to green) correspond to time series of smaller (from
L = 100) to larger (towards L = 1000 for symmetric and partially
asymmetric and 8000 for totally asymmetric dynamics) systems with
overall density ρ = 1. Each curve is computed from 104 trajectories.

B. PFSS

For the PFSS model with short-range interactions, we esti-
mate the exponents of the coarsening time scale δfps using the
first-passage time method and δM ′ by rescaling the time series
of the largest droplet mass as discussed above. Because of the
higher computational cost to simulate this process we limited
our simulations to somewhat smaller system sizes of L = 1000
sites for symmetric and partially asymmetric hopping and L =
4000 for asymmetric hopping. Our results for the coarsening
times as determined by the first-passage method are given in
Fig. 8. Again, the power-law time scaling is quite pronounced

103

104

105

106

107

108

102 103

τ f
p
s

M

pleft = 0.5
pleft = 0.51
pleft = 0.6
pleft = 0.75
pleft = 0.9
pleft = 1

FIG. 8. Estimation of the scaling exponent δfps in the coarsening
regime of the PFSS by fitting the first-passage time τfps to the assumed
power law (6). The obtained values are collected in Table III.

TABLE III. Exponents δfps and δM ′ of the condensation time scale
with prefactor afps for the PFSS transport model as in (6) determined
by first-passage scaling (δfps) as well as pairwise rescaling (δM ′ )
of the largest condensate mass, respectively. Values are computed
from 104 trajectories of systems of size L = 100 to 1000 sites (4000
for totally asymmetric hopping) with an overall density of ρ = 1.
Simulations of the condensation process for higher densities ρ = 2,3
yield quantitatively the same results.

pleft δfps δM ′ afps

1.0 2.027 ± 0.040 2.005 ± 0.038 1.21 ± 0.31
0.9 2.037 ± 0.029 2.085 ± 0.040 1.28 ± 0.24
0.75 1.984 ± 0.030 2.011 ± 0.043 2.45 ± 0.47
0.6 1.867 ± 0.033 1.919 ± 0.081 9.63 ± 2.00
0.51 1.870 ± 0.072 2.100 ± 0.053 58 ± 26
0.5 2.934 ± 0.070 2.855 ± 0.031 0.28 ± 0.090

and the scaling exponents are easily determined as the slope
of the curves as δfps = 2.027 ± 0.040 for totally asymmetric
and δfps = 2.943 ± 0.070 for symmetric dynamics.

Here we also determine the numeric values of the
scaling prefactor afps to the assumed power law (6) of the
coarsening time scale. The specific values for different
strengths of asymmetric dynamics pleft are given along with
the respective scaling exponents in Table III. As for the ZRP,
the constant prefactors increase significantly towards weaker
asymmetric dynamics. We were not able to perform sufficient
simulations for significantly weaker asymmetric dynamics
0.5 < pleft < 0.51 due to the increasing computation costs and
thus did not observe a continuous transition from asymmetric
to symmetric dynamics.

The rescaled and collapsed curves determined using our
second method are given in Fig. 9 and yield coarsening
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FIG. 9. PFSS coarsening: Overview of rescaled largest conden-
sate mass trajectories fitted to collapse to master curves in the final
coarsening dynamics. Groups of curves with identical values of pleft

are shifted vertically as indicated by the right-hand side labels. Curves
(blue to green) correspond to time series of smaller (from L = 100)
to larger (towards L = 1000 for symmetric and partially asymmetric
and 4000 for totally asymmetric dynamics) systems. The particle
density is ρ = 1 for all systems. Each curve is computed from 104

trajectories.
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FIG. 10. Scaling exponents δ of the coarsening times versus
strength of asymmetric dynamics pleft for both ZRP and PFSS
transport processes.

exponents δM ′ = 2.005 ± 0.038 and δM ′ = 2.855 ± 0.031 for
totally asymmetric and symmetric dynamics, respectively.
The full set of exponents for different strengths of partial
asymmetric dynamics pleft is given in Table III. For the PFSS
model, the collapse shown in Fig. 9 is less distinct for the
smaller system sizes of L = 100 sites than for the larger sizes
L � 200. Although this rescaling process to collapse curves
and determine the exponent by the rescaling parameter is rather
involved, this method yields much more stable and somewhat
more robust results than the first-passage method. This is a
result of its implementation using pairwise collapse of the
individual trajectories of different system sizes and global
minimization of the total error function of the data collapse
in the final coarsening stage.

Table III and Fig. 10 summarize the results of the scaling
exponents as well as the scaling prefactor afps determined by
the first method.

VI. CONCLUSIONS

In this work we considered the dynamics of the two stages,
nucleation and coarsening, of the condensation process in the
ZRP condensation model as well as a stochastic transport
process with PFSS and condensation dynamics. To obtain the
typical time scales of the nucleation and coarsening process,
we considered the power-law scaling observed for zero-
range processes with condensation dynamics and employed
complementary numerical methods.

For the nucleation regime in both processes we find most
notably the strong dependence of the scaling exponent of the
nucleation time on the choice of the typical droplet mass that
acts as a marker to the end of the regime. The determined
exponents for the ZRP for the three choices of the typical
droplet mass, for totally asymmetric and symmetric dynamics,
respectively, are δZRP,nucl = 2 and 3 for mt,lin ∝ (ρ − ρc)L
linear in the excess mass, δZRP,nucl = 1 and 3/2 for mt,sqrt ∝√

(ρ − ρc)L linear in the square root of the excess mass
and δZRP,nucl = 0 for mt,const independent of the system size.

These exponents were also expected using a simple heuristic
approximation of the involved time scales. The almost perfect
data collapse of the droplet-count function for the threshold
based on our approximation of the critical droplet size for the
ZRP suggests that indeed the assumption of a typical droplet
mass mt,const that is an intensive variable, i.e., does not depend
on the system size, is physical for the ZRP and the PFSS model
as well. However, considering the versatility of these models
allowing a large variety of mappings to other models, the
freedom to choose the type of the droplet mass threshold with
respect to such a mapping and obtain an appropriate nucleation
time scale seems to be of advantage.

For the PFSS model we determined scaling exponents using
the same types of typical droplet masses with differences in
the prefactors to account for the larger extended droplets.
Remarkably, our obtained values of these exponents directly
correspond to those of the ZRP plus a shift of 1/2 towards
longer nucleation times for the considered droplet mass
thresholds that depend on the system size. The specific
values, for totally asymmetric and symmetric dynamics, are
δPFSS,nucl = 5/2 and 7/2 for the threshold mt,lin linear in the
excess mass, δPFSS,nucl = 3/2 and 2 for mt,sqrt linear in the
square root of the excess mass, and δPFSS,nucl = 0 for the
threshold mt,const independent of the system size.

It would be rewarding for further research to study the
details of the involved nucleation processes that lead to the
observed relation between the exponents for the PFSS and
those of the ZRP. Furthermore, it is worthwhile to study
the crossover to the coarsening regime in stochastic transport
processes in more detail.

For the coarsening time-scale exponents we determined
results employing two independent numerical methods. To
test these, we first reproduced the scaling exponents of the
ZRP determined analytically and numerically by Grosskinsky
et al. [35] for symmetric as well as totally asymmetric
dynamics. Our results for the scaling exponents of the coars-
ening times are δZRP,tas = 2.0082 ± 0.0052 and δZRP,sym =
3.008 ± 0.010 as well as δPFSS,tas = 2.005 ± 0.038 and
δPFSS,sym = 2.855 ± 0.031 for the PFSS model, both for
symmetric and totally asymmetric dynamics, respectively. In
contrast to the nucleation regime, the coarsening exponents of
the ZRP and PFSS models match very well, suggesting that,
although the early condensation dynamics differ, the coarsen-
ing process in these processes is much more similar. We sup-
plemented these values with results for partially asymmetric
dynamics and showed the transition in the observed coarsening
times from symmetric to predominantly asymmetric dynamics
at pleft � 0.51 from δ = 3 to 2 accompanied by a distinct
change in the prefactor of the scaling. This is most likely due
to the finite system size. For the PFSS in the coarsening regime
we discussed results for the scaling exponents with symmetric,
as well as partially and totally asymmetric, dynamics. We
were not able to directly observe such a transition in the
coarsening exponents from δ = 3 to 2 for very weakly
asymmetric dynamics as for the ZRP, due to the increase in the
computational costs for such parametrizations. The prefactor
of the scaling, however, rapidly increases for nearly symmetric
dynamics as observed for the ZRP as well.
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