
PHYSICAL REVIEW E 93, 052110 (2016)

Lévy flights in an infinite potential well as a hypersingular Fredholm problem
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We study Lévy flights with arbitrary index 0 < μ � 2 inside a potential well of infinite depth. Such a problem
appears in many physical systems ranging from stochastic interfaces to fracture dynamics and multifractality in
disordered quantum systems. The major technical tool is a transformation of the eigenvalue problem for initial
fractional Schrödinger equation into that for Fredholm integral equation with hypersingular kernel. The latter
equation is then solved by means of expansion over the complete set of orthogonal functions in the domain D,
reducing the problem to the spectrum of a matrix of infinite dimensions. The eigenvalues and eigenfunctions are
then obtained numerically with some analytical results regarding the structure of the spectrum.
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I. INTRODUCTION

To describe the complex behavior of disordered systems
without using Gaussian approximation, the stochastic pro-
cesses, called Lévy flights, are commonly utilized [1–3]. The
stochastic trajectories of Lévy flights alternate between some
continuous motions and jumps (sometimes extremely long)
and hence do not obey Gaussian statistics [4–6]. The length
of these jumps obeys to so-called Lévy stable distributions
with power-law tails, which decay much slower then Gaussian
ones. This yields the divergence of already second moment of
such distributions. Contrary to ordinary diffusion, described
by Gaussian distributions, the above jump-type discontinuous
motions are commonly attributed as anomalous diffusion [5,6].
It turns out that Lévy stable distributions and Lévy flights
are relevant to many physical [7–11], chemical, biological
[12–14], and socioeconomic [15–17] systems. Prominent
physical examples are subrecoil laser cooling of trapped atoms
[10], energy exchange in Landau-Teller model of molecular
collisions [11], and so-called multifractality of the wave
functions in the disordered quantum systems [18,19].

It is well known that the concentration n(x,t) of particles
performing Lévy flights satisfies in its simplest form a
diffusion equation where the Laplacian operator is replaced
by a fractional derivative,

∂n(x,t)

∂t
= −|�|μ/2n(x,t), (1)

where |�|μ/2 (Lévy index 0 < μ � 2) is a fractional Laplacian
of order μ/2, restricted to 1D case [20] so that at μ = 2 we
recover the ordinary Laplace operator [21,22]. The explicit
form of this operator reads

|�|μ/2f (x) = −Aμ

∫
R

f (u) − f (x)

|u − x|1+μ
du, (2)

Aμ = �(μ + 1) sin(πμ/2)

π
, (3)

which shows that this operator is spatially nonlocal, becoming
an issue if confronted with a priori imposed boundary
conditions. This is irrespective of whether we are interested in
Lévy processes with absorption (killing) at the boundaries or
in so-called fractional quantum mechanics.

Namely, at the unbounded domains, the fractional Lapla-
cian Eq. (2) is most easily defined by its Fourier transform

1

2π

∫ ∞

−∞
|k|μf (k)e−ıkxdk ≡ −∂μf (x)

∂|x|μ = |�|μ/2f (x), (4)

while on bounded domains D ⊂ R (R is a real axis) the
Fourier transform Eq. (4) is no longer operational [23–29];
see specifically Refs. [25,26]. Transformation Eq. (4) permits
us to solve many problems related to fractional diffusion
and fractional quantum mechanics in k space on unbounded
domains [5,30,31], while on the bounded ones this method
fails, making the problem nontrivial.

In this paper, we investigate the Lévy flights of arbitrary
index 0 < μ � 2 confinement by the infinite potential well,
which arises naturally in the context of so-called first-passage
problems [32,33]. We show that this problem is equivalent
to that of fractional quantum mechanics of a particle in
a potential well of infinite depth [34,35]. We solve this
problem by further reducing the corresponding fractional
Schrödinger equation to the Fredholm integral equation with
hypersingular kernel. The latter equation has been solved
with arbitrary accuracy (for eigenstates and eigenfunctions)
by the expansion over the (infinite) complete set of orthogonal
functions, which in the case of above potential well are
trigonometric functions. This expansion is suitable for any
Lévy index 0 < μ � 2, although many results are obtained
for so-called ultrarelativistic or Cauchy case μ = 1. This case
corresponds to zero mass (m = 0) case of the relativistic
Hamiltonian H = √−�2c2� + m2c4 − mc2 (c is the velocity
of light, � is ordinary Laplacian), and thus is physically sound
[24–28]. Note also purely mathematical literature [29,36–
40] in the context of the case μ = 1. We show that our
algorithm, consisting in the expansion of the solution over
the suitable set of orthogonal functions, permits us to attack
successfully virtually any problem of so-called fractional
quantum mechanics.

II. FREDHOLM INTEGRAL EQUATION FOR THE
SPECTRUM

We consider the fractional Scrödinger equation,[−|�|μ/2 + V (x)
]
ψ(x) = Eψ(x), (5)
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where

V (x) =
{

0, x ∈ [−1,1]
∞, otherwise, (6)

which implies that ψ(x) = 0 for |x| � 1 and defines the
infinitely high “walls” of the potential well in the points
x = ±1. Now, the whole real axis R can be divided into the
regions inside −1 � x � 1 and outside well Eq. (6) to get

|�|μ/2
D ψ(x) = −Aμ

∫ ∞

−∞

ψ(u) − ψ(x)

|u − x|1+μ
du

= −Aμ

[∫ −1

−∞
+

∫ 1

−1
+

∫ ∞

1

]
ψ(u) − ψ(x)

|u − x|1+μ
du.

(7)

The symbolic integration signs in the square brackets in Eq. (7)
mean the sum of corresponding integrals. Now we make note
of the fact that for regions outside the well ψ(u) = 0, so that
we have

|�|μ/2
D ψ(x) = −Aμ

∫ 1

−1

ψ(u)du

|u − x|1+μ
+ �Iμ,

�Iμ = Aμψ(x)

[∫ −1

−∞
+

∫ 1

−1
+

∫ ∞

1

]
du

|u − x|1+μ
.

(8)

It can be shown that with respect to definition of modulus (|u −
x| = u − x if u > x and x − u if u < x) and above division of
real axis R into three subintervals, the integral �Iμ is defined
by the values of antiderivative at infinities. These values are
zero except the case μ = 0, where they are logarithmically
divergent. This yields �Iμ ≡ 0 for 0 < μ � 2, so that the
desired integral equation acquires the form

−Aμ

∫ 1

−1

ψ(u)du

|u − x|1+μ
= Eψ(x). (9)

Equation (9) is the Fredholm integral equation, which we are
going to solve below. We will show that at μ = 2 our solution
recovers the case of the infinite potential well with ordinary
Laplacian [41]. Note that for μ = 1 the integral in Eq. (9) refers
to the so-called Hadamard finite part of singular integrals,
extensively employed in the works of crack propagation in
solids [37–40,42–45].

Note also that the spectral problem Eq. (9) is the homo-
geneous Fredholm equation with a hypersingular symmetric
kernel K(t,x) = Aμ|u − x|−1−μ. If the kernel of Eq. (9) is
nonsingular (i.e., such that

∫ b

a

∫ b

a
K2(x,t)dxdt < ∞), then

this equation obeys so-called Fredholm alternative [46]: either
E [or λ = 1/(πE)] is its eigenvalue and ψ is eigenfunction
or the equation has a trivial solution ψ(x) = 0. Also, for
nonsingular kernel, the number of eigenstates is discreet and
finite [46] and exactly for Eq. (9) with nonsingular kernel
its eigenfunctions are sin(nπx) and cos(nπx/2); i.e., they
correspond to the case of infinite well in ordinary quantum
mechanics [41]. On the other hand, for the case of singular
kernels, the solution of the spectral problem (if in existence)
has an infinite (although discreet) number of eigenstates [46].

One more remark is in place here. As we will see below,
the best way to solve the integral Eq. (9) is to expand its

solution over the complete set of orthogonal functions. In our
view, the best choice of such a set is the eigenfunctions of
the corresponding ordinary (i.e., that with ordinary Laplacian)
quantum mechanics. In other words, we can claim that the
fractional derivative in corresponding quantum mechanical
problem “mixes” all the eigenstates of that with ordinary
Laplacian. This means, for instance, that even ground-state
wave function for μ �= 2 is indeed an infinite superposition of
the functions, corresponding to μ = 2. Below we are going to
realize this algorithm.

III. THE SOLUTION OF THE INTEGRAL EQUATION

Now we are going to solve the integral Eq. (9), i.e., to
deduce the eigenfunctions and eigenvalues of the nonlocal
operator |�|μ/2

D . As we have mentioned above [46], there
are no systematic methods (even numerical) of solution of
integral equations with singular (or hypersingular) kernels.
Along the lines of the above scenario, below we suggest an
effective algorithm of such solution, based on the “mixture”
of the quantum states of the infinite potential well with
ordinary Laplacian, i.e., that for μ = 2. More precisely, we are
looking for the solution as an expansion over the appropriate
complete set of orthogonal functions, which in our case
turn out to be trigonometric Fourier series. Our algorithm
permits us to obtain the eigenfunctions and eigenvalues of
the problem Eq. (9) with arbitrary accuracy by reducing it
to the eigenproblem of the infinite matrix. Our method also
permits us to obtain approximate analytical expressions for
eigenvalues and several first eigenfunctions.

Our algorithm is based on the following assumptions:
(1) Based on standard quantum mechanical infinite well

experience [41] and previous attempts to solve the Lévy-stable
infinite well problem ([38,39] and [24–26]), we can safely
classify eigenfunctions to be odd or even. The oscillation
theorem [41] appears to be valid here so that the ground-state
wave function has no nodes (intersections with x axis), first
excited state has one node, second one has two nodes, etc. So,
our even states can be labeled by quantum numbers k = 0, 2,
4, 6,... while odd states by k = 1, 3, 5,....

(2) Similar to ordinary quantum mechanics [41], the Hilbert
space of the system can be interpreted as a direct sum of odd
and even subspaces, equipped with corresponding orthonormal
sets of functions in the interval [−1,1].

(3) As the complete set of eigenfunctions of the ordinary
(μ = 2) infinite well [41] consists of standard trigonometric
functions, we will look for the eigenfunctions of the problem
Eq. (9) in the form of trigonometric series.

(4) The even basis system in L2(D) is composed of cosines,

ϕk(x)=cos
(2k + 1)πx

2
,

∫ 1

−1
ϕk(x)ϕl(x)dx = δkl, k � 0,

(10)

where δkl is the Kronecker δ. For the odd basis system we take
the sines

χk(x) = sin kπx,

∫ 1

−1
χk(x)χl(x)dx = δkl, k � 1. (11)
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(5) We look for eigenfunctions of |�|1/2
D separately in odd

and even Hilbert subspaces of L2(D).
Presuming that the Fourier (trigonometric) series converge,

for even functions we have

ψe(x) =
∞∑

k=0

akμ cos
(2k + 1)πx

2
, (12)

while for odd functions

ψo(x) =
∞∑

k=1

bkμ sin kπx. (13)

To avoid confusion, we point out that the standard numbering
of overall infinite well eigenfunctions begins with n = 1 rather
then from k = 0 (even case) or k = 1 (odd case) as we have
assumed above. We need to have a clear discrimination be-
tween sine (odd) and cosine (even) Fourier series expansions.
The final outcomes will be relabeled in terms of consecutive
integers n = 1,2,....

A. Even subspace

In this case we substitute the function ψe(x) Eq. (12) into
Eq. (9) to obtain

∞∑
k=0

akμfkμ(x) = E

∞∑
k=0

akμ cos
(2k + 1)πx

2
, (14)

where

fkμ(x) = −Aμ

∫ 1

−1

cos (2k+1)πu

2

|u − x|1+μ
du. (15)

It can be shown that the integrals in Eq. (15) are convergent
for any 0 < μ � 2. They can be exactly reduced to the form,
which does not contain removable divergences,

fkμ(x) = −Aμλ
μ

k

μ

{
sin λkx

∫ λk+

λk−
u−μ cos u du

− cos λkx

[∫ λk−

0
u−μ sin u du

+
∫ λk+

0
u−μ sin u du

]}
,

λk = π

2
(2k + 1), λk± = λk(1 ± x). (16)

Note that the integrals in square brackets of Eq. (16) are
convergent at u = 0 for all 0 < μ < 2 [we have integrable
feature like

∫
u1−μdu = u2−μ/(2 − μ)], while the divergence

at μ = 2 is compensated by zero of Aμ→2 = 2 − μ.
Equation (16) permits us to represent functions fk1(x)

at μ = 1 through sine [Si(x)] and cosine [Ci(x)] integral
functions [47,48],

fk1(x) = λk

π
{sin λkx[Ci λk− − Ci λk+]

+ cos λkx[Si λk− + Si λk+]}. (17)

Note that some integrals in Eq. (16) as well as the
functions Ciλk± are singular at x → ±1 [48]. Nonetheless, this
singularity turns out to be removable by subsequent integration

with ϕk(x), Eq. (10), so that the resulting matrix elements are
finite; see below.

Now we multiply both sides of Eq. (14) by ϕi(x), Eq. (10),
and integrate from −1 to 1 with respect to the orthonormality
of ϕi(x). Equation (14) is now replaced by an (infinite) matrix
eigenvalue problem,

∞∑
i,k=0

akμγμki = Eaiμ,

γμki =
∫ 1

−1
fkμ(x)ϕi(x)dx, i,k,l = 0,1,2,3,...,

(18)

whose approximate solution can be done considering succes-
sive eigenvalue problems for finite n × n matrices. Note that
the expressions for diagonal matrix elements γμii give already
good approximation for corresponding eigenvalues, especially
for large i.

The set Eq. (18) is a linear homogeneous system, which,
according to Kronecker-Capelli theorem, has a nontrivial
solution only if its determinant equals zero. This permits us to
determine the eigenvalues Ekμ and the coefficients akμ of the
expansion Eq. (10) as the eigenvectors, corresponding to each
Ekμ. We calculate the integrals γμki numerically, but it turns
out that some of them (for instance, the diagonal elements γ1ii

at μ = 1) can be evaluated analytically. The explicit forms of
fkμ(x) [Eq. (16)] and ϕi(x) [Eq. (10)] show that the matrix
Eq. (18) is symmetric, i.e., γμki = γμik , which means that
eigenvalues are real.

We have for diagonal elements at μ = 1,

γ1kk = − 2

π
+ (2k + 1)Si[π (2k + 1)], (19)

while for couple of first nondiagonal elements γ1ki :

γ10 = 6Ci(π ) − 6Ci(3π ) + ln 729

8π
= 0.2773259,

γ20 = − 5

24π
(2Ci(π ) − 2Ci(5π ) + ln 25) = −0.2227035,

γ21 = 5

16π
(6Ci(3π ) − 6Ci(5π ) + ln

15625

729
) = 0.3088509,

(20)

where for clarity we suppress first index μ = 1.
The explicit form of the matrix Eq. (18) reads (for each μ;

we once more suppress this index)

ÂD =

⎛
⎜⎜⎝

γ00 γ10 · · · γn0

γ10 γ11 · · · γn1
... · · · · · · ...

γn0 γn1 · · · γnn

⎞
⎟⎟⎠. (21)

To find its eigenvalues and eigenvectors we use iterative
procedure, considering partial matrices 2 × 2, 3 × 3 etc. The
eigenvalues of the simplest partial matrix 2 × 2 give the lowest
order approximation of ground state and second excited state
n = 2. The equation for associated eigenvalues reads∣∣∣∣γ00 − E γ10

γ10 γ11 − E

∣∣∣∣ = 0. (22)
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The analytical expressions for E0 and E2 can be obtained by
means of analytical formulas for γik [Eqs. (19) and (20)].
Although computations are cumbersome, one arrives at a
reasonable (albeit still far form being sharp) approximation
to eigenvalues associated with the ground state and second
(or first even) excited state. Using numerical values of γ1ik ,
Eq. (18), we calculate for μ = 1,

E0 = 1.191256, E2 = 4.411727; (23)

ψ(E0) = (−0.996257, 0.086437),
(24)

ψ(E2) = (0.086437, 0.996257),

where ψ(E0) are eigenvectors, corresponding to eigenvalues
E0 and E2. In other words, the approximate (crude, low-order)
shapes of the eigenfunctions read

ψ0 = −0.996257 cos
πx

2
+ 0.086437 cos

3πx

2
, (25)

ψ2 = 0.086437 cos
πx

2
+ 0.996257 cos

3πx

2
, (26)

where ψ0(x) and ψ2(x) correspond to ground and second
excited state. We note here that the reproduced eigenvectors
are L2(D) normalized, while an overall sign may be negative.
Latter is not important as the physically meaningful quantity
is |ψ |2.

The same procedure yields for μ = 0.5:

E0 = 0.995534, E2 = 2.06879; (27)

ψ(E0) = (−0.991128, 0.132914),
(28)

ψ(E2) = (0.132914, 0.991128),

and for μ = 1.7

E0 = 1.89053, E2 = 13.4318; (29)

ψ(E0) = (−0.999647, 0.0265864),
(30)

ψ(E2) = (0.0265864, 0.999647).

It is seen that with increase of μ the ground-state energy
decreases, while the difference between ground and excited
states increases. Also, for decreased μ the situation is opposite.
Below we investigate this question in more detail.

By increasing the matrix order from 2 to 3, we improve the
accuracy with which lowest states are reproduced and increase

their number by one. For μ = 1 we have for eigenenergies,

E0 = 1.1814891, E2 = 4.3854565, E4 = 7.569241. (31)

It is seen that while one more state appears, numerical
outcomes for lowest states are corrected by approximately
1%. This statement is valid for all 0 < μ � 2.

For the 6 × 6 matrix and μ = 1 we have

E0 = 1.1704897, E2 = 4.35648331,

E4 = 7.52132, E6 = 10.68291, (32)

E8 = 13.845025, E10 = 17.01393.

At the same time for μ = 1.7,

E0 = 1.88345, E2 = 13.394,

E4 = 32.4753, E6 = 57.9598, (33)

E8 = 89.2117, E10 = 125.814.

It is interesting to confront the above obtained (still crude)
approximate eigenvalues with analytical expression, obtained
in Ref. [38] (see also Ref. [39]),

Enμ ≈
[
nπ

2
− (2 − μ)π

8

]μ

, n = 1,2,3,... (34)

Table I shows such comparison for three representative values
of μ. It it seen a very good (with the accuracy less then
1%) coincidence between numerical values (obtained from
not small-sized 6 × 6 matrix) and those from Eq. (34).
This already demonstrates the accuracy of our method for
arbitrary μ.

Obviously, while passing to higher order matrices the
obtained solutions give better approximations to the “true”
eigenvalues and eigenvectors of the infinite well problem. The
analysis of numerical values of matrix elements in Eq. (21)
shows that for any μ these of diagonal elements are much
larger than the off-diagonal ones. This difference appears to
be lowest for γ00. For larger k the diagonal elements grow (for
instance at μ = 1 γ22 ≈ 4.388), while off-diagonal values are
close to 0.3. This means that diagonal elements give a fairly
good approximation for eigenvalues of the matrix Eq. (21);
see the first row of Table II.

B. Odd subspace

We look for eigenfunctions in the form of Eq. (13).
Repeating the same steps as for the even subspace we generate

TABLE I. The comparison of six lowest even eigenvalues Ei for different μ obtained numerically from 6 × 6 matrix and from approximate
Eq. (34).

i 0 2 4 6 8 10

μ = 0.5, Num. 0.97976 2.04538 2.71443 3.24759 3.70492 4.11305
μ = 0.5, Ex. (34) 0.990832 2.0306 2.69535 3.22591 3.68078 4.0853
μ = 1.0, Num. 1.1704897 4.35648331 7.52131594 10.68291 13.845025 17.01393
μ = 1.0, Ex. (34) 1.1781 4.31969 7.46128 10.6029 13.7445 16.8861
μ = 1.7, Num. 1.88345 13.394 32.4753 57.9598 89.2117 125.814
μ = 1.7, Ex. (34) 1.88732 13.3603 32.3962 57.8252 89.0098 125.522
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TABLE II. Comparative table of six lowest eigenvalues Ei in the Cauchy infinite potential well, μ = 1. Results for matrices of different
sizes in our approach are compared with spectral data of Refs. [38,39] and [24,26]. First six diagonal elements of the matrix Eq. (21) [Eqs. (19)
and (38), respectively] are cited for comparison. Note that the numbering of states follows tradition (i = 1, 2, 3, 4, 5, 6) and refers to consecutive
eigenvalues, with no reference to the parity of respective eigenfunctions.

i 1 2 3 4 5 6

Diagonal elem. 1.21531728 2.83630315 4.38766562 5.96864490 7.53320446 9.10820377
Ei6x6 1.1704897 2.780209 4.356483317 5.9397942 7.52131594 9.099426
Ei12x12 1.1644016 2.7690111 4.3388792 5.919976 7.4952827 9.0725254
Ei104x104 1.157791 2.754795 4.3168638 5.892233 7.460284 9.032984
Ei(K)[38] Table II 1.1577 2.7547 4.3168 5.8921 7.4601 9.0328
Ei(KKMS)[39] Eq. (11.1) 1.1577738 2.7547547 4.3168010 5.8921474 7.4601757 9.0328526
Ei(ZG)[24] Table VII 1.1560 2.7534 4.3168 5.8945 7.4658 9.0427
Ei(zg) [26] Table III 1.157776 2.754769 4.316837 5.892214 7.460282 *

the following set of equations:

∞∑
i,k=1

bkμημki = Eblμ, ημki =
∫ 1

−1
gkμ(x)χi(x)dx,

i,k,l = 1,2,3,..., (35)

gkμ(x) = −Aμ

∫ 1

−1

sin kπu

|u − x|1+μ
du

= Aμb
μ

k

μ

{
cos bkx

∫ bk+

bk−
u−μ cos udu

+sin bkx

[∫ bk−

0
u−μ sin udu+

∫ bk+

0
u−μ sin udu

]}
,

bk = kπ, bk± = bk(1 ± x). (36)

For μ = 1 we have from Eq. (36)

gk1(x) = k{sin bkx(Si bk− + Si bk+)

− cos bkx(Ci bk− − Ci bk+)}. (37)

We find analytically for μ = 1

ηkk = 2k Si(2kπ ). (38)

For μ = 1, the solutions for the 2 × 2 matrix have the form

E1 = 2.81019, E3 = 5.99476, (39)

ψ(E1) = (−0.995891, 0.0905574),
(40)

ψ(E3) = (0.0905574, 0.995891).

We note here that since the integrals fk1(x) and gk1(x) for
μ = 1 can be expressed through known special functions Ci(x)

and Si(x), which have very good polynomial approximations
[48], the calculations for this case are much faster (and much
less computer intensive) than those for μ �= 1. That is why
all calculations with very large matrices like 10 000 × 10 000
have been performed here for the case μ = 1, keeping in
mind that the results for μ �= 1 behave themselves qualitatively
similar with matrix size growth.

Two lowest eigenvalues of the 6 × 6 matrix for μ = 1 read
E1 = 2.78021, E3 = 5.93979. In Table II we reproduce the
remaining four eigenvalues in the 6 × 6 case, in a comparative
vein. Namely, we display the computation outcomes for
the lowest six eigenvalues, while gradually increasing the
matrix size, from 6 × 6, 12 × 12 to 10 000 × 10 000. We
reintroduce the traditional labeling in terms of i = 1, 2, 3, 4, 5,

so that no explicit distinction is made between even and odd
eigenfunctions. Our results are directly compared with the
corresponding data obtained by other methods in Refs. [38,39]
and [24,26].

In Table III we report the change of the ground state energy
while increasing the matrix size from 30 × 30 to 10000 ×
10000. It is seen that the third significant digit stabilizes already
for 300 × 300 and 400 × 400 matrices.

C. Graphical comparison

We begin with plot of the first four eigenfunctions for
representative value μ = 1, reported in Fig. 1. The situation
for other μ’s is qualitatively similar. It is seen that the states in
the Cauchy well at a rough graphical resolution level resemble
those of the ordinary (deriving form the Laplacian) quantum
infinite well [41]. This speaks in favor of our statement
that fractional Laplacian “mixes” the states, generated by an
ordinary one. The detailed analysis of the eigenfunctions shape

TABLE III. The matrix n × n- “size evolution” of six lowest eigenvalues for μ = 1 as n grows. Eg.s. stands for ground-state energy.

n (matrix n × n) 30 50 100 200 400 1000 2000 5000 10 000

Eg.s. = E1 1.160505 1.159428 1.158608 1.158193 1.157984 1.157858 1.157816 1.157791 1.157791
E2 2.760953 2.758572 2.756705 2.755742 2.755252 2.754954 2.754855 2.754795 2.754795
E3 4.326418 4.322736 4.319842 4.318343 4.317578 4.317114 4.316958 4.316864 4.316864
E4 5.904768 5.900041 5.896238 5.894235 5.893204 5.892573 5.892361 5.892233 5.892233
E5 7.476052 7.470114 7.465334 7.462812 7.461511 7.460714 7.460446 7.460284 7.460284
E6 9.051406 9.044604 9.039015 9.036021 9.034462 9.033504 9.033180 9.032984 9.032984
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FIG. 1. Four lowest eigenfunctions in the infinite Cauchy well
(μ = 1), labeled i = 1, 2, 3, 4. Outcome of the 104 × 104 matrix.
The qualitative behavior of the eigenfunctions for μ �= 1 is the same.

issue can be found in Ref. [26], where another method of
solution of the Cauchy well problem has been tested.

Since in the present paper we employ trigonometric func-
tions as the orthonormal basis system for low-sized matrices,
Eq. (21), we deal with visually distinguishable oscillations.
These are gradually smoothed with the growth of the matrix
size. It is instructive to compare approximate shapes of the
ground-state wave function, obtained by the diagonalization
of different-sized matrices. The left panel of Fig. 2 reports
the pertinent shapes in case of 3 × 3, 5 × 5, and 30 × 30
matrices for μ = 1. We note that the qualitative features of the
ground-state function approximants are practically the same
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FIG. 2. Left panel. Comparison of the shapes of ground-state
functions obtained by the diagonalization of 3 × 3 (black dashed
curve), 5 × 5 (red dash-dot curve), and 30 × 30 (blue solid curve)
matrices. The shape of ground state functions for matrices more
then 30 × 30 are identical to that for 30 × 30. Right panel shows
the approximation of ground state wave function (for 700 × 700
matrix, solid curve) by Eq. (41) (dashed curve). As both lines are
indistinguishable in the scale of the figure, the inset depicts the
modulus of the point-wise difference of respective curves
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FIG. 3. Ground-state wave functions for different Lévy index μ,
obtained for 6 × 6, 12 × 12, and 30 × 30 matrices.

for matrices of sizes exceeding 30 × 30. This statement is also
valid for general case μ �= 1.

In Ref. [26], an analytic approximation of the ground-state
function of |�|1/2

D (i.e., that for μ = 1) has been proposed in
the form

ψ1(x) = ψg.s.(x) = 0.921749
√

(1 − x2) cos αx,

α = 1443π

4096
. (41)

In the right panel of Fig. 2, we compare the ground-state
function Eq. (41) with that obtained by the diagonalization of
700 × 700 matrix (which turns out to be close to that obtained
by means of the 30 × 30 matrix; see Fig. 4). It is seen that
both functions are indistinguishable within the scale of the
figure. The inset in Fig. 2 depicts the modulus of the point-
wise difference of these functions. Interestingly, although the
approximation is nonmonotonous (the difference oscillates),
in a large portion of the interval −1 � x � 1 the difference
does not exceed 0.005.

The ground-state wave functions for different μ’s and
obtained from the diagonalization of 6 × 6, 12 × 12, and
30 × 30 matrices are reported in Fig. 3. It is seen that the
closer μ to 2 (ordinary Laplacian), the faster is convergence.
Namely, while for μ = 1.5 the outcome of the matrix 6 × 6 is
to second decimal place is similar to that for 30 × 30 matrix, in
the case μ = 0.5 the difference is distinguishable in the scale of
the figure. This fact shows that as μ → 2, the number of base
functions, “taking part” in the wave-function approximation
(i.e., the order of the corresponding matrix) tends to only one,
corresponding to that for ordinary quantum mechanical infinite
well.

Generally, for the approximate eigenfunction, the function
|�|μ/2

D ψ(x) differs from Eψ(x) and symptoms of convergence
are expected with the growth of the matrix size. In Fig. 4 we
compare the left- and right-hand sides of the integral Eq. (9)
for μ = 1 and show the modulus of their difference.

Left panel of Fig. 4 shows that while the function ψ by itself
is smooth, the function |�|1/2

D ψ is “wavy” and diverges at the
boundaries. The right panel shows the error ||�|1/2

D ψ − Eψ |
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FIG. 4. Left panel, comparison of |�|1/2
D ψ (black curve) and E ψ

(red curve) for 6 × 6 matrix. Thin blue line corresponds to 12 × 12
matrix. It is seen that for the 12 × 12 matrix |�|1/2

D ψ goes closer
to Eψ in the main body of the interval. Right panel, the deviation
||�|1/2

D ψ − E ψ | for 5 × 5 (black curve) and 6 × 6 matrices (red
curve).

for 6 × 6 and 12 × 12 matrices. It is seen that the divergence at
the boundaries is qualitatively the same for both cases, while
for the 12 × 12 matrix the error in the vicinity of x = 0 is a
little smaller. The same tendence occurs at any 0 < μ � 2.
This kind of behavior (slow convergence of |�|μ/2

D ψ to Eψ)
is characteristic for integral equations with singular kernels
[46] and also for “ordinary” quantum mechanical spectral
problems, if we solve them approximately by the expansion
method with respect to the full set of eigenfunctions of another
operator (here, the Laplacian �).

Figure 5 reports the behavior of Eψ and |�|1/2
D ψ for

30 × 30 and 300 × 300 matrices. The “wavy” behavior of
ADψ persists, while Eψ stabilizes already beginning from
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FIG. 5. More detailed comparison of Eψ (cyan curve) and
|�|1/2

D ψ (red and black curves) for 30 × 30 (red curve) and 300 × 300
(black curve) matrices (left panel). Right panel shows that for matrices
larger then 300 × 300, the “wavy approximation” of ψ(x) approaches
(in the adopted scale) the line thickness everywhere, except the close
vicinity of x = ±1 points.

the 12 × 12 matrix. Our analysis shows that if we take
larger matrices, the diverging “tail” moves closer to boundary
points ±1 so that at n → ∞ (n is order of the matrix) it
disappears. The same is valid for superimposed oscillations,
whose amplitude (slowly) diminishes as n grows. Similar
to the situation in Fig. 3, the good convergence for smaller
μ’s is achieved for larger n. On the other hand, even
for relatively small matrices 6 × 6 we obtain qualitatively
reasonable approximations for eigenfunctions and eigenvalues
of the operator Eq. (2), especially for indices μ close to 2.

If compared with the previous methods of solution [38,39]
and [24,26], our spectral approach seems to be particularly
powerful if one is interested in the spectrum of |�|μ/2

D . In fact,
we are able to generate an arbitrary number of eigenvalues and
corresponding eigenfunctions with any desired accuracy. In
Table IV we compare several (first 20 and a couple of larger)
lowest eigenvalues of |�|1/2

D (i.e., for typical case μ = 1) and
answer how much actually the approximate Eq. (34) deviates
from computed En’s.

It is seen from the Table IV that although the asymptotic
formula delivers pretty good approximation to the desirable
eigenvalues, the relative error never (except for n = 11) falls
below 10−3% as the label number n grows. We have actually
traced this statement up to n = 500. Moreover, the relative
error, as it is seen from the Table IV, oscillates around 10−3%,
which means that beginning with n ≈ 8, Eq. (34) for μ =
1 contributes five significant digits of the “true” asymptotic
answer. Note that for 1 < μ � 2 this number n diminishes so

TABLE IV. The comparison of several eigenvalues of the 5000 ×
5000 matrix Eq. (21) for μ = 1 with the approximate formula nπ/2 −
π/8 [Eq. (34) at μ = 1] along with the relative error |En − (nπ/2 −
π/8)|/En. Independently obtained spectral data (formula (1.11) in
Ref. [39]) are displayed as well.

n En,5000×5000 Eq. (34) Rel. error (%) Data from Ref. [39]

1 1.157791 1.178097 1.75 1.157773
2 2.754795 2.748894 0.21 2.754754
3 4.316864 4.319690 0.06 4.316801
4 5.892233 5.890486 0.03 5.892147
5 7.460284 7.461283 0.013 7.460175
6 9.032984 9.032079 0.01 9.032852
7 10.602447 10.602875 0.004 10.602293
8 12.174295 12.173672 0.0051 12.174118
9 13.744308 13.744468 0.0012 13.744109
10 15.315777 15.315264 0.0033 15.315554
11 16.886062 16.886061 5.9·10−8 *
12 18.457329 18.456857 0.0026 *
13 20.027767 20.027653 0.00057 *
14 21.598914 21.598449 0.0021 *
15 23.169448 23.169246 0.00087 *
16 24.740517 24.740042 0.0019 *
17 26.311115 26.310838 0.0011 *
18 27.882131 27.881635 0.0018 *
19 29.452773 29.452431 0.0012 *
20 31.023751 31.023227 0.0016 *
30 46.731898 46.731191 0.0015 *
50 78.148251 78.147117 0.0015 *
100 156.689159 156.686934 0.0014 *
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FIG. 6. The properties of the spectrum of integral Eq. (9) for different μ’s. Left panel shows the dependence of ground and first excited
states energies on the parameter μ. At μ = 2 the energy levels positions are equal to those in the ordinary quantum well Eq. (42). At μ = 0 all
spectrum merges into the single level E0 = 1 (in our units). Right panel visualizes how several first energy levels look like for different μ’s. The
shrinking of the spectrum at μ → 0 is clearly seen. The inset shows in double log plot the character of decay of ground-state wave functions
at x = ±1. For better visualization we shift the left part of the functions (i.e., those at x = −1) to zero. Points report the wave functions and
lines are (x + 1)μ/2 for μ = 0.5, 1 and 1.5, respectively.

that at μ = 1.9 the same result is obtained already for n = 2.
On the other hand, at μ = 0.2 for n = 50 we have only three
significant digits.

Although the numerical calculations for the case μ = 1
are (sometimes much) less computer intensive then those for
μ �= 1, the former case does not permit to trace the additional
properties of the spectrum of Eq. (9), which depend on μ.
These properties are summarized in Fig. 6. In the left panel
we plot the μ dependence of ground and first excited state
energies. All other energies are also available, but their values
at μ = 2 grow rapidly with n so that for higher excited states
not all μ’s will fit the scale of the plot. This is because at μ = 2
the spectrum of Eq. (9) gives exactly that for ordinary quantum
well [41], which in our units has the form

En,μ=2 = π2

4
n2, n = 1,2,3,..., (42)

i.e., it is proportional to n2. Note that at μ = 2 the approximate
dependence Eq. (34) yields exactly Eq. (42), thus also giving
exact known result.

Substituting n = 1 and 2 into Eq. (42) we have, respectively,
E1,μ=2 = π2/4 ≈ 2.4674 and E2,μ=2 = π2 ≈ 9.8696, which
are seen in the left panel of Fig. 6 at μ = 2. For instance, at
n = 3 E3,μ=2 = 9π2/4 ≈ 22.2066, which is two times larger
then E2,μ=2.

The most interesting feature of our method is that it permits
us to transit smoothly to the case μ = 0, which does not
included in the domain of the operator Eq. (2). Moreover,
the integral Eqs. (16) and (36) can be exactly evaluated in this
case. This gives explicitly

fk,μ=0 = cos λkx, gk,μ=0 = sin bkx, (43)

which, in turn, yields

γμ=0,ki = ημ=0,ki = δki . (44)

Equation (44) immediately shows that at μ = 0 all eigenvalues
of Eq. (9) are equal to 1. In other words, the entire spectrum

of the operator Eq. (2) at μ = 0 shrinks into one single value
E0 = 1. This value is seen on the left panel of Fig. 6.

The character of spectrum shrinking at μ → 0 is shown on
the right panel of Fig. 6. Here we report several first energy
levels for different μ’s. The expansion of the spectrum as
μ → 2 and its shrinking as μ → 0 is clearly seen.

An important feature of the eigenfunctions of the operator
Eq. (2) is that, contrary to trigonometric functions for μ = 2,
they decay nonlinearly at x = ±1. The hypothesis is that they
vanish as (1 ± x)μ/2. To check this hypothesis, in the inset to
right panel of Fig. 6 we plot (shifting for convenience the left
edge x = −1 to zero) the ground-state wave functions (points)
for different μ’s along with functions (1 + x)μ/2 in double
logarithmic scale (full lines). It is seen that at 0.01 < x < 0.1
the coincidence is almost perfect. However, small deviations
are seen already at x = 0.01. This is related to the approximate
character of wave functions. To continue the points to smaller
x, the consideration of larger matrices is necessary, which
(even for eigenvectors of large matrices, corresponding to μ =
1) is an extremely computer intensive task. Most probably, the
hypothesis about asymptotics (1 ± x)μ/2 is true.

IV. CONCLUSIONS

In the present paper we have studied the spectrum of the
problem of a particle in the infinite potential well, obeying
fractional quantum mechanics with arbitarary Lévy index
0 < μ � 2. This problem is relevant to many disordered
and dissipative physical (and biological, chemical, and even
social) systems, involving Lévy flights in bounded domains
and is nontrivial as the familiar representation of fractional
derivatives in Fourier domain does not work in such confined
case. To solve this problem, we reduce the initial fractional
Schrödinger equation to the Fredholm integral equation with
hypersingular kernel. For the solution of the latter equation,
we have elaborated a novel and powerful method, based on the
expansion over the complete set of the orthogonal functions
taken from corresponding “ordinary” quantum mechanical
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problem for Lévy index μ = 2. In our case of the interval
−1 � x � 1 we use the trigonometric functions, which are
eigenfunctions of the ordinary Laplacian. We note here the
general character of our method in the sense of its applicability
to virtually any “ordinary” quantum mechanical problem, also
in two and three dimensions.

Let us finally mention the realistic physical systems,
where we are going to apply our formalism. One of the
important examples is electronic tunneling characteristics in
spintronic devices [49–51]. Spintronics or spin electronics is
nowadays a branch of physics whose central theme is the
active manipulation of spin degrees of freedom in solid-state
systems [49,52,53]. It is widely believed that spintronic
devices can lead to applications (like quantum computers)
that are so far infeasible with modern electronics. Despite
intense experimental and theoretical studies, the statistics of
tunneling electrons through barriers in such structures remains
unclear due to disorder, which is inevitably present in such
structures [52,53]. The above barriers are technologically

realized in inversion semiconductor layers, heterostructures
(like perovskite interface LaAlO3-SrTiO3 [54–56]), quantum
wells, or in graphene [52,53,57]. The common formalism
for description of electronic states in the above structures is
different variations of particle in a potential well problem
(see, e.g., Ref. [58] and references therein). It has been
suggested that to describe the tunneling statistics adequately,
the fractional derivatives should be brought into the above
formalism. We are going to apply the developed formalism to
the “disordered” quantum wells as well as to oxide interfaces
[54,55], which also has interesting and nontrivial physical
properties. One more problem is the electronic properties
of so-called multiferroics, i.e., substances combining several
types of long-range orders (such as ferroelectricity and
ferromagnetism). The non-Gaussian statistics due to disorder
plays an important role in these substances also [59,60] and
we are applying now our formalism (also in context of the
problem of quantum oscillator with fractional Laplacian) to
obtain the adequate description of their physical properties.
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