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Fractional telegrapher’s equation from fractional persistent random walks
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We generalize the telegrapher’s equation to allow for anomalous transport. We derive the space-time fractional
telegrapher’s equation using the formalism of the persistent random walk in continuous time. We also obtain
the characteristic function of the space-time fractional process and study some particular cases and asymptotic
approximations. Similarly to the ordinary telegrapher’s equation, the time-fractional equation also presents
distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or
from superdiffusion to subdiffusion are shown by the fractional equation as time progresses.
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I. INTRODUCTION AND GENERAL SCOPE

Transport of particles through a continuous medium is
described by a transport equation which in its most general
form can be a nonlinear integro-differential equation [1] with,
in many practical cases, an imperfectly known scattering
kernel [2]. The difficulty of numerical solutions to reproduce
relevant qualitative characteristics of the transport process,
as well as their use in applications, has traditionally led to
the search for simpler approximations which are analytically
tractable. Perhaps the most used of such approximations
consists in modeling transport by diffusion processes. In such
a case the transport equation reduces (in the force-free case)
to the diffusion equation,

∂p

∂t
= D∇2p, (1)

where p(r,t) is the probability density function of the diffusing
particle to be at r at time t and D is the diffusion coefficient. A
salient characteristic of any diffusion process is that the mean
square deviation grows linearly with time,

〈|�r(t)|2〉 = Dt,

where �r(t) = r(t) − 〈r(t)〉. Another major characteristic is
the Gaussian nature of the process. Indeed, assuming the
particle is initially at the origin, p(r,0) = δ(r), the solution
to Eq, (1) is

p(r,t) = 1

(4πDt)3/2
e−r2/4Dt .

Despite its simplicity, the diffusion equation has some
shortcomings in practical situations, one of them being its
inability to account for ballistic motion as well as being
inaccurate near boundaries. All of this implies limitations near
the interfaces and in the description of early-time effects when
the flux of ballistic particles may not be negligible [2].

One step forward in furnishing a better approximation to
the full transport equation is provided by the telegrapher’s
equation (TE). Let us first remark that in the diffusive
approximation the propagator of the particle instantaneously
spreads out from δ(r) to the Gaussian form given above. That
is to say, there is a nonzero probability for the diffusing particle
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to be found outside the spherical region |r| > ct , where c is
the speed of light in the vacuum. In other words, the ordinary
diffusion equation is not compatible with special relativity
[3]. Although there is no unambiguous and widely accepted
relativistic generalization of the diffusion equation, it is clearly
recognized that the TE is a step forward in the correct direction
[4–6].

In its isotropic form and in the absence of an external field,
the TE reads [2,7]

∂2p

∂t2
+ 1

T

∂p

∂t
= c2∇2p, (2)

where T > 0 is a characteristic time and c > 0 is a characteris-
tic speed. This is a hyperbolic equation which as T → ∞ with
c fixed becomes the wave equation and as T → 0 and c → ∞
with c2T → D finite, it turns into the diffusion equation.
Equation (2) thus possesses wave and diffusion features, and
it describes “diffusion with finite propagation velocity” [4,7].
This duality becomes even more manifest not only in the time
behavior of the TE itself but also in the mean square deviation
of the diffusing particle. One can easily see by scaling time
with T that, initially as t → 0 (i.e., t � T ), the TE approaches
the wave equation while asymptotically as t → ∞ (t � T )
moves toward the diffusion equation. This leads to [2,7]

〈|�r(t)|2〉 ∼ t2 (t → 0), 〈|�r(t)|2〉 ∼ t (t → ∞),

showing the transition from ballistic motion to diffusive
motion as time progresses [2].

The TE first appeared in the nineteen century within the
context of electrodynamics with the works of Kelvin and
Heaviside [2,7]. It is very useful in thermodynamics [8–11],
population dynamics [12], and random walk theory where the
TE is the master equation for the one-dimensional persistent
random walk [13]. It also describes the probability density
of one-dimensional random processes driven by the random
telegraph signal [14,15]. In the context of transport theory, the
three-dimensional TE is the so-called P1 approximation to the
full transport equation for which the basic assumption is that
the change in the direction of motion due to a single scattering
is small [1,2,16,17].

For more than two decades so-called “anomalous transport”
has been the object of intense research in many branches of
physics (for complete reports on the subject, see Refs. [18–25]
and references therein, and see also a less technical but
excellent introduction in Ref. [26]). The concept first appeared
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in the theory of random processes and specifically within con-
tinuous time random walks, a powerful technique developed
by Montroll and Weiss 50 years ago [27], which was first
applied to anomalous diffusion of charge carriers by Scher
and Montroll in the 1970s [28,29].

Anomalous diffusion appears in transport through ex-
tremely disordered systems such as random media and fractal
structures [30] and its most distinctive characteristic is that the
mean square deviation follows the asymptotic law [19,20]:

〈|�r(t)|2〉 ∼ tα (3)

(t → ∞), where α > 0 is any positive real number. When 0 <

α < 1 the transport regime is termed as subdiffusive, and α =
1 corresponds to the (normal) diffusive regime while α > 1 is
superdiffusive. Within the diffusive approximation and in the
force-free case, the anomalous transport process is described
by a fractional diffusion equation (FDE), which can be written
as

∂αp

∂tα
= D∇2γ p (4)

(0 < α � 1, 0 < γ � 1), where ∂α/∂tα is the fractional Ca-
puto derivative and ∇2γ is the Riesz-Feller fractional Laplacian
[31–35] (see Sec. IV for a definition of these operators).

In the case of particles diffusing under the influence of an
external field of force, the FDE (4) is replaced by a fractional
Fokker-Plank equation. We will not treat this case here, and
we refer the interested reader to the literature for further
information [20,22].

The mathematical properties of the solutions to the FDE (4)
have been exhaustively studied and very clearly exposed by
Mainardi and collaborators [33–35]. One of these properties
is the scaling relation [19,34,36,37]

p(r,t) = t−α/2γ f

(
r

tα/2γ

)
, (5)

which results in the following scaling of the mean square dis-
placement (assuming a symmetrical process, i.e., 〈r(t)〉 = 0)
[36]:

〈r2(t)〉 = Mtα/γ , (6)

showing that subdiffusion appears when α < γ and superdif-
fusion when α > γ . Although very appealing, Eq. (6) has a
limited range because M turns out to be infinite when γ 	= 1
and the mean square displacement loses its sense except when
γ = 1 [36].

When γ = 1 but α is not an integer we have the so-called
“time-fractional diffusion,” the case 0 < α < 1 corresponding
to subdiffusion while α > 1 to superdiffusion. When α = 1
but γ is not integer, the FDE (4) describes a Levy process; this
case is always associated to superdiffusion, and it is termed
“space-fractional diffusion” [22,36].

Let us recall that the formulation of fractional transport
was first addressed within the continuous time random walk
(CTRW) formalism [28,29]. In consequence derivations of the
FDE are chiefly based on that formalism, although alternative
approaches are based on master equations or (fractional)
Chapman-Kolmogorov expansions [20].

In CTRW models a particle staying at r0 makes initially a
random jump to r0 + r, then waits there during a random time

interval t and randomly jumps to a new position, waits there
another (random) interval of time and makes another (random)
jump, and so on. The walk is determined by two probability
density functions, ψ(t) for waiting time intervals and g(r)
for position jumps. Waiting times and jumps are generally
assumed to be independent of each other [27] (though this is
not the case of processes such as Lévy walks where jumps and
waiting time are correlated [20,22]). The probability density
function (PDF) of the diffusing particle, p(r,t), is related to
ψ(t) and g(r) by means of the celebrated Montroll-Weiss
equation for the joint Fourier-Laplace transform ˆ̃p(ω,s) of the
PDF of the particle in terms of the Laplace transform, ψ̂(s),
of the waiting-time density, and the Fourier transform, g̃(ω),
of the jump density. Assuming that initially p(r,0) = δ(r), the
Montroll-Weiss equation reads [15,27]

ˆ̃p(ω,s) = [1 − ψ̂(s)]/s

1 − ψ̂(s)g̃(ω)
. (7)

The FDE (4) is obtained from Eq. (7) in the “fluid limit” [36]
(i.e., large times and distances [38]) after assuming [20,35,36]

ψ̂(s) = 1 − (T s)α · · · (s → 0), (8)

g̃(ω) = 1 − (L|ω|)2γ · · · (|ω| → 0), (9)

where 0 < α � 1, 0 < γ � 1, T and L are positive constant
parameters measured in units of time and length, respectively,
and D = L2γ /T α .

Like the ordinary diffusion equation (1), the FDE (4) does
not account for possible different dynamics of the diffusing
particle at short and long times, which, as we have mentioned,
appears in some experimental settings [39]. As seen above, the
TE does possess this characteristic, which implies a transition
from ballistic motion at short times to diffusion at long times.

The main objective of this paper is to generalize the TE
to allow for anomalous transport. Following the footsteps of
the FDE we will derive the space-time fractional telegrapher’s
equation (FTE) in one dimension from the continuous-time
persistent random walk. We also obtain the characteristic
function of the space-time fractional process and study some
particular cases. We restrict ourselves to one-dimensional
problems because of the inherent difficulties for generalizing
persistence in dimensions greater than one [40–43] which,
in turn, impedes obtaining higher-dimensional TEs from the
persistent random walk formalism except in two dimensions
[44,45] or asymptotically [46]. Higher dimensional FTE’s will
be the object of future work (see, nonetheless, the end of
Sec. VII for an additional and brief discussion on this point).

There have been, to our knowledge, few attempts to
derive (or, at least, justify on physical grounds) the FTE.
During the last decade a number of works have appeared
in the mathematics literature, particularly those of Orshinger
and collaborators [47–49], analyzing mathematical and other
formal properties of the FTE. However, the fractional equation
is set in an ad hoc fashion by replacing the ordinary derivatives
that appear in the TE by fractional derivatives which, in
addition, may be of various types [49]. Following this way
the standard form of the FTE in one dimension reads

∂2αp

∂t2α
+ 2λ

∂αp

∂tα
= v2 ∂2γ p

∂x2γ
, (10)
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where 0 < α � 1, 0 < γ � 1, and λ > 0 and v are given
parameters. Equation (10) is the space-time FTE. The partic-
ular case γ = 1 is called the time-fractional TE, while α = 1
corresponds to the space-fractional TE.

One attempt to give physical grounds for the time-fractional
TE was the work of Compte and Metzler [50,51] (see
also Ref. [52]) who starting from Cattaneo’s equation (a
modification of Fick’s law accounting for noninstantaneous
diffusions [8,9]) proposed three different candidates for the
one-dimensional time-fractional TE. One of them, having the
standard form given in Eq. (10), is derived from the CTRW
formalism applied to the probability flux and followed by the
assumption of a Gaussian distribution for jump lengths g(x)
[50]. We will undertake here a more general approach based
on the persistent random walk which results in a space-time
FTE agreeing with the standard form given above.

The paper is organized as follows. In Sec. II we review
the persistent random walk in continuous time which allows
for a direct derivation of the ordinary TE from the random
walk picture. In Sec. III we generalize the formalism to
include fractional motion, and in Sec. VI we apply such a
generalization for obtaining the space-time FTE. In Sec. V
we get the exact expression for the characteristic function
of the space-time fractional process. In Sec. VI we analyze
in detail the time-fractional TE, obtain some asymptotic
approximations for the probability density function, and study
the mean-square deviation. Some concluding remarks are in
Sec. VII.

II. A CONTINUOUS TIME GENERALIZATION
OF THE PERSISTENT RANDOM WALK

The persistent random walk (PRW) is an example of a
random walk with internal states. It is one of the simplest
models allowing one to incorporate a property analogous
to momentum within the framework of diffusion theory
[15,53,54].

The standard analysis starts from a random walk on a one-
dimensional lattice in discrete time and then assumes that at
each node of the lattice the probability that the walker keeps
the direction it took in the previous step is equal to p and that
the probability the walker reverses direction is q = 1 − p. In
general, successive steps are correlated, but when p = 1/2 the
PRW reduces to the ordinary random walk with uncorrelated
steps. In the diffusive limit, and in the absence of any external
field driving the walker, the PDF for the displacement at time
t satisfies the one-dimensional TE [15]

∂2p

∂t2
+ 1

T

∂p

∂t
= c2 ∂2p

∂x2
, (11)

with initial conditions

p(x,0) = δ(x),
∂p(x,t)

∂x

∣∣∣∣
t=0

= 0. (12)

The parameters T > 0 and c have dimensions of time and
velocity, respectively. They are usually constant even though
they can also be functions of position and time [55].

Some years ago we developed a continuous time general-
ization of the PRW (hereafter referred to as CTPRW) in one
dimension [13]. We next summarize its main traits.

In one-dimensional PRWs the notion of persistence is
incorporated into the analysis by assuming that the random
walker can be in one of two states, meaning that the walker
moves to the left (plus state) or to the right (minus state). In the
continuous time formulation, the duration and length of each
step, which we call sojourn, are not fixed but random.

Let us denote by ψ±(t) the PDFs for the time span of each
sojourn in the plus or minus state. The probability that the
duration of a given sojourn is greater than t will thus be given
by


±(t) =
∫ ∞

t

ψ±(t ′) dt ′. (13)

Let us further denote by f+(x,t) [f−(x,t)] the PDF for the
displacement, X(t), of the random walker while in the plus
[minus] state. With these densities we define the composite
functions

h±(x,t) = f±(x,t)ψ±(t) (14)

and

H±(x,t) = f±(x,t)
±(t). (15)

Thus h±(x,t) is the joint density for the displacement in a
single sojourn in the plus (or minus) state to be equal to x and
for the sojourn duration to equal t . Analogously, H±(x,t) is
the probability density for the displacement to be x in a single
sojourn when the total sojourn time in that state is greater
than t .

We also assume that the random walker is initially at x = 0
and that t = 0 marks the beginning of a sojourn in one of
the two states, the particular state being chosen with equal
probability.

The main goal of the formalism is to know the PDF of the
process defined by

p(x,t) dx = Prob{x < X(t) < x + dx}.
Since at any time the process can be in the plus or minus state
and both events are mutually exclusive, the PDF can be written
as

p(x,t) = p+(x,t) + p−(x,t), (16)

where, for example, p+(x,t) is the PDF for the displacement
to be x at time t and for the internal state to be the plus state. In
order to proceed further we need two intermediate functions
denoted by ρ±(x,t) where

ρ±(x,t) dx dt = Prob{ a sojourn in the plus [minus]

state ends in (t,t + dt), x <X(t)<x + dx}.
Note that these joint densities describe the state of the process
at the regeneration points where the internal state changes. A
standard renewal argument readily leads to the following set
of coupled integral equation for these intermediate functions:

ρ±(x,t) = h±(x,t)/2

+
∫ ∞

−∞
dx ′

∫ t

0
h±(x − x ′,t − t ′)ρ∓(x ′,t ′) dt ′. (17)

Indeed, when a sojourn in an occurrence of the plus [minus]
state ends at x at time t , an event represented by ρ±(x,t), it
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is either the end of the very first sojourn, accounting for the
term h±(x,t), or else a sojourn in the minus [plus] state ended
at time t ′ where 0 < t ′ < t with the displacement being x ′
and the subsequent sojourn in the plus (minus) state lasted for
a time t − t ′, the displacement during that time being equal
to x − x ′. Note that a similar reasoning applies to the PDFs
p±(x,t) by replacing the h’s by H ’s. We thus have

p±(x,t) = H±(x,t)/2

+
∫ ∞

−∞
dx ′

∫ t

0
H±(x − x ′,t − t ′)ρ∓(x ′,t ′) dt ′. (18)

These equations can be easily solved using the Fourier-
Laplace transform:

ˆ̃ρ±(ω,s) =
∫ ∞

−∞
e−iωx dx

∫ t

0
e−stρ±(x,t) dt.

The joint transform of Eq. (17) leads to the set of two algebraic
equations

ˆ̃ρ±(ω,s) = [
1
2 + ˆ̃ρ∓(ω,s)

] ˆ̃h±(ω,s),

whose solution is

ˆ̃ρ±(ω,s) = [1 + ˆ̃h∓(ω,s)] ˆ̃h±(ω,s)

2[1 − ˆ̃h+(ω,s) ˆ̃h−(ω,s)]
, (19)

and the joint transform ˆ̃p(ω,s) of the total PDF reads [cf.
Eqs. (16) and (18)]

ˆ̃p(ω,s) =
ˆ̃H+(ω,s)[1 + ˆ̃h−(ω,s)] + ˆ̃H−(ω,s)[1 + ˆ̃h+(ω,s)]

2[1 − ˆ̃h+(ω,s) ˆ̃h−(ω,s)]
.

(20)

This constitutes a generalization of the Montroll-Weiss equa-
tion for the CTPRW, and it is the starting point of our
subsequent development.

III. FRACTIONAL PERSISTENT RANDOM WALK
IN CONTINUOUS TIME

As stated in Sec. I, our main objective is to derive, from
the persistent random walk picture, the FTE in one dimension.
To this end, we will first generalize the PRW to include a
fractional version of it.

Let us start by a short review on the probability distribution
of the continuous time walk that is the direct generalization of
the lattice picture of the PRW. We refer the reader to Ref. [13]
for further information.

Recall that in the lattice picture of the PRW the probability
that the random walker makes a transition to a neighboring
node in a given direction given that the last transition was a
step in the opposite direction is 1 − p. Thus the probability
that in a sequence of n steps there are n changes of direction is
(1 − p)n and the probability that there will be a sequence of n

consecutive steps in the same direction is pn. The continuous
analog of this result is found by choosing ψ±(t) to have
the isotropic property, ψ+(t) = ψ−(t), and the exponential
form

ψ±(t) = λe−λt , (21)

where λ−1 is the average duration of a sojourn. In this case the
instants of time, t1,t2,t3, . . . , where changes of direction occur
(the so-called regeneration times) are distributed according to
the Poisson distribution [56].

Moreover, in the lattice picture the displacement is fixed
and given by the length of a single site. The continuum
analog of this requirement implies that the displacement in
a single sojourn is exactly proportional to the time spent in
that sojourn. In other words, the functions f±(x,t) correspond
to deterministic and uniform motion,

f±(x,t) = δ(x ∓ ct), (22)

where c is the speed of the walker.
Two observations are in order. First, any force driving the

random walker would result in a nonlinear argument in the
delta function, and, second, the motion of the walker in a
given sojourn could also be random. In such a case f±(x,t)
would be given by an appropriate PDF other than the delta
distribution given in Eq. (22).

With these forms of ψ±(t) and f±(x,t) the transforms of
h±(x,t) and H±(x,t) are easily found to be

ˆ̃h±(ω,s) = λ

λ + s ± icω
, ˆ̃H±(ω,s) = 1

λ + s ± icω
. (23)

We observe that in the fluid limit (ω,s → 0) functions ˆ̃h±(ω,s)
behave as

ˆ̃h±(ω,s) = 1 − (1/λ)s ∓ i(c/λ)ω · · · (24)

and with a similar expansion for ˆ̃H±(ω,s).
Inserting Eq. (23) into Eq. (20) yields

ˆ̃p(ω,s) = 2λ + s

s2 + 2λs + c2ω2
, (25)

which determines the probability distribution of the random
walk that is the continuous time version of the PRW in the
lattice, in other words, when sojourn duration densities ψ±(t)
and displacement densities f±(x,t) are given, respectively, by
Eqs. (21) and (22).

Before proceeding to the generalization of Eq. (25) to
include fractional walks, let us note that the partial differential
equation satisfied by p(x,t) may be found by multiplying
both sides of Eq. (25) by the denominator and proceeding
afterwards to the Fourier-Laplace inversion. Assuming the
initial conditions given in Eq. (12), the Fourier-Laplace
inversion results in the one-dimensional TE [13]

∂2p

∂t2
+ 2λ

∂p

∂t
= c2 ∂2p

∂x2
. (26)

In order to derive a FTE out of the CTPRW picture, we
will first propose a fractional generalization of the CTPRW.
To this end we follow the footsteps of the derivation of the
fractional generalization of the CTRW which led to the FDE
(see Sec. I). Thus, mimicking Eq. (24) we assume the following
expansion for the Fourier-Laplace transform of the sojourn’s
joint densities h±(ω,s) in the fluid limit:

ˆ̃h±(ω,s) = 1 − (T s)α ∓ i(Lω)γ · · · (27)
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(s,ω → 0), where 0 < α � 1, 0 < γ � 1 and T > 0 and L > 0
are arbitrary parameters. T sets a characteristic time and L a
characteristic length.

We note that within the same degree of approximation, that
is, assuming s and ω small, the expansion (27) is equivalent
to

ˆ̃h±(ω,s) � 1

1 + (T s)α ± i(Lω)γ
(28)

(s,ω → 0).
In order to proceed further we also need to assume a fluid-

limit approximation for ˆ̃H±(ω,s) consistent with Eq. (28). Let
us recall that h±(x,t) are the joint densities for the length and
duration of sojourns in the plus or minus state. Therefore, their
time marginal densities are∫ ∞

−∞
h±(x,t) dx = ψ±(t),

where ψ±(t) are the PDFs for sojourn duration in each state.
Correspondingly ∫ ∞

−∞
H±(x,t) dx = 
±(t),

where 
±(t) is given in Eq. (13). In the Fourier-Laplace space
these conditions read

ˆ̃h±(ω = 0,s) = ψ̂±(s), and ˆ̃H±(ω = 0,s) = 
̂±(s),

but from Eq. (13) we see that 
̂±(s) = [1 − ψ̂±(s)]/s,
hence

ˆ̃H±(ω = 0,s) = 1

s
[1 − ˆ̃h±(ω = 0,s)].

Inserting Eq. (28) into this expression yields

ˆ̃H±(ω = 0,s) � T (T s)α−1

1 + (T s)α
,

which leads us to assume

ˆ̃H±(ω,s) � T (T s)α−1

1 + (T s)α ± i(Lω)γ
, (29)

as s → 0 and ω → 0. Let us stress that this is a conjecture,
because the numerator of Eq. (29) might have depended on ω

as well.
Substituting Eqs. (28) and (29) into Eq. (20) and simple

algebra yield

ˆ̃p(ω,s) = T (T s)α−1[(T s)α + 2]

(T s)2α + 2(T s)α + (Lω)2γ
. (30)

Dividing numerator and denominator by T 2α we get the neater
form:

ˆ̃p(ω,s) = sα−1(sα + 2λ)

s2α + 2λsα + v2ω2γ
, (31)

where

λ ≡ 1/T α, v ≡ Lγ /T α. (32)

Equation (31) determines the probability distribution of the
fractional persistent random walk. It constitutes one of the

main results of the paper, and it is the starting point of our
further analysis.

IV. SPACE-TIME FRACTIONAL
TELEGRAPHER’S EQUATION

We now proceed to derive from the CTPRW picture the one-
dimensional FTE. To this end we first need some definitions.

The Caputo fractional derivative of order β > 0 of a
function φ(t) is defined by the functional [31–36]

∂βφ(t)

∂tβ
=

{
1

�(n−β)

∫ t

0
φ(n)(t ′) dt ′

(t−t ′)1+β−n , n − 1 < β < n,

φ(n)(t), β = n
(33)

(n = 1,2,3, . . . ). Using this definition the Laplace transform
of the Caputo derivative is found to be [32]

L
{

∂βφ(t)

∂tβ

}
= sβφ̂(s) − sβ−1φ(0) −

n−1∑
j=1

sβ−1−jφ(j )(0)

(34)

(n = 1,2,3, . . . ; n − 1 < β < n), where L{·} stands for the
Laplace transform and φ̂(s) = L{φ(t)}.

The second kind of fractional derivative we need to define is
the Riesz-Feller fractional derivative of order β (0 < β � 2)
of a function g(x) such that g(x) → 0 as x → ±∞. There
are several equivalent ways to define it [32], although one of
the simplest and most operative definitions is obtained using
Fourier analysis. We thus define [36]

∂βg(x)

∂|x|β = F−1{−|ω|β g̃(ω)} (35)

(0 < β � 2), where F−1{·} stands for the inverse Fourier
transform, and

g̃(ω) =
∫ ∞

−∞
eiωxg(x) dx

is the direct transform.
Let us return to the derivation of the FTE. The starting point

is Eq. (31), which we write in the form

(s2α + 2λsα + v2ω2γ ) ˆ̃p(ω,s) = s2α−1 + 2λsα−1.

Fourier inverting this equation and taking into account the
definition of the Riesz-Feller derivative [Eq. (35)], we get(

s2α + 2λsα − v2 ∂2γ

∂x2γ

)
p̂(x,s) = (s2α−1 + 2λsα−1)δ(x),

where p̂(x,s) is the Laplace transform of the PDF. We rewrite
this last expression as

s2αp̂(x,s) − s2α−1δ(x)

+ 2λ[sαp̂(x,s) − sα−1δ(x)] = v2 ∂2γ p̂

∂x2γ
. (36)

In order to invert Eq. (36), we first evaluate the
Laplace transforms of the fractional derivatives ∂αp/∂tα and
∂2αp/∂t2α using Eq. (34). We must distinguish the cases β = α

and β = 2α.
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(i) Set β = α in Eq. (34), and since 0 < α � 1 we see that
n = 1. Hence

L
{

∂αp(x,t)

∂tα

}
= sαp̂(x,s) − sα−1p(x,0).

But p(x,0) = δ(x) [cf. Eq. (12)] so that

∂αp

∂tα
= L−1{sαp̂(x,s) − sα−1δ(x)}. (37)

(ii) When β = 2α (0 < α � 1) we need to separate the
cases: (a) 0 < α � 1/2 and (b) 1/2 < α � 1. For case (a) we
have 0 < 2α � 1, and from Eq. (34) with β = 2α and n = 1,
we obtain

L
{

∂2αp(x,t)

∂tα

}
= s2αp̂(x,s) − s2α−1δ(x).

In case (b) we have 1 < 2α � 2, and from Eq. (34) with n = 2
we write

L
{

∂2αp(x,t)

∂tα

}

= s2αp̂(x,s) − s2α−1δ(x) − s2(α−1) ∂p(x,t)

∂t

∣∣∣∣
t=0

.

Since ∂p/∂t |t=0 = 0 [cf. Eq. (12)] we see that this case
coincides with case (a) above. Therefore,

∂2αp

∂t2α
= L−1{s2αp̂(x,s) − s2α−1δ(x)}. (38)

The Laplace inversion of Eq. (36) and the use of Eqs. (37)
and (38) yield the space-time FTE:

∂2αp

∂t2α
+ 2λ

∂αp

∂tα
= v2 ∂2γ p

∂x2γ
. (39)

From Eq. (39) we can easily obtain the fractional diffusion
equation in one dimension. Indeed, letting λ → ∞, which is
equivalent to assume that T → 0 [cf. Eq. (32)], and also letting
v → ∞ such that

v2

2λ
= L2γ

2T α
→ D (finite),

we get the one-dimensional FDE [cf. Eq. (4)]

∂αp

∂tα
= D

∂2γ p

∂x2γ
. (40)

Let us remark that even for any finite value of the parameter
λ, the FDE is the asymptotic (in time) limit of the FTE.
Indeed, by passing to the limit s → 0 in Eq. (31) the small
s approximation to ˆ̃p(ω,s) is found to be

ˆ̃p(ω,s) � sα−1

sα + (v2/2λ)ω2γ
, (41)

which after Fourier-Laplace inversion yields Eq. (40).
The FTE (39) also contains the fractional wave equation

(FWE) as a special case. Thus, letting λ → 0 (i.e., T → ∞
and at the same time L → ∞ such that v = Lγ /T α remains
finite) from Eq. (39) we get

∂2αp

∂t2α
= v2 ∂2γ p

∂x2γ
. (42)

Note that when α = 1/2 and γ = 1 this equation reduces
to the ordinary diffusion equation. In this regard Mainardi’s
expression, “fractional diffusion-wave equation,” is more
accurate than FWE [33].

On the other hand, Eq. (42) is the small time limit of the
FTE regardless of the value of λ. Indeed, the limit s → ∞ in
Eq. (31) yields

ˆ̃p(ω,s) � s2α−1

s2α + v2ω2γ
, (43)

and the Fourier-Laplace inversion results in Eq. (42).
We may, therefore, conclude from the preceding analysis

that the FTE combines two different dynamics: one, at small
times, representing fractional wavelike behavior, and another
one which at large times enhances fractional diffusion-like
behavior. This constitutes a generalization of the dual character
of the ordinary TE between waves and diffusions (see Sec. I).

V. CHARACTERISTIC FUNCTION

We next obtain the characteristic function p̃(ω,t) [i.e.,
the Fourier transform of the PDF p(x,t)] of the space-
time fractional telegraph process by performing the Laplace
inversion of the function ˆ̃p(ω,s). We thus start off with
Eq. (31), which after some elementary manipulations can be
written as

ˆ̃p(ω,s) = sα−1

2η(ω)

[
λ + η(ω)

sα + λ − η(ω)
− λ − η(ω)

sα + λ + η(ω)

]
, (44)

where

η(ω) =
√

λ2 − (vωγ )2. (45)

Further manipulations yield

sα−1

sα + λ ± η(ω)
= 1/s

1 + [λ ± η(ω)]/sα

=
∞∑

n=0

(−1)n
[λ ± η(ω)]n

s1+nα
.

Since [57]

L−1

{
1

s1+nα

}
= tnα

�(1 + nα)
,

we have

L−1

{
sα−1

sα + λ ± η(ω)

}
=

∞∑
n=0

(−1)n
([λ ± η(ω)]tα)n

�(1 + nα)

= Eα(−[λ ± η(ω)]tα),

where Eα(·) is the Mittag-Leffler function [58]

Eα(z) =
∞∑

n=0

zn

�(1 + nα)
. (46)

Taking the inverse Laplace transform of Eq. (44) and
using the above intermediate results we finally obtain the
characteristic function of the space-time fractional process

p̃(ω,t) = 1

2η(ω)
{[λ + η(ω)]Eα(−[λ − η(ω)]tα)

− [λ − η(ω)]Eα(−[λ + η(ω)]tα)}. (47)
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In the wavelike limit λ → 0 the FTE (39) reduces to the
FWE (42). In this case [cf. Eq. (45)]

η(ω) = iv|ω|γ ,

and the characteristic function reads

p̃(ω,t) = 1
2 [Eα(−iv|ω|γ tα) + Eα(iv|ω|γ tα)], (48)

a solution already obtained by Mainardi [33]. When α = 1 and
since E1(z) = ez [cf. Eq. (46)], we have

p̃(ω,t) = 1
2

[
e−iv|ω|γ t + eiv|ω|γ t

]
.

Finally, for the case γ = 1, which corresponds to the regular
wave equation, we can invert the characteristic function and
get the expected result for the propagation of an undisturbed
wave:

p(x,t) = 1
2 [δ(x + vt) + δ(x − vt)].

In the diffusion-like limit λ → ∞ and v2/λ → D (finite),
and from Eq. (45) we see that

λ

η(ω)
= 1√

1 − (vωγ /λ)2
→ 1

and

λ − η(ω) = (v2/λ)ω2γ

1 +
√

1 − (vωγ /λ)2
→ Dω2γ .

From Eq. (47) we get

p̃(ω,t) = Eα[−Dtαω2γ ], (49)

a well-known result which corresponds to a Lévy density
with fractional time [20,22]. When α = 1 (no fractional time
but fractional space) this result reduces to the ordinary Lévy
distribution with zero mean,

p̃(ω,t) = e−Dtω2γ

. (50)

VI. TIME-FRACTIONAL TELEGRAPHER’S EQUATION

The time-fractional TE is a particular case of the space-time
FTE (39) when γ = 1:

∂2αp

∂t2α
+ 2λ

∂αp

∂tα
= v2 ∂2p

∂x2
. (51)

In the Fourier-Laplace space the solution to this equation with
initial conditions (12) is given by [cf. Eq. (31)]

ˆ̃p(ω,s) = sα−1(sα + 2λ)

s2α + 2λsα + v2ω2
. (52)

The Fourier inversion of this expression is now possible.
Indeed, recalling the Fourier transform

F−1

{
a

b + v2ω2

}
= a

2vb1/2
e−|x|b1/2/v,

we get

p̂(x,s) = 1

2vs

√
s2α + 2λsα exp

{
−|x|

v

√
s2α + 2λsα

}
. (53)

For α = 1, Eq. (51) reduces to the ordinary TE (11), and
the Laplace transform (53) can be inverted exactly with the

well-known result [7]

p(x,t) = 1

2

{
δ(x − vt) + δ(x + vt)

+ λ

2v
�(vt − |x|)

[
I0(ρ) + λ

ρ
I1(ρ)

]}
, (54)

where δ(x ∓ vt) are two δ pulses moving in opposite direc-
tions, �(·) is the Heaviside step function, the variable ρ is

ρ = λ

v

√
v2t2 − x2, (55)

and I0(ρ) and I1(ρ) are modified Bessel functions.
For the fractional case when α 	= 1, the exact analytical in-

version of Eq. (53) seems to be very involved, possibly beyond
reach. We can, nonetheless, obtain approximate solutions for
large and small values of time using Tauberian theorems which
relate the small s [large s] behavior of p̂(x,s) with the large t

[small t] behavior of p(x,t) [59].
Noting that

√
s2α + 2λsα = (2λsα)1/2

[
1 + O

(
sα

λ

)]
,

we can approximate Eq. (53) for small values of s (specifically
when s � λ1/α) by

p̂(x,s) � (λ/2)1/2

vs1−α/2
e−|x|(2λsα )1/2/v. (56)

Let us incidentally note that Eq. (56) corresponds to the
Laplace transform of the exact solution to the FDE

∂αp

∂tα
= D

∂2p

∂x2
, (57)

obtained by passing Eq. (51) to the limit λ → ∞ with v → ∞
and such that D = v2/2λ is finite. This is a fact already pointed
out above and constitutes the generalization of the central limit
theorem for fractional processes.

The Laplace inversion of Eq. (56) leads to the long-time
solution to the time-fractional TE (51). As shown in the
Appendix this inversion results in the following asymptotic
approximation valid as t � λ1/α:

p(x,t) �
√

λ/2

vtα/2
Mα/2

( |x|√λ/2

vtα/2

)
, (58)

where Mα/2(·) is the Mainardi function defined by the power
series [33,60]

Mβ(z) =
∞∑

n=0

(−1)nzn

n!�(−βn + 1 − β)
. (59)

It can be proved that Mβ(z) is an entire function for 0 <

β < 1 [33]. It is a special case of the Wright function [58,60],
which is, in turn, closely related to the rather cumbersome Fox
function, the latter frequently used in the anomalous diffusion
literature [20].

Let us note that, after the replacement v2/2λ → D, the
asymptotic expression (58) becomes the exact solution to the
FDE (57) [33].
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We next analyze the large s behavior of Eq. (53), which
corresponds to the small time behavior of p(x,t). For large
values of s such that s � λ1/α , we may write√

s2α + 2λsα = sα

[
1 + O

(
λ

sα

)]
,

and when s � λ1/α we can approximate Eq. (53) by

p̂(x,s) � sα−1

2v
e−|x|sα/v. (60)

Again, this expression corresponds to the Laplace transform
of the exact solution to the fractional wave-diffusion equation

∂2αp

∂t2α
= v2 ∂2p

∂x2
, (61)

obtained by passing Eq. (51) to the limit λ → 0 with v finite.
We return to Eq. (60), and expanding the exponential we

get (s � λ1/α)

p̂(x,s) � 1

2v

∞∑
n=0

(−1)n

n!

(|x|/v)n

s1−(n+1)α
.

After using Eq. (A1) of the Appendix, the Laplace inversion
of this equation yields

p(x,t) � 1

2vtα

∞∑
n=0

(−|x|/vtα)n

n!�[1 − (n + 1)α]
,

which, in terms of Mainardi function (59), can be written as

p(x,t) � 1

2vtα
Mα

( |x|
vtα

)
, (62)

an expression valid for small times such that t � λ1/α .
Finally we will evaluate the mean square displacement,

a basic characteristic of anomalous transport, for the time-
fractional process described by Eq. (51).

Let us recall that moments 〈Xn(t)〉 are related to derivatives
of the characteristic function p̃(ω,t) with respect to ω

evaluated at ω = 0. Hence, in terms of the Laplace transform
of the characteristic function ˆ̃p(ω,s), we may write

L{〈Xn(t)〉} = i−n ∂n ˆ̃p(ω,s)

∂ωn

∣∣∣∣
ω=0

.

Using Eq. (52) we easily see that the first moment is zero while
the Laplace transform of the second moment reads

L{〈X2(t)〉} = 2v2

sα+1(sα + 2λ)
. (63)

Let us proceed to Laplace inversion. Noting that

1

sα+1(sα + 2λ)
= 1

s2α+1

1

1 + 2λs−α

=
∞∑

n=0

(−1)n
(2λ)n

s(n+2)α+1
,

and recalling that L−1{s−δ} = t δ−1/�(δ) (δ > 0) [57], we get
the exact expression for the mean square displacement [48]

〈X2(t)〉 = 2v2t2αEα,2α+1(−2λtα) (64)

(0 < α � 1) where Eα,β (·) is the two-parameter Mittag-Leffler
function defined as [58]

Eα,β (z) =
∞∑

n=0

zn

�(nα + β)
. (65)

The small time behavior of the mean square displacement
is easily obtained by observing from Eq. (65) that for small
values of z, Eα,β (z) = 1/�(β) + O(z). Therefore,

〈X2(t)〉 = 2v2t2α

�(1 + 2α)
[1 + O(λtα)]. (66)

For the nonfractional TE α = 1, and we recover the well-
known result that 〈X2(t)〉 ∼ t2 is ballistic at short times. We
also observe that when t � λ1/α , we have subdiffusion if 0 <

α < 1/2, normal diffusion if α = 1/2, and superdiffusion if
1/2 < α � 1.

For getting the large time behavior of the mean square
displacement we use the following asymptotic approximation
of the two-parameter Mittag-Leffler function [63,64]:

Eα,β (−x) ∼
N−1∑
n=1

(−x)−n

�(β − nα)
+ O

(
1

xN

)
, (67)

where x > 0, 0 < α < 1, and N = 2,3, . . . Therefore,

Eα,2α+1(−2λtα) ∼ t−α

2λ�(α + 1)
+ O

(
1

λ2t2α

)
.

Plugging it into Eq. (64) we get

〈X2(t)〉 ∼ v2

λ�(α + 1)
tα, (t → ∞), (68)

and the mean square displacement is always subdiffusive at
long times.

We, therefore, conclude that as time progresses there are
transitions between two different subdiffusive regimes if 0 <

α < 1/2 but also from superdiffusion to subdiffusion when
1/2 < α � 1. The case α = 1/2 is rather singular, since it
goes from normal diffusion to subdiffusion.

VII. CONCLUDING REMARKS

In this work we have generalized the telegrapher’s equation
to account for anomalous transport in one dimension. We have
derived the space-time fractional telegrapher’s equation from
the formalism of the persistent random walk in continuous
time.

To this end we have had to generalize the persistent random
walk to allow for fractional behavior. This is achieved by
assuming that the densities governing the evolution of the
walk, h+(x,t) and h−(x,t), have in the fluid limit (large times
and distances) the form given by Eq. (27) in terms of two
exponents α and γ , both taking values between 0 and 1. All of
this results in the standard form of the FTE given in Eq. (39):

∂2αp

∂t2α
+ 2λ

∂αp

∂tα
= v2 ∂2γ p

∂x2γ
.

For λ → 0 and v finite this equation reduces to the (frac-
tional) diffusion-wave equation (42), and the same happens for
small times (t � λ1/α) regardless the values of λ and v. In the
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opposite case when λ → ∞ and v → ∞ but D = v2/2λ finite,
or for any value of these parameters but at large times (t �
λ1/α), the TE reduces to the (fractional) diffusion equation (40).
Therefore, the FTE combines two different dynamics: one
of them, governing the process at small times, is given by
fractional wave behavior, while at large times the dynamics
is ruled by fractional diffusion behavior. This constitutes a
generalization of the dual character of the ordinary TE between
waves and diffusion.

This dual character is even more apparent for the time-
fractional equation when γ = 1 and for which only time
is fractional [cf. Eq. (51)]. In this case, the mean square
displacement exists, and its exact expression is given by
Eq. (64) in terms of the two-parameter Mittag-Leffler function.
For small and large times the mean square displacement is
approximated by

〈X(t)〉 ∼ t2α, (t → 0); 〈X(t)〉 ∼ tα, (t → ∞).

We thus see that in the course of time, the fractional
telegraph process undergoes transitions between different
anomalous diffusion regimes. When 0 < α < 1/2 there is a
transition from two different subdiffusive regimes, while if
1/2 < α < 1 the transition is from superdiffusion to subd-
iffusion. A relevant fact because generalizes the transition
between ballistic motion and normal diffusion shown by the
ordinary TE.

We finish this paper with a brief discussion on higher
dimensional problems. As we mentioned in Sec. I, higher-
dimensional TEs are not well founded on higher-dimensional
persistent random walks [40–46], a circumstance that hinders
possible derivations of a higher-dimensional fractional TE out
of some fractional generalization of the persistent random walk
as we have done in the one-dimensional case. Let us, however.
note that from a purely formal point of view, the ansatz given
by Eq. (28) could be extended in an ad hoc manner to higher
dimensions:

ˆ̃h±(ω,s) � 1

1 + (T s)α ± (L|ω|)γ (69)

(s,|ω| → 0) and with a similar expression for ˆ̃H±(ω,s)
[cf. Eq. (29)]. Assuming next that the joint transform of the
PDF is given by Eq. (20) and following the same procedure
as that of Secs. III and IV we arrive at the higher-dimensional
fractional TE for the PDF p(r,t):

∂2αp

∂t2α
+ 2λ

∂αp

∂tα
= v2∇2γ p, (70)

where λ and v given in Eq. (32) and ∇2γ is the Riesz-Feller
fractional Laplacian.

However, this (formal) derivation is not really based on the
continuous-time persistent random walk. It turns out that for
the nonfractional case where α = γ = 1, the functions h±(r,t)
resulting from inverting Eq. (69) have an imaginary part, which
means that they do not represent a true PDF. Therefore. such
a microscopic justification of Eq. (70) based on ansatz (69)
is rather dubious. The question of justifying Eq. (70) from a
microscopic model is under study.
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APPENDIX: LONG-TIME SOLUTION
OF THE TIME FRACTIONAL TE

In order to show that Eq. (58) is the Laplace inversion of
Eq. (56) we essentially follow Mainardi (Ref. [33]). We thus
first prove the inversion formula

L−1{sδ} = t−1−δ

�(−δ)
, (A1)

where δ 	= 0 is not a positive integer but otherwise an arbitrary
(positive or negative) real number [recall that when δ < 0,
Eq. (A1) reduces to a well known inversion formula [57]].

In effect, from the definition of Laplace inversion we have

L−1{sδ} = 1

2πi

∫
Br

est sδ ds

= t−1−δ

2πi

∫
Br

eσσ δ dσ.

The Bromwich contour Br can be deformed into the Hankel
contour Ha [33], the latter winding around the negative real
axis in the anticlockwise sense. In other words, Ha is a path
starting at σ = −∞ − ia (a > 0 and arbitrary) that encircles
the branch cut laying on the negative real axis and ends up at
σ = −∞ + ib (b > 0 and arbitrary) [61]. Thus

L−1{sδ} = t−1−δ

2πi

∫
Ha

eσσ δdσ,

and, by using the Hankel representation of the reciprocal of
the Gamma function [61,62]

1

�(−δ)
= 1

2πi

∫
Ha

eσσ δdσ,

we readily obtain Eq. (A1).
We now expand the right-hand side of Eq. (56)

p̂(x,s) �
√

λ/2

v

∞∑
n=0

(−1)n

n!

( |x|√λ/2

v

)n

s−1+(n+1)α/2.

Laplace inverting this expression and using Eq. (A1) we get

p(x,t) �
√

λ/2

v

∞∑
n=0

(−1)n

n!

( |x|√λ/2

v

)n

× t−(n+1)α/2

�[1 − (n + 1)α/2]
,

which is an asymptotic approximation valid for large values of
t such that t � λ−α . Finally the definition of Mainardi function
given in Eq. (59) directly leads to Eq. (58).
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