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Role of initial state and final quench temperature on aging properties in phase-ordering kinetics
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We study numerically the two-dimensional Ising model with nonconserved dynamics quenched from an initial
equilibrium state at the temperature Ti � Tc to a final temperature Tf below the critical one. By considering
processes initiating both from a disordered state at infinite temperature Ti = ∞ and from the critical configurations
at Ti = Tc and spanning the range of final temperatures Tf ∈ [0,Tc[ we elucidate the role played by Ti and Tf

on the aging properties and, in particular, on the behavior of the autocorrelation C and of the integrated response
function χ . Our results show that for any choice of Tf , while the autocorrelation function exponent λC takes a
markedly different value for Ti = ∞ [λC(Ti = ∞) � 5/4] or Ti = Tc [λC(Ti = Tc) � 1/8] the response function
exponents are unchanged. Supported by the outcome of the analytical solution of the solvable spherical model
we interpret this fact as due to the different contributions provided to autocorrelation and response by the
large-scale properties of the system. As changing Tf is considered, although this is expected to play no role in
the large-scale and long-time properties of the system, we show important effects on the quantitative behavior
of χ . In particular, data for quenches to Tf = 0 are consistent with a value of the response function exponent
λχ = 1

2 λC(Ti = ∞) = 5/8 different from the one [λχ ∈ (0.5–0.56)] found in a wealth of previous numerical
determinations in quenches to finite final temperatures. This is interpreted as due to important preasymptotic
corrections associated to Tf > 0.

DOI: 10.1103/PhysRevE.93.052105

I. INTRODUCTION

Slow evolution is usually observed when glassy and
disordered materials or binary systems are quenched across
a phase transition [1–3]. After the quench, stationarity is lost
and the relaxation time associated to internal rearrangements
increases as time goes by. Correspondingly the system con-
tinues to relax at a slower and slower rate, a phenomenon
called aging. For sufficiently long times a dynamical scaling
symmetry is usually observed. Briefly, this amounts to the
property of the system’s configurations at different times to be
statistically similar if proper time-dependent units are used to
measure distances and time intervals. Analytical approaches to
relatively simple disordered problems, such as droplet models
[4] and mean-field spin systems with random interactions [5],
have shown the possibility of capturing some aspects of the
aging phenomenon and, in particular, to provide guidelines
to the behavior of two-time quantities, which contain detailed
information on the kinetics. However, while the additional
difficulties related to glassiness and disorder make a complete
understanding of these systems quite difficult, the phase-
ordering process occurring when a clean magnet is cooled
below the critical point is a simpler context where aging
properties can more easily be investigated.

In this respect, an important issue concerns the scaling
properties of two-times quantities—such as the autocorrelation
C and the response function χ . According to a theorem
by Franz-Mezard-Parisi-Peliti [6], for sufficiently long times
after the quench the relation between them—the so-called
fluctuation-dissipation relation—encodes the structure of the
target equilibrium state. This fact represents, in principle, a
powerful tool to investigate the still debated issue of the

static properties of glassy systems—notably spin glasses.
Indeed, while the numerical equilibration of these systems
is hard, the out-of-equilibrium evolution can more easily
be accessed. However, since the theorem by Franz et al.
holds for large times, one faces the problem of understanding
how far in the asymptotic domain one has to compute the
fluctuation-dissipation relation. This question can only be
addressed if the scaling properties of C and χ are adequately
known. Given the additional complications due to the presence
of randomness and frustration in glassy models, a program
towards a full understanding of the fluctuation-dissipation
relation might start very naturally from the paradigmatic case
of nondisordered magnets. Despite their relative simplicity,
however, a fully satisfactory reference analytical theory of
aging in these systems does not exist and, despite a certain
number of numerical studies, their behavior is not fully
understood.

In this paper we present a rather complete numerical inves-
tigation of the dynamics of the possible subcritical quenches
of a bidimensional magnet described by the Ising model with
spin-flip dynamics. In particular, we study systems cooled
from an initial equilibrium state at an infinite temperature
Ti = ∞ and from the critical configuration at the transition
temperature Ti = Tc. The aim of this study is to discuss
how aging properties retain memory of the nature of the
initial conditions. Starting from these equilibrium states, we
consider deep quenches to a final temperature Tf = 0, or to
an intermediate one Tf = 0.66 Tc, and shallow coolings to
Tf = 0.97 Tc. This allows us to enlighten the role played by
the final temperature on the scaling behaviors. In particular
we will discuss the form of the response function in the
processes ending at Tf = 0 (starting with arbitrary Ti) and
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in those starting from Ti = Tc (ending at any Tf ), which yield
unexpected results.

As expected on the basis of dynamical scaling [7,8], we
find that in any case observable quantities take scaling forms
regulated by universal exponents. Our data for quenches to
Tf = 0 show quite unambiguously that, in this case, the
response function exponent λχ [see Sec. II, Eqs. (17) and (18),
for a definition of these quantities] takes a value compatible
with λχ = 1

2λC � 5/8, λC being the exponent governing the
decay of the autocorrelation function [see Eqs. (13) and (14)].
This determination of λχ is definitely different from the one
found in previous studies [9–13] which were focused on
quenches to final Tf . Since the final temperature of the quench
is expected to be an irrelevant parameter [7,14], in the sense
of the renormalization group, we conjecture that λχ = 1

2λC is
the correct asymptotic value and that, in the above mentioned
previous studies, the correct value was shadowed by finite-Tf

preasymptotic corrections (which are indeed observed also in
the present study when Tf is chosen finite).

Concerning the role of the initial condition we show that,
while the autocorrelation function takes a radically different
value [15] when the quench is made from Ti = ∞ [λC(Ti =
∞) = 5/4] or Ti = Tc [λC(Ti = Tc) � 1/8], the response
function exponent remains basically unchanged. By solving
the large-N (or spherical) model we find that the same feature
is shared also in this analytically tractable model of magnetism.
Physically, we interpret the different sensitivity of C and χ

to the initial state as due to the different role played by the
large-scale properties of the system which, in the quench from
Ti = Tc, keeps memory of the critically correlated initial state.

This paper is organized as follows: In Sec. II we set the
notation, define the model under investigation, the different
observables considered throughout the paper, and their scaling
behavior. Section III is devoted to the presentation and
discussion of our numerical results. In Sec. IV, by exactly
solving the large-N model, we discuss some analogies with the
numerical results presented in Sec. III. In Sec. V we summarize
the main findings of this paper, discuss some open issues, and
present the conclusions of the work.

II. ISING MODEL AND THE OBSERVABLE QUANTITIES

We consider a system of N spins on a lattice with the Ising
Hamiltonian

H = −J
∑
〈ij〉

σiσj , (1)

where the sum runs over the nearest neighbors pairs 〈ij 〉 and
J > 0. The time evolution occurs through single spin-flip
dynamics with Glauber transition rates [16],

wi([σ ] → [σ ′]) = 1

2

[
1 − σi tanh

(
hW

i

T

)]
, (2)

where [σ ] and [σ ′] are spin configurations differing only for
the value of the spin on the ith site and hW

i = J
∑

k∈{nni } σk ,
where the sum is restricted to the nearest neighbors {nni} of i,
is the local Weiss field.

In a quenching protocol the system is prepared at t = 0 in
an equilibrium configuration at the initial temperature Ti and is

then evolved with the transition rates (2) where T is set equal
to the final temperature Tf .

The typical size of the growing ordered domains L(t) will
be computed in this work as the inverse excess energy:

L(t) = [E(t) − E∞]−1. (3)

Here, E(t) = 〈H (t)〉 is the average energy at time t , and E∞
is the one of the equilibrium state at the final temperature
Tf . Here and in the following the average 〈· · · 〉 is taken over
different realizations of the initial state and of the thermal
histories, namely over the random flip events generated by the
transition rates (2). Equation (3) is often used to determine
L(t) [7] because the excess energy of the coarsening system
with respect to the equilibrated one is associated to the density
of domain walls which, in turn, is inversely proportional to the
typical domain size.

The two-points/two-times correlation function is defined as

G(	r,t,s) = 〈σi(t)σj (s)〉 − 〈σi(t)〉〈σj (s)〉, (4)

where we assume t � s, which depends only on the distance 	r
between sites i and j due to space homogeneity. In the phase
ordering process this quantity takes the additive structure

G(	r,t,s) = Gst (	r,t − s) + Gag(	r,t,s), (5)

where the first contribution describes the fast equilibrium
fluctuations in the pure states which are attained well inside the
domains and the second one contains the nonequilibrium aging
properties. Being an equilibrium contribution, the first term in
Eq. (5) vanishes over distances larger than the equilibrium
coherence length ξeq and/or time differences longer than the
equilibrium correlation time τeq . In the present paper we will be
interested in the behavior of the system on distances and time
differences much larger than ξeq and τeq , respectively, where
the first term of Eq. (5) can be neglected. We will then focus on
the second contribution, the aging term, and drop the suffix ag .

Letting t = s in Eq. (4) amounts to considering the equal-
time correlation function

G(	r,t) = 〈σi(t)σj (t)〉, (6)

where we have neglected the last term in Eq. (4) since in the
processes we will be interested in one always has 〈σi(t)〉 = 0.
We compute numerically this quantity as

G(r,t) = 1

4N
∑

i,j :|i−j |=r

〈σi(t)σj (t)〉, (7)

where the sum runs over all the 4N couple of sites at distance
r on the horizontal and vertical direction. This correlation
function obeys the scaling form [7,8]

G(r,t) = g

[
r

L(t)

]
, (8)

where g(y) is a scaling function. For completeness, let us
mention that corrections to the form (8) were reported in [17].
These corrections, however, are negligible for the large system
sizes considered in this paper. The sharp nature of the domains
walls implies a short-distance behavior [7,18],

g(y) � 1 − ay, (9)

where a is a constant, in the limit y 
 1.
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When the system is quenched from an initially critical state,
i.e., with Ti = Tc, the scaling function has the following large-
y behavior [15]:

g(y) ∝ y−(d−2+η), (10)

where η is the equilibrium critical exponent, namely η = 1/4
in the two-dimensional case studied in this paper. This simply
expresses the fact that, for distances r � L(t) much larger than
those where ordering has been effective at the current time, the
system keeps memory of the equilibrium critical initial state.
As we will see shortly, this bears important consequences,
particularly on the behavior of the autocorrelation function C

that is defined by setting i = j in Eq. (4)

C(t,s) = 〈σi(t)σi(s)〉. (11)

This quantity does not depend on i due to homogeneity.
Enforcing this, C will be computed as

C(t,s) = 1

N
∑

i

〈σi(t)σi(t)〉 (12)

in our simulations. The autocorrelation obeys the scaling form
[7,8]

C(t,s) = c

[
L(t)

L(s)

]
, (13)

where c(x) is a scaling function with the large-x behavior

c(x) � x−λC . (14)

The autocorrelation exponent is expected to be λC(Ti = ∞) =
5/4 [7,19] for a quench from Ti = ∞ and a much smaller value
[15] λC(Ti = Tc) = 1/8 for a quench from the critical state at
Ti = Tc.

The linear response function is defined as

R(t,t ′) = δ〈σi(t)〉
δhi(t ′)

∣∣∣∣
h=0

, (15)

where hi(t ′)—the perturbation—is a magnetic field of ampli-
tude h applied on site i only at time t ′. From this quantity
the integrated response function, referred to also as dynamic
susceptibility or zero-field-cooled susceptibility, is obtained as

χ (t,s) =
∫ t

s

R(t,t ′) dt ′. (16)

Given that also the response function is independent of
i, we improve the numerical efficiency by computing this
quantity as a spatial average, similarly to what is done
for the autocorrelation function [Eq. (12)]. We obtain this
quantity using the generalization to nonequilibrium states
of the fluctuation-dissipation theorem derived in [12,20].
Similarly to the well known equilibrium theorem, this amounts
to an analytical relation between χ and certain correlation
functions of the unperturbed system, namely the one where
the perturbation h is absent. The great advantage of this
approach is the fact that the h → 0 limit in Eq. (15) is dealt
with analytically, making the numerical computation of the
response function totally reliable and very efficient. Notice that
the use of the nonequilibrium fluctuation-dissipation relation
provides directly the quantity Tf χ .

Being related to correlation functions also the response
function can be split in two terms, similarly to Eq. (5).
However, at variance with the other quantities discussed above,
the term χst is not negligible and, in order to isolate the
aging part, it has to be subtracted away. This can be done
by computing preliminarily χst in the equilibrium state, as
described in [9–11].

The aging part of the response function obeys the scaling
form [21]

χ (t,s) = L(s)−αh

[
L(t)

L(s)

]
, (17)

where h(x) is a scaling function with the large-x behavior

h(x) � x−λχ . (18)

It is expected that χ becomes independent on s for large
time differences t − s � s. Because of Eqs. (17) and (18)
this implies that

α = λχ . (19)

This property has been verified several times in the literature
[9–11]. As for the value of the response exponent α it was con-
jectured to be α = 1/2 and present numerical determinations
set its value in the range [0.5–0.56]. We will discuss further
the value of this exponent in the following.

III. NUMERICAL SIMULATIONS

In this section we present and discuss the results of
our simulations which have been obtained by quenching a
two-dimensional system of linear size 
 = 2 × 103 (unless
differently specified) with J = 1 and periodic boundary condi-
tions. We have evolved the system starting with configurations
from the infinite as well as the critical temperature from t = 0
to a final time t = 3 × 104. In the case of quenches from
the critical state, in order to equilibrate the system at Tc,
we have used the Wolff algorithm [22]. Data are organized
in different sections according to the different choices of
the initial and final temperatures of the various quenching
protocols considered.

A. Quenches to Tf = 0

1. From Ti = ∞
The behavior of L(t) is shown in Fig. 1 (lower black curve).

Starting from t � 10, the expected power law L(t) ∼ t1/z with
z = 2 sets in (a fit in the last decade provides z = 2.004).
Data for smaller system sizes (
 = 1.5 × 103 and 
 = 103,
not shown) superimpose to the plotted data. This, and the
power-law behavior of L, clearly indicate that our simulations
are finite-size effect free in the present case.

The behavior of the equal-time correlation function is
shown in Fig. 2 (lower set of curves) for various times (see
key) on a double-logarithmic plot. As expected on the basis
of Eq. (8), an excellent data collapse of the curves at different
times is obtained by plotting G against the rescaled space
y = r/L(t) in all the region where G is significantly larger
than zero. As can be seen in the inset of Fig. 2, where a zoom
on the small-r sector is presented on a plot with linear axis,
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Ti=Tc ; Λ=2x103

Ti=Tc ; Λ=1.5x103

Ti=Tc ; Λ=103

t1/2

FIG. 1. L(t) is plotted against t on a log-log plot for the quench
of the system to Tf = 0 starting from the equilibrium state at Ti = ∞
(lower black curve with a circle) and at Ti = Tc (upper partially
collapsing three curves, corresponding to three different system sizes

 as detailed in the key). The bold green lines are the behavior
L(t) ∼ t1/2 expected for an infinite system for large times.

a linear behavior—the so called Porod’s law, Eq. (9)—is well
obeyed in this regime, as discussed in Sec. II.

The autocorrelation function is plotted against x =
L(t)/L(s) in Fig. 3. The collapse expected on the basis of
Eq. (13) is excellent in the region of large x. For small values

10-2 1 102

r/L(t)
10-1

1

G
(r

,t)

y-1/4

t=10
t=22
t=49
t=110
t=247
t=556
t=1253
t=2823
t=6362
t=14338

0 1 2 3
r/L(t)

0.4

0.6

0.8

1

G
(r

,t)

FIG. 2. The correlation function G(r,t) for a quench to Tf = 0
is plotted against y = r/L(t) on a double-logarithmic plot at the
different times indicated in the key (these are determined as to be
exponentially spaced by an automatic routine). The lower set of
collapsing curves (without symbols) correspond to the case discussed
in Sec. III A 1 of a quench from an equilibrium state at the initial
temperature Ti = ∞. The upper group of curves, marked with a
symbol, correspond to the case discussed in Sec. III A 2 of a quench
starting from the critical state, i.e., Ti = Tc. The bold green straight
line is the power law y−1/4 of Eq. (10). In the inset a zoom of the
same data in the region of small r/L(t) is plotted on a double-linear
plot. The bold-dotted turquoise line is the linear behavior of Eq. (9),
namely Porod’s law.

1 10 102

L(t)/L(s)
10-2

10-1

1

C
(t,

s)

x-5/4

x-1/8

s=10
s=22
s=49
s=110
s=247
s=556
s=1253
s=2823
s=6362
s=14338

FIG. 3. C(t,s) is plotted against x = L(t)/L(s) for the quench of
the system to Tf = 0 starting from the equilibrium state at Ti = ∞
(lower set of curves) and at Ti = Tc (upper group of curves) for
different times (see key). The bold dark-green and turquoise lines are
the expected power laws x−λC with λC = 5/4 and λC = 1/8 for the
quenches from Ti = ∞ and from Ti = Tc, respectively.

of x the superposition is worse for the smaller values of s

but, also in this region, an excellent collapse is recovered
for sufficiently large values of s. This can be interpreted as
due to the presence of preasymptotic corrections to scaling
which are not completely negligible for the smaller values of
s considered in our simulations. Notice that for large x the
expected behavior C(x) ∼ x−λC of Eq. (14) with λC = 5/4 is
very well reproduced (a fit of the curve with s = 10 for x � 30
gives λC = 1.256).

The data presented insofar show that an excellent scaling
behavior is displayed starting from the region of moderate
times. Therefore this case is an optimal playground to assess
the scaling properties of the response function, which in the
past have been the subject of some controversies.

The response function is shown in Fig. 4. According to
Eq. (17) and the discussion thereafter one should get the
collapse of curves for different waiting times s by plotting
L(s)αχ (t,s) against x = L(t)/L(s), where the exponent α

equals the exponent λχ regulating the large-x behavior of χ

according to Eq. (18). Comparison of the large-x behavior
of the curves in Fig. 4 with the dark-green line x−5/8 shows
that χ is very compatible with a value λχ = 5/8. This value is
different from the one found for quenches to finite temperatures
where a value in the range α � 0.5–0.56 (according to different
determinations) was reported. This was interpreted [13,23]
as the value α = 1/2 expected on the basis of an argument
associating the properties of the response to the roughening of
the interfaces. The present determination λχ � 5/8, instead,
suggests that the somewhat different value α = λχ = (1/2)λC

could be the asymptotically correct one. Notice that a value
α � 0.6, roughly comparable to the one we find here, was
found in [24] in the phase ordering of a weakly disordered
magnet in the limit of an extremely deep quench.

In order to verify better this conjecture and to have the
most reliable determination of α from our data we plot in
Fig. 5Tf χ (t,s) against L(s) for fixed values of x spanning
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s=22
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s=110
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s=14338

FIG. 4. L(s)5/8Tf χ (t,s) is plotted against x = L(t)/L(s) for the
quench of the system to Tf = 0 starting from the equilibrium state at
Ti = ∞ (upper set of curves) and at Ti = Tc (lower group of curves)
for different times (see key). The bold dark-green line is the power
law x−λχ with λχ = 5/8.

the entire sector x ∈ [1.5,30]. According to Eq. (17) on a
double logarithmic scale the slope of the curves in this figure
directly provides the exponent α. The data of Fig. 5 show
consistency with an exponent α = 5/8 (dark-green bold dotted
line), while α = 1/2 does not fit equally well (except, perhaps,
in a region of very small s and x where preasymptotic effects
may show up; see discussion below). Fitting the curves for the
different values of x, indeed, gives effective exponents αeff =
0.575, 0.600, 0.612, 0.615, 0.615, 0.617, 0.616, 0.616,

0.616, 0.614, 0.612, 0.611, 0.589, which (with the exception
of the first two and of the last value; see discussion below) are
rather close to λC/2 = 0.625, while they seem to rule out the
possibility α = 1/2.

Let us comment shortly on the somewhat smaller values
of aeff found for small x (x � 2) (namely αeff = 0.575 for

1 10
s

0.05

0.1

T f
χ(

t,s
)

s-1/2

s-5/8s-5/8

x=1.5
x=2
x=3
x=4
x=5
x=6
x=7
x=8
x=9
x=10
x=15
x=20
x=30

FIG. 5. Tf χ (t,s) is plotted against L(s) for fixed values of x

(indicated in the key) for the quench of the system to Tf = 0 starting
from the equilibrium state at Ti = ∞. The bold dotted dark-green
lines and the dashed magenta one are the power laws x−α with α =
5/8 and α = 1/2, respectively.

x = 1.5 and αeff = 0.600 for x = 2) and for very large x

(namely αeff = 0.589 for x = 30). Data for small x are
probably affected by preasymptotic effects at small s. Indeed,
fitting for instance the curve relative to x = 1.5 only for
values of L(s) > 10 the effective exponent rises to aeff = 0.609
[from the value aeff = 0575 when fitted over the whole range
of L(s)]. The data for x as large as x = 30 contain only
two points and this makes the determination of aeff in this
case probably insecure. From this analysis we can conclude
therefore that, except in the region of very small or very large
x where preasymptotic corrections and other effects make the
determination of the exponent insecure, a value α = 5/8 is
very consistent with the data.

To provide the most possible reliable determination of the
response function exponent we present a further, alternative
analysis of the data in the following. Let us observe that, from
the scaling of C and χ , Eqs. (13) and (17), in the region of
large time differences where the forms of Eqs. (14) and (18)
hold, one has

Aα(t,s) ≡ [sα Tf χ (t,s)]λC/α = κ C(t,s), t − s � s, (20)

where we have used the fact that α = λχ and κ is a constant.
Equation (20) represents a tool for a stringent test on the value
of the exponent α, as we discuss below. In Fig. 6 we show the
parametric plot of Aα(t,s) against C(t,s). Specifically, for any
couple of times t,s we plot Aα(t,s) on the vertical axis and
C(t,s) on the horizontal one. Notice that one can reparametrize
only one (say t) of the two times appearing in C(t,s) through
the value of C itself. In doing that one goes from Aα(t,s) to
a new function Aα(C,s) that, in principle, depends also on
s (besides the quantity C on the horizontal axis). However,
according to Eq. (20), for large time differences t − s � s,
meaning small values of the quantity C, the quantity Aα ought
to be an s-independent linear function of C (i.e., curves for
different values of s should collapse), if the value of α is the
appropriate one. On the other hand, for an improper value
β �= α of this exponent, instead of Eq. (20) the function Aβ

would behave as

Aβ(t,s) ≡ [sβ Tf χ (t,s)]λC/β = κ̃s(1−α/β)λc C(t,s)α/β,

t − s � s, (21)

where κ̃ = κ
α
β is another constant. Therefore in this case the

parametric plot of Aβ against C would not be linear and curves
for different values of s would not collapse. This qualifies
this kind of plot as a strict check on the correct value of
α. In Fig. 6 we compare the performance of the two values
α = (1/2)λC = 5/8 (left panel) and α = 1/2 (right panel).
While in the former case one does observe data collapse
(small preasymptotic corrections are only observed for the
smaller values of s, as expected) and linear behaviors, both
these features are clearly lost in the latter case. Notice also,
as a further confirmation of the accuracy of the determination
α = 5/8, that in the right panel the curves for small C can be
well fitted by the power law ∼C5/4 (bold-dotted green line), as
expected on the basis of Eq. (21) with α = 5/8 and β = 1/2.

As already stated, the value α = 5/8 is in contrast with
the one α = 1/2 which was argued before. However, previous
computations were always carried out in quenches to finite
final temperatures [indeed, as we will see in the next sections,
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FIG. 6. The function A5/8(t,s) (left panel) and A1/2(t,s) (right panel) are plotted against C(t,s) for the quench of the system to Tf = 0
starting from the equilibrium state at Ti = ∞ for different times (see key). The bold-dotted turquoise line on the left panel is guideline for the
linear behavior [L(s)5/8χ (t,s)]2 ∝ C(t,s). The bold-dotted green one on the right panel is the behavior C(t,s)5/4.

we recover a smaller value of α—compatible with the one
(α = 0.5–0.56) found in the aforementioned literature, when
considering quenches to Tf > 0], whereas this determination
of this exponent is in the case with Tf = 0. We will comment
in Secs. III B and III C on this result and we will provide a
possible interpretation of the discrepancy between the present
determination of α and the previous ones.

2. From Ti = Tc

Let us now investigate which differences occur in the
scaling properties of the system when the quench is made
from the critical point Ti = Tc instead of having Ti = ∞.
The behavior of L(t) in this case is shown in Fig. 1 (upper
set of curves). Here it is seen that L is considerably larger
than the one computed in the quench from Ti = ∞. This
can be understood since the system at infinite temperature is
maximally disordered while the critical state is a coherent one,
although without order. Larger values of L(t) and—possibly—
the strong correlations present in the initial critical state bring
in finite-size effects at earlier times as compared to the quench
from Ti = ∞. Indeed also in this case the expected power law
L(t) ∼ t1/z with z = 2 sets in around t � 10 but, differently
from the case with Ti = ∞, one observes an upward bending of
the curves starting from t � 103 onwards. The bending is more
pronounced for smaller system sizes, confirming that it occurs
earlier and indicating that we are in the presence of important
finite-size effects for t � 103. Notice that finite-size effects do
not produce in this case an abrupt modification with respect
to the behavior in an infinite system but, rather, a gradual drift
(in this case an upward raising) which can be confused with a
genuine effect. For instance, on the basis of Fig. 1 one could
erroneously conclude that the asymptotic exponent is smaller
than z = 2. Clearly, finite-size effects not only modify the
behavior of L(t) but affect all observable quantities, as we will
discuss below.

Starting from the equal-time correlation function, shown
in Fig. 2 (upper group of curves), one finds data collapse of
the curves at different times by plotting G against the rescaled
space y = r/L(t), as expected on the basis of Eq. (8), but this
is only true in a small-r region which shrinks as time increases.

10-2 1 102

r/L(t)
10-1

1

G
(r

,t)

y-1/4

t=10
t=22
t=49
t=110
t=247
t=556
t=1253
t=2823
t=6362
t=14338

0 1 2 3
r/L(t)

0.4

0.6

0.8

1

G
(r

,t)

FIG. 8. The correlation function G(r,t) for a quench to Tf =
1.5 is plotted against y = r/L(t) on a double-logarithmic plot at
the different times indicated in the key (these are determined as to
be exponentially spaced by an automatic routine). The lower set of
collapsing curves (without symbols) correspond to the case discussed
in Sec. III B 1 of a quench from an equilibrium state at the initial
temperature Ti = ∞. The upper group of curves, marked with a
symbol, correspond to the case discussed in Sec. III B 2 of a quench
starting from the critical state, i.e., Ti = Tc. The bold-green straight
line is the power law y−1/4 of Eq. (10). In the inset a zoom of the
same data in the region of small r/L(t) is plotted on a double-linear
plot. The bold-dotted turquoise line is the linear behavior of Eq. (9),
namely Porod’s law.

The breakdown of dynamical scaling at large r is another clear
manifestation of the finite-size effects. In an infinite system
the curves of Fig. 8 would collapse for any value of r and
at any time (except at such early times that scaling has not
yet set in). In our finite system this occur only in a range
which gets narrower as L(t) approaches 
. Despite this, when
time is sufficiently small there is room to observe the typical
large-distance power-law behavior g(y) ∼ y−η, with η = 1/4,
of Eq. (10) induced by the reminiscence of the initial critical
state.
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The autocorrelation function is plotted against x =
L(t)/L(s) in Fig. 3. For all values of x the collapse expected
on the basis of Eq. (13) is worse than the one observed
in the quench from Ti = ∞ (the effect is partly masked in
Fig. 3 because data are compressed). This is probably due to
the combined effect of short-time corrections and finite-size
effects. Nevertheless the behavior C(x) ∼ x−λC expected for
large x on the basis of Eq. (14) with λC = 1/8 is well
reproduced in the regime of relatively large times but such
that finite-size effects are still negligible [namely, as already
noticed discussing the data for L(t)] (i.e., Fig. 1), for t � 103

(for the curve with s = 10 this roughly amounts to x � 10). For
larger values of x the curves for C(t,s) bend upwards, similarly
to what observed for L(t). Needless to say, the behavior of C

is profoundly different when the quench is made from Ti = ∞
or from Ti = Tc.

Next we consider the response function. The behavior of
χ in this case is shown in Fig. 4 (lower set of curves).
The curves can be collapsed, according to Eq. (17), by
plotting L(s)αχ (t,s) against x = L(t)/L(s) where, recalling
the previous discussion, the exponent α is expected to be
equal to λχ . The data of Fig. 4 show that also in this case
α is very consistent with the value α = 5/8, namely the same
value obtained in the quench from infinite temperature. This
indicates that, while the behavior of the autocorrelation C

is profoundly different in the two cases with Ti = ∞ and
Ti = Tc, as to give λC exponents as different as λC = 5/4 and
λC = 1/8, the response function exponent is insensitive to the
properties of the initial state. An interpretation of this fact will
be given in Sec. IV where the exact solution of the large-N
model, which shares the same property, will be discussed.

In the following we will show how thermal fluctuations
occurring when Tf �= 0 modify the scaling picture found above
for the zero-temperature quench. We will consider the two
cases with an intermediate temperature Tf = 1.5 � 0.66Tc

and one, Tf = 2.2 � 0.97Tc, close to the critical one.

B. Quenches to Tf = 1.5

1. From Ti = ∞
As shown in Fig. 7 the behavior of L(t) in the quench to

Tf = 1.5 is very similar to the case with Tf = 0 discussed
previously. The expected power law L(t) ∼ t1/z with z = 2 (a
fit in the last decade provides z = 2.031) sets in quite early
and there is no indication of any finite-size effect.

The behavior of the equal-time correlation function is
shown in Fig. 8 (lower group of curves) for various times
(see key) on a double-logarithmic plot. As expected on the
basis of Eq. (8), data collapse of the curves at different times is
obtained by plotting G against the rescaled space y = r/L(t)
in all the region where G is significantly larger than zero. The
collapse is poor at small times but it gets better moving to
larger t . As can be seen by zooming in the small-r region in
the inset of Fig. 8 with linear axes, Porod’s law (9) is well
reproduced also in this quench.

The autocorrelation function is plotted against x =
L(t)/L(s) in Fig. 9. Also for this quantity the collapse expected
on the basis of Eq. (13) is poor for the smaller values of s

but becomes progressively more accurate, particularly in the
region of large x, as s is increased. The expected behavior

1 10 102 103 104 105

t

1

10

102

103

L(
t)

Ti= ∞

Ti=Tc ; Λ=2x103

Ti=Tc ; Λ=1.5x103

Ti=Tc ; Λ=103

t1/2

t1/2

FIG. 7. L(t) is plotted against t on a log-log plot for the quench of
the system to Tf = 1.5 starting from the equilibrium state at Ti = ∞
(lower black curve with a circle) and at Ti = Tc (upper partially
collapsing three curves, corresponding to three different system sizes

 as detailed in the key). The bold green lines are the behavior
L(t) ∼ t1/2 expected for an infinite system for large times.

C(x) ∼ x−λC of Eq. (14) with λC = 5/4 is quite well observed
(a fit of the curve with s = 10 for x � 30 gives λC = 1.236).

The response function is shown in Fig. 10. This quantity
was previously computed several times [9–11] for a quench
to the same final temperature Tf = 1.5 considered here. The
present study therefore allows us to compare our results with
previous ones and to discuss the discrepancy on the α exponent
found in the previous Sec. III A. According to Eq. (17) one
should get the collapse of curves for χ at different waiting
times s by plotting L(s)αχ (t,s) against x = L(t)/L(s), where
the exponent α equals the exponent λχ defined in Eq. (18).
Comparison of the large-x behavior of the curves in Fig. 10

1 10 102

L(t)/L(s)
10-2

10-1

1

C
(t,

s)

x-5/4

x-1/8

s=10
s=22
s=49
s=110
s=247
s=556
s=1253
s=2823
s=6362
s=14338

FIG. 9. C(t,s) is plotted against x = L(t)/L(s) for the quench of
the system to Tf = 1.5 starting from the equilibrium state at Ti = ∞
(lower set of curves) and at Ti = Tc (upper group of curves) for
different times (see key). The bold dark-green and turquoise lines are
the expected power laws x−λC with λC = 5/4 and λC = 1/8 for the
quenches from Ti = ∞ and from Ti = Tc, respectively.
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FIG. 10. L(s)5/8Tf χ (t,s) is plotted against x = L(t)/L(s) for
the quench of the system to Tf = 1.5 starting from the equilibrium
state at Ti = ∞ (upper set of curves) and at Ti = Tc (lower group
of curves) for different times (see key). The bold dark-green and
dashed-magenta lines are the power laws x−λχ with λχ = 5/8 and
λχ = 0.56. In the inset, starting from the same data of the main figure
for Ti = ∞, we plot L(s)0.56Tf χ (t,s) against L(t)/L(s).

with the dark-green line x−5/8 shows that λχ is very compatible
with the value λχ = 5/8 found with Tf = 0 also in this finite-
temperature quench.

In previous studies [9–11,13,21] the scaling of the response
function was usually written in terms of the time variable as

χ (t,s) = s−ah̃

[
t

s

]
. (22)

Assuming the asymptotic behavior L(t) ∝ t1/2 this implies
a = α

2 . In [9–11] it was found that a � 0.28 which implies
α � 0.56. Recalling that α = λχ , in Fig. 10 it is observed
that the exponent λχ = 0.56 describes reasonably well the
x dependence of the scaling function h in Eq. (17) up to
intermediate values of x = L(t)/L(s) � 10. We will comment
later on the occurrence of such intermediate behavior. For
larger values the curves bend slightly and progressively
downward and the exponent λχ = 5/8 looks more consistent
with the data (a fit in the region with x � 10 provides
λχ = 0.63). Notice that the intermediate exponent α � 0.56
was not observed in the quench to Tf = 0, signaling that this
is due to thermal fluctuations.

The behavior of the response function suggests that the ex-
ponent α � 0.56 could be due to a preasymptotic mechanism
associated to thermal fluctuations, while the truly asymptotic
behavior is the one with α = λχ = (1/2)λC as in the quench
to Tf = 0. Indeed, when trying to obtain data collapse by
plotting L(s)αχ (t,s) against L(t)/L(s) one finds that curves
superimpose better with α = 5/8 (main figure) than with
α = 0.56 (inset), although a satisfactory collapse is obtained
in both cases. This is confirmed in Fig. 11 where we compare
the performance of the two values α = 5/8 (left panel) and
α = 0.56 (right panel) with the method of Sec. III A 1, by
using Eq. (20). With α = 5/8 one observes both data collapse
(with small preasymptotic corrections for small s, similarly
to the case with Tf = 0) and linear behavior A5/8 ∼ C in the

small-C region. On the other hand with α = 0.56 both these
features are clearly lost. Furthermore, in the right panel the
curves for small C can be well fitted by the power law ∼C1.16

(bold-dotted green line), as expected on the basis of Eq. (21)
with α = 5/8 and β = 0.56.

Let us now comment on a possible interpretation of the
behavior of χ and, in particular, of the α exponent. As already
mentioned, the measured value α = 0.5–0.56 was interpreted
as a result of a putative exponent α = 1/2 associated to the
kinetic roughening of the domain interfaces whose width is
expected to scale as

λ(t) � A(Tf )L(t)αR , (23)

where αR is the so-called roughness exponent (αR = 1/2 in
d = 2) and A(Tf ) is an increasing function of temperature. It
is known that the extra length λ can produce preasymptotic
corrections to scaling in many observables, as shown in [25].
However, for large times these corrections can be neglected
because λ(t) is eventually dominated by L(t). This is true,
for instance, in quantities such as G or C. On the other
hand, the statement that the asymptotic exponent α is the
one (α = 1/2) associated to roughness amounts to assuming
that the mechanism whereby the response is built relies
only on λ, despite the fact that L � λ is the dominant
length. It is interesting to notice that, since roughness is
expected to vanish at zero temperature, i.e., A(Tf = 0) = 0,
this mechanism cannot be sustained in a zero-temperature
quench. Indeed we have shown that in this case a different
exponent α = λC/2 = 5/8 is very neatly observed. The study
of the quench to Tf = 1.5 presented here, upon extending
the range of simulated times with respect to the previous
ones, allows us to argue that the value α = 5/8 is the correct
asymptotic one also in a finite-temperature quench, while a
smaller value α � 0.56 is only observed preasymptotically.
Early-time corrections to the response function are a well
known fact and are discussed in [10]. Notice that the crossover
from the preasymptotic roughness-related mechanism to the
truly asymptotic one is regulated by A(Tf ): the larger is Tf ,
the larger is A and this makes the preasymptotic behavior with
α = 1/2 last longer. Finally, let us comment on the fact that
the measured exponent α has been always found larger than
α = 1/2 signaling that also in the previous determinations the
crossover towards α = 5/8 was very probably already present.

2. From Ti = Tc

In the case of a quench to the finite final temperature Tf =
1.5 the differences between an infinite initial temperature
Ti = ∞ and a critical one Ti = Tc occur similarly to that
observed in the quench to Tf = 0. In particular L(t), see Fig. 7
(upper set of curves), is considerably larger than the one for
Ti = ∞ and finite-size effects start occurring around t � 103

with the modalities discussed in Sec. III A 2. The behavior
of G(r,t), shown in Fig. 8 (upper group of curves), is also
very similar to the one discussed in Sec. III A 2, with scaling
obeyed [according to Eq. (8)] for sufficiently small values of
y = r/L(t), a remnant of the critical behavior of Eq. (10) for
an intermediate range of y and marked finite-size effects at
large y.
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FIG. 11. The function A5/8(t,s) (left panel) and A0.56(t,s) (right panel) are plotted against C(t,s) for the quench of the system to Tf = 1.5
starting from the equilibrium state at Ti = ∞ for different times (see key). The bold-dotted turquoise line on the left panel is guideline for the
linear behavior [L(s)5/8χ (t,s)]2 ∝ C(t,s). The bold-dotted green one on the right panel is the behavior C(t,s)1.16.

Also the autocorrelation function, plotted against x =
L(t)/L(s) in Fig. 3 (upper set of curves), closely follows
the behavior already observed in Sec. III A 2 for a quench
to Tf = 0, with the difference that the quality of the scaling
collapse is worse than before. Despite this, the behavior
C(x) ∼ x−λC expected for large x on the basis of Eq. (14)
with λC = 1/8 is well reproduced in an intermediate regime
of x = L(t)/L(s) where finite-size effects are not important.

Analogous considerations apply to the response function,
which is shown in Fig. 10 (lower group of curves). This
quantity behaves very similarly to the quench from Ti = ∞ to
Tf = 1.5 discussed in Sec. III B 1. In particular one has a good
indication of an exponent a = λχ = 5/8, while a somewhat
smaller value λχ � 0.56 is compatible with the data at earlier
times.

In conclusion, for all the quantities considered we do not
find significant differences between a quench to Tf = 0 or
to Tf = 1.5 (starting both from Ti = ∞ and Ti = Tc), apart
from the quality of the scaling which gets worse upon raising
Tf ; this confirms that Tf is an irrelevant parameter [14] in a
renormalization group sense. Concerning the role of the initial
temperature, λC turns out to be markedly influenced by Ti =
∞ (λC = 5/4) or Ti = Tc (λC = 1/8), both with Tf = 0 and
Tf = 1.5. On the contrary, the response function exponents are
basically independent on Ti . Recalling that the memory of the
initial condition is retained at large wavelength this suggests
that the contribution of large scales to the response function is
negligible whereas it is important for the autocorrelation.

C. Quenches to Tf = 2.2

1. From Ti = ∞
When quenching to a temperature as near to the critical one

Tc � 2.26 as Tf = 2.2, preasymptotic effects are so strong
to prevent the observation of the expected asymptotic scaling.
This can be seen already from the behavior of the typical length
L(t) which is shown in Fig. 12. Here one sees that the growth
is slower than the expected one and a fit for t � 104 yields an
effective exponent 1/zeff � 0.44. Notice that this behavior is
not too far from to the one L(t) ∼ t1/zc , with zc = 2.1667(5)
(i.e., 1/zc � 0.46), expected in a critical quench, namely one

from Ti = ∞ to Tf = Tc. This suggests that the proximity of
Tf to the critical point might affect the behavior of the system
at early times. We will confirm that this is the case by studying
the behavior of the autocorrelation function, which is plotted
against x = L(t)/L(s) in Fig. 13 (lower set of curves). The
collapse expected on the basis of Eq. (13) is not observed
in the range of times accessed in our simulations, although
a tendency of the curves to get closer is observed as time s

grows large. The expected behavior C(x) ∼ x−λC of Eq. (14)
with λC = 5/4 is neither observed. In place of this one has a
power-law behavior C ∼ x−1.586 for the smaller values of s in
an intermediate region of x. This is the expected [11] behavior
in a critical quench, namely the one from Ti = ∞ to Tf = Tc,
for which

C = L(s)−(d−2+η)F

[
L(t)

L(s)

]
(24)
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Ti=Tc ; Λ=2x103

Ti=Tc ; Λ=1.5x103

Ti=Tc ; Λ=103

FIG. 12. L(t) is plotted against t on a log-log plot for the quench
of the system to Tf = 2.2 starting from the equilibrium state at Ti =
∞ (lower black curve with a circle) and at Ti = Tc (upper partially
collapsing three curves, corresponding to three different system sizes

 as detailed in the key). The bold green lines are the behavior L(t) ∼
t1/2 expected for an infinite system for large times. The dashed-
magenta line is the behavior t expected in a critical quench.
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FIG. 13. C(t,s) is plotted against x = L(t)/L(s) for the quench of
the system to Tf = 2.2 starting from the equilibrium state at Ti = ∞
(lower group of curves) and at Ti = Tc (upper set of curves) for
different times (see key). The bold dark-green and turquoise lines
are the expected power laws x−λC with λC = 5/4 and λC = 1/8
for the quenches from Ti = ∞ and from Ti = Tc, respectively. The
dashed-indigo line is the power law x−1.586 expected for a quench
from Ti = ∞ to the critical point Tf = Tc. In the upper inset a zoom
on the small-x part of the same curves of the main figure is shown. The
lower inset contains the same data of the upper one but the rescaled
quantity L(s)1/4C(t,s) is plotted.

with the large-x behavior

F (x) ∼ x(θ−1)zc+2−d−η. (25)

Here θ = 0.383(3) is the so called initial slip exponent,
η = 1/4, and L(t) ∼ t1/zc [so that the numerical value of the
exponent in Eq. (25) is −1.586]. This suggests quite clearly
that, when quenching to a temperature near to the critical
one, data collapse is delayed because of the influence of
the critical point which attracts—in a renormalization group
language—the trajectory of the flow at early times. Since
however Tf < Tc, one should observe the same asymptotic
behavior as in a quench to Tf = 0 if sufficiently large times
could be reached. Indeed, in Fig. 13 one can notice that the
critical behavior x−1.586 is lost for the larger values of s and
the curves tend to bend downward at large x, presumably
approaching the expected asymptotic behavior x−5/4 at times
much larger than those accessed in our simulations. A further
confirmation that the critical scaling (24) is obeyed at short
times is given by the analysis of the small-x behavior, which
is shown in the two insets of Fig. 13. The upper inset is only
a zoom of the main figure and shows that data collapse is
never observed, for any choice of s. On the other hand, in the
lower inset one sees that, by plotting L(s)1/4C against x, data
collapse is obtained for the smallest values of s in a region of
x which shrinks by increasing s, as it is expected on the basis
of the critical scaling (24).

A behavior similar to the one discussed insofar for the auto-
correlation function is displayed by the equal time correlation
function and by the response function (not shown). Also for
these quantities the data collapse expected on the basis of the

scalings (8,17) are not observed in the range of times accessed
in our simulations due to important preasymptotic effects.

2. From Ti = Tc

The behavior of the characteristic domains size L(t) is
shown in Fig. 12. Also in this case long-lasting preasymptotic
corrections delay the asymptotic behavior. Indeed, the growth
is slower than L ∼ t1/2 up to times as long as t � 5 × 103.
From t � 5 × 103 onwards, on the other hand, finite size
effects start to appear, as can be seen from the fact that curves
for different system sizes start to separate and—particularly—
because the growth becomes faster than L(t) ∼ t1/2. These
effects reduce the regime where finite-size effects are absent
and scaling properties can be studied to a very narrow time
range (this should compared to the cases with Tf = 0 and
Tf = 1.5, where such range is much wider). As a consequence
the data for G and C do not obey the scalings (8) and (13) and,
when trying to collapse them as in Figs. 2, 3, 8, and 9 the
result is poor. This is seen for the autocorrelation function
in Fig. 13 (the collapse looks better than what it really is
because the plot is compressed). Notice however that the
exponent λc � 1/8 is quite clearly observed. It is interesting
to observe that, despite the presence of preasymptotic and
finite-size effects, the scaling behavior (17) of the response
function is robust. Indeed, as can be seen in Fig. 14, data can
be collapsed reasonably well by plotting L(s)αχ (t,s) against
L(t)/L(s). Due to the noisy character of the data (due to large
thermal fluctuations) a precise estimate of the exponent α is
not possible. However, the comparison between the two values
α = 5/8 and α = 0.56 shows that the latter provides a slightly
better collapse. This is in agreement with the expectation that
roughening effects (which, as discussed above, are associated
to an exponent α = 1/2) are more pronounced at high Tf .

IV. LARGE-N MODEL

The dynamics of a classical magnetic system with a vecto-
rial order parameter with N components can be exactly solved
in the large-N limit [26]. This provides an analytic framework
to interpret the behavior of physical systems with finite-N
and to compute the scaling properties at a semiquantitative
level. In this section, by solving the large-N model for growth
kinetics and computing correlation and response functions we
show how some of the features observed in the numerical
simulations can be interpreted in this analytical framework.
The present solution closely follows and generalizes the one
contained in [27], to which we generally refer the reader for
specific details, extending the results to the case of a quench
from an initial critical state.

A. Model definition

We consider a d-dimensional magnetic system with a
vectorial order parameter 	φ = (φ1, . . . ,φN ) and a Ginzburg-
Landau Hamiltonian

H[ 	φ] =
∫

V

ddx

[
1

2
(∇ 	φ)2 + r

2
	φ2 + g

4N
( 	φ2)2

]
, (26)

where V is the volume and r and g are constants (r < 0,
g > 0).
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FIG. 14. L(s)5/8Tf χ (t,s) (left panel) or L(s)0.56Tf χ (t,s) is plotted against x = L(t)/L(s) for the quench of the system to Tf = 2.2 starting
from the equilibrium state at Ti = Tc for different times (see key). The bold dark-green line (left panel) is the power law x−λχ with λχ = 5/8.
The dashed magenta line (right panel) is the power law x−λχ with λχ = 0.56.

In the case of the nonconserved order parameter we are
considering here, the Langevin equation of motion reads

∂ 	φ(	x,t)

∂t
= − δH[ 	φ]

δ 	φ(	x,t)
+ 	η(	x,t), (27)

where 	η(	x,t) is a Gaussian white noise with expectations

ηα(	x) = 0, (28)

ηα(	x)ηβ(	x ′) = 2T δαβδ(	x − 	x ′)δ(t − t ′). (29)

Here ηα is the α component of the vector 	η, T is the temperature
of the thermal bath, and · · · denotes an average over thermal
fluctuations, namely over different realizations of 	η.

In the large-N limit the substitution 	φ2(	x,t) → 〈	φ2(	x,t)〉,
where 〈·〉 denotes an ensemble average, namely over thermal
noise and initial conditions, becomes exact. Notice that the
quantity S(t) = 1

N
〈 	φ2(	x,t)〉 does not depend on 	x due to

space homogeneity. In terms of the Fourier transform 	φ(	k,t) =∫
V

d 	x 	φ(	x,t) exp (i	k · 	x) of 	φ(	x,t) the evolution (27) then reads

∂ 	φ(	k,t)

∂t
= −[k2 + I (t)] 	φ(	k,t) + 	η(	k,t), (30)

where I (t) is the self-consistent function

I (t) = r + gS(t). (31)

B. Nonequilibrium dynamics

The general solution of the formally linear Eq. (30) is

φ(	k,t) = R(k,t,0) φ(	k,0) +
∫ t

0
dt ′R(k,t,t ′) η(	k,t ′), (32)

where we denote by φ one of the equivalent components 	φα

of the order parameter, and the response function R, which
only depends on the modulus k = |	k| of the wave vector, is
given by

R(k,t,t ′) = Y (t ′)
Y (t)

e−k2(t−t ′), (33)

with Y (t) = exp [
∫ t

0 dsI (s)], I (t) being the self-consistent
function defined in (31). The squared quantity Y 2(t) obeys
the following differential equation:

dY 2(t)

dt
= 2I (t)Y 2(t). (34)

This equation contains, hidden in I (t), the unknown S(t) =
〈φ2〉 which is related to the structure factor [the Fourier
transform of the equal time correlation function G(r,t)]

C(k,t) = 〈φ(	k,t)φ(−	k,t)〉 (35)

by

〈φ2(	x,t)〉 = 1

(2π )d

∫
d	k C(k,t)e−k2/
2

, (36)

where the smooth cutoff around |	k| ∼ 
 mimics the presence
of a lattice and regularizes the theory in the ultraviolet sector,
and d is the spatial dimension. Using Eq. (32) to build products
of order parameter fields and plugging them into Eq. (35),
using the expectations of the noise (29) one arrives at the
following expression:

C(k,t) = R2(	k,t,0)C(k,0) + 2T

∫ t

0
dt ′R2(	k,t,t ′). (37)

We now specify the initial configuration of the order
parameter as

〈φ(	k,0)〉 = 0,

〈φ(	k,0)φ(	k′,0)〉 = (2π )d
�

kμ
δ(	k + 	k′). (38)

This form contains, as a special case, an initial equilibrium
state at Ti = ∞, with the choice μ = 0, and that of a critical
state at Tc for μ = 2, since in the large-N model the critical
exponent η is η = 0 [27]. The solution presented below,
however, is valid also for correlated initial states with different
values of μ. We consider a quench from such an initial
condition to the final temperature Tf . Using the above initial
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conditions in Eq. (37) one has

C(	k,t) = R2(	k,t,0)
�

kμ
+ 2Tf

∫ t

0
dt ′R2(	k,t,t ′) (39)

and inserting this form into Eq. (34) one is left with the
following integrodifferential equation

dY 2(t)

dt
= 2rY 2(t) + 2g�f

(
t + 1

2
2
; μ

)
+ 4gTf

∫ t

0
dt ′f (t − t ′ + 1

2
2
; 0)Y 2(t), (40)

where

f (x; μ) = 1

(2π )d

∫
d	k k−μe−2k2x

= 2−(3d−μ)/2π−d/2x−(d−μ)/2 �
(

d−μ

2

)
�

(
d
2

) (41)

and � is the Euler special function.
Equation (40) is a closed equation for the quantity Y . Its

solution will be discussed in Appendixes A and B. As we will
show in Sec. IV C, any observable can be expressed in terms
of Y .

C. Observables

From the knowledge of Y (t) it is possible to compute the
two-time quantities considered in this paper. Extending the
definition (35) to a two-time correlation

C(k,t,s) = 〈φ(	k,t)φ(−	k,s)〉 (42)

and using the expression (32) to build the φ product one arrives
at

C(	k,t,s) = R(	k,t,0)R(	k,s,0)
�

kμ

+ 2Tf

∫ s

0
dt ′R(	k,t,t ′)R(	k,s,t ′), (43)

from which the autocorrelation function is readily obtained as

C(t,s) = 1

(2π )d

∫
d	k C(k,t,s)e−k2/
2

. (44)

Using the expression (33) one arrives at

C(t,s) = 1

Y (t)Y (s)

[
f

(
t + s

2
+ 1

2
2
; μ

)
�

+ 2Tf

∫ s

0
dt ′f

(
t + s

2
− t ′ + 1

2
2
; 0

)
Y 2(t ′)

]
.

(45)

The first term on the right-hand side is responsible for the
aging properties [27]. Using the expression (41) for f and the
expressions for Y derived in Appendix A, focusing on the large
time sector t + s � 1


2 one has

C(t,s) = M2

[
4x

x2 + 1

](d−μ)/2

(46)

where M2 = − r
g

Tc−Tf

Tc
is a constant [the critical temperature

of the large-N model is Tc = −r(4π)d/2

2g
d−2 (d − 2)], x = L(t)/L(s)

and L(t) ∼ t1/2. This result shows that the autocorrelation
function takes the general scaling form of Eq. (13) and that

λC = d − μ

2
. (47)

Therefore, there is a memory of the initial condition—through
the value of μ—in the exponent λC . Notice that going from
Ti = ∞ (i.e., μ = 0) to Ti = Tc (i.e., μ = 2) reduces the
autocorrelation exponent, as it also is true in the Ising model
(see Sec. III). The actual value of this exponent in the large-N
model is different from the one observed in the scalar case, as
expected.

Let us now consider the response function. It is easy to
show [27] that the impulsive autoresponse R(t,t ′) defined in
Eq. (15) is related to R(k,t,t ′) by

R(t,t ′) = 1

(2π )d

∫
d	kR(k,t,t ′) e−k2/
2

. (48)

Using the expressions (33) and (41) and the behavior of Y (t)
derived in Appendix A to compute this quantity and plugging
the result in the definition (16) of the integrated response (the
quantity measured in the numerical simulations of Sec. III)
one obtains, for large s, the general scaling form (17) with

α = d − 2 (49)

and

h(x) = (4π )−d/2x2−d

∫ 1

x−2
dz z−(d−μ)/4 (1 − z)−d/2. (50)

Equation (49) shows that the response exponent α is indepen-
dent of μ, therefore it is not touched by changing the initial
condition. This is indeed what we found in Sec. III also in the
simulations of the Ising model. Notice that for 2 < d � 4 + μ

(a range where all physically relevant cases are included),
since the integral in Eq. (50) converges, one finds the general
behavior (18) and the constraint (19), so that also λχ does not
change with Ti . The shape of the scaling function h, instead,
changes. In particular, the effect of raising μ is to lower h(x),
as indeed it was found also in the Ising model (see Sec. III)
since the response function is smaller with Ti = Tc than with
Ti = ∞.

In the large-N model the different sensitivity of the
correlation and of the response function exponents have a clear
mathematical origin. We have seen that the initial condition
plays a role in determining the time behavior of the self-
consistent quantity Y , Eq. (A8). Equation (33) shows that this
different time behavior is the only effect of the initial condition
on the wave-vector-resolved response function R(k,t,s). The
situation is different for the autocorrelation function (42).
Indeed, Eq. (43) shows that the different spatial organization
of the correlation is explicitly determined by the one in the
initial state through the factor �

kμ . This makes the effect of a
different initial condition much more pronounced than in the
response function, producing a different exponent λC . It can
be observed that the role of the factor �

kμ in Eq. (43) is such
to weight more the contribution of the small wave vectors if
the initial condition is critical than in the case of a disordered
ones. We have already noticed in Sec. III that in the scalar case
the different behavior of the system at large distances, where
memory of the initial condition is retained, might be the origin
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of the different value of the exponent λC in the quenches from
Ti = ∞ or from Ti = Tc. We see here that a similar property
is shared by the analytically tractable large-N model.

V. SUMMARY AND CONCLUSIONS

In this paper we have discussed the results of a rather
general investigation of the phase-ordering process observed
in a ferromagnetic system described by the Ising model with
Glauber single-spin flip dynamics quenched from equilibrium
states at infinite temperature or at the critical one Tc. We have
considered three values of the final quench temperature Tf in
order to scan the region 0 � Tf < Tc. The aim of this paper
was to discuss how the memory of different initial conditions
can alter the scaling properties of the system and which is the
role played by different final quench temperatures.

When a deep quench is made from an infinite initial
temperature Ti to a vanishing one Tf = 0, all the quantities
considered show an excellent agreement with the expected
dynamical scaling forms. Similar results are also found in
quenches from the critical state, but severe finite-size effects
restrict the region where scaling is observed to a much smaller
time/space region than in the quench from Ti = ∞, as an effect
of the correlated initial state. Upon raising Tf (for any choice
of the initial state), the quality of the data collapse predicted by
dynamical scaling gets progressively poorer until, in a shallow
quench at Tf = 2.2, scaling is basically lost. This is due partly
to the stationary term of Eq. (5) becoming more important and
to the relevance of preasymptotic effects due to the proximity
of the critical point.

Besides providing a comparative study of the effects
of changing the initial and the final quench temperature,
our study includes the first determination of the response
function in quenches from Ti = Tc. We have shown that,
while starting from Ti = Tc instead of Ti = ∞ does change
the aging properties of the process, as witnessed by the
markedly different behavior of the autocorrelation function,
the universal properties of the response function are basically
insensitive to the different initial conditions. The same effect is
found in the behavior of the exactly solvable large-N model,
which shows its robustness. On the basis of the numerical
observations and prompted by the suggestions coming from
the analytical solution, we have interpreted this feature as due
to the large sensitivity of the autocorrelation function to the
large-scale properties of the system, which are reminiscent of
the correlated initial configuration, as opposed to the behavior
of the response function, whose largest contributions are
provided at small scales. Understanding this in clean magnets
represents a first step toward the comprehension of the more
general issue of the initial state memory in aging systems,
which is particularly relevant for disordered and glassy models.

The analysis of the scaling properties of the dynamical
susceptibility in a quench to a vanishing final temperature is
also addressed in this paper. This allows us to obtain a rather
accurate determination of the response function exponent
which turns out to be consistent with α = 1

2λC = 5/8. This
value of α is at variance with previous determinations—lying
in the range [0.5–0.56]—obtained at finite Tf and interpreted
as due to the kinetic roughening of the interfaces. Our result
seems to rule out the conjecture that the value a = 1

2 is

the asymptotic one at Tf = 0. Instead, our data at Tf > 0
suggest that the smaller exponent in this case might be a
preasymptotic effect. The observed relation α = 1

2λC has
presently no physical interpretation and deserves explanation.
We hope that the results of this paper will refresh the attention
on the nonequilibrium response exponent, providing a better
understanding in clean systems and possibly providing new
hints to the behavior of disordered ones.
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APPENDIX A: SOLUTION OF THE EQUATION FOR Y

In order to solve Eq. (40), following [28], we Laplace
transform it to obtain

Y 2
L(s) = 1 + 2g�fL(s; μ)

s − 2r − 4gTf fL(s; 0)
, (A1)

where Y 2
L(s) is a shorthand for the Laplace transform of Y 2(t),

and

fL(s; μ) = 2−(3d−μ)/2s(d−μ)/2−1 �
(

d−μ

2

)
�

(
1 − d−μ

2 , s
2
2

)
�

(
d
2

) .

(A2)
Here �(a,y) is the (upper) incomplete γ function. The final
step is to calculate the inverse Laplace transform

Y 2(t) = 1

2πi

∫ σ+i∞

σ−i∞
ds est Y 2

L(s), (A3)

which is done, using standard techniques, by previously
extending the integral in Eq. (A3) along the closed Bromwich
contour B shown in Fig. 15.

According to the complex inversion theorem B has to be
chosen in such a way that all the poles of Y 2

L lie on the left of
the straight vertical line (marked red in Fig. 15). In this case, a
direct analysis of the denominator of Y 2

L(s) in Eq. (A1) shows
[28] that poles only exist when a quench is made to Tf � Tc, so
there is no restriction on the position of the vertical segment of
B in the cases with Tf < Tc we are interested here. We place it
along the imaginary axis, therefore. Notice that the contour has
to be deformed as to avoid the branch cut along the negative
real axis because the expression (A2) implies that fL, and then
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FIG. 15. Bromwich contour to calculate Y 2(t). The definition
of the inverse Laplace transform involves integrating over the (red)
vertical segment of the contour.

also YL, contains fractional powers of s, in general. We also

remark that since cases where d � 2 lead to Tc = 0, we shall
focus on dimensions d > 2.

Letting the radius R of the outer circle go to infinity and
the one ε of the inner one vanish, the only nonvanishing
contributions along the contour B come from the horizontal
segments along the branch cut and from the vertical one. Then
one has∫

B
Y 2

L(s) =
∫ σ+i∞

σ−i∞
ds estY 2

L(s)

+
∫ ∞

0
dx e−xt

(
Y 2

L(s)|s=xeiπ −Y 2
L(s)|s=xe−iπ

)=0,

(A4)

where the last equality follows from Cauchy residue theorem,
since there are no singularities inside B. Recalling Eq. (A3)
one finds

Y 2(t) = − 1

2πi

[∫ ∞

0
dx e−xt

(
Y 2

L(s)|s=xeiπ − Y 2
L(s)|s=xe−iπ

)]
.

(A5)

Since we are interested in the behavior of the model in
the asymptotic time domain, we can evaluate Eq. (A5) by
expanding Y (s) for small values of s, which can be done in
different ways according to the value of the exponents d,μ as
it is explained below.

1. d−μ

2 and d
2 noninteger quantities

When d
2 and d−μ

2 are noninteger quantities the expansion of Y 2
L for small s is given in Eq. (B2) of the Appendix. Then the

anti-Laplace transform of Y 2
L(s) is calculated by solving the right-hand side of (A5) which leads to the integral

Y 2(t) = 1

2πiD0

∫ ∞

0
dx e−xt

[(
N0 + N1s

(d−μ)/2−1 − D1N0

D0
sd/2−1 − N1D1

D0
sd−2−μ/2

)∣∣∣∣
s=xeiπ

−
(

N0 + N1s
(d−μ)/2−1 − D1N0

D0
sd/2−1 − N1D1

D0
sd−2−μ/2

)∣∣∣∣
s=xe−iπ

]
, (A6)

where the constants D0,D1,N0,N1 are given in Eq. (B3).
The terms with an integer exponent on the right-hand side of Eq. (A6) cancel out, and the same happens for the real part of

the terms with a noninteger exponent. Integrating the imaginary parts of the latter easily leads to

Y 2(t) = 1

πD0

{
N1�

(
d − μ

2

)
sin

[
π

(
d − μ

2
− 1

)]
t−(d−μ)/2 − D1N0

D0
�

(
d

2

)
sin

[
π

(
d

2
− 1

)]
t−d/2

}
. (A7)

In short we have the result

Y 2(t) � Ad,μt−(d−μ)/2 (A8)

with Ad,μ = N1
πD0

�( d−μ

2 ) sin [π ( d−μ

2 − 1)] for μ > 0 and Ad,0 = 1
πD2

0
�( d

2 ) sin [π ( d
2 − 1)][D0N1 − D1N0] for μ = 0.

2. d−μ

2 and/or d
2 integer quantities

When the exponents entering the function fL are (negative) integer quantities the small-s expansion of the incomplete γ

function leads to the expression (B4). Therefore, when computing the small-s expansion of Y 2 through Eq. (A1) different cases
must be considered, namely when d

2 or d−μ

2 or both are integer. Using the expansions of fL and Y 2
L given in Appendix B and

proceeding as in Sec. A 1 it is easy to show that the integral (A5) gives

Y 2(t) = cos
[(

d−μ

2 − 1
)
π

]
M1�

(
d−μ

2

)
D0

t−(d−μ)/2 + sin
[(

d
2 − 1

)
π

]
M0D1�

(
d
2

)
πD2

0

t−d/2,
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Y 2(t) = − sin
[(

d−μ

2 − 1
)
π

]
N1�

(
d−μ

2

)
πE0

t−(d−μ)/2 + cos
[(

d
2 − 1

)
π

]
N0E1�

(
d
2

)
E2

0

t−d/2, (A9)

Y 2(t) = − cos
[(

d−μ

2 − 1
)
π

]
M1�

(
d−μ

2

)
E0

t−(d−μ)/2 + cos
[(

d
2 − 1

)
π

]
M0E1�

(
d
2

)
E2

0

t−d/2.

for (i) d − μ even and d odd, (ii) d − μ odd and d even, and (iii) both d − μ and d even, respectively. In any case one has the
same result of Eq. (A8), where the value of Ad,μ can be evinced from Eqs. (A9).

APPENDIX B: EXPANSION OF SOME FUNCTIONS IN LAPLACE SPACE

When d − μ > 0 is odd we have

fL(s; μ) = 
d−μ−2�
(

d−μ

2

)
2d+1�

(
d
2

) (
s

2
2

)(d−μ)/2−1

π−d/2es/2
2

[
�

(
1 − d − μ

2

)
−

(
s

2
2

)1−(d−μ)/2 ∞∑
n=0

( − s
2
2

)n(
n + 1 − d−μ

2

)
n!

]

= − (4π )−d/2(
2)(d−μ)/2−1�
(

d−μ

2

)
[2 − (d − μ)]�

(
d
2

) + (4π )−d/2�
(

d−μ

2

)
�

(
1 − d−μ

2

)
2(d−μ)/2�

(
d
2

) s(d−μ)/2−1

− (4π )−d/2(
2)(d−μ)/2−2�
(

d−μ

2

)
[(d − μ) − 4][(d − μ) − 2]�

(
d
2

) s + o(s2). (B1)

Plugging this expression into Eq. (A1) and retaining the leading terms for s → 0 one has

Y 2
L(s) � (−D0)−1

(
N0 + N1s

(d−μ)/2−1 − D1N0

D0
sd/2−1 − N1D1

D0
sd−2−μ/2

)
, (B2)

where

D0 = 2r + 4gTf

(4π )−d/2
d−2

d − 2
, D1 = 4gTf (8π )−d/2�

(
1 − d − μ

2

)
,

N0 = 1 + 2g�
(4π )−d/2
d−2−μ�

(
d−μ

2

)
(d − 2 − μ)�

(
d
2

) , N1 = 2g�

(
8π

)−d/2
2μ/2�

(
d−μ

2

)
�

(
1 − d−μ

2

)
�

(
d
2

) . (B3)

Similarly, we can write the fL(s; μ) as a power series when d − μ > 0 is even, which yields

fL(s; μ) = 
d−μ−2�
(

d−μ

2

)
2d+1�

(
d
2

) (
s

2
2

)(d−μ)/2−1

π−d/2es/2
2

{
(−1)(d−μ)/2−1

�
(

d−μ

2

) [
ψ

(
d − μ

2

)
− ln

(
s

2
2

)]

−
(

s

2
2

)1−(d−μ)/2 ∞∑
k=0;k �=(d−μ)/2−1

( − s
2
2

)k(
k + 1 − d−μ

2

)
k!

⎫⎬⎭
= (
2)(d−μ)/2−1�

(
d−μ

2

)(
1 − δ0,(d−μ)/2−1

)
(4π )d/2�

(
d
2

)(
2 − d + μ

) −
( − 1

)(d−μ)/2−1

2(d−μ)/2(4π )d/2�
(

d
2

) ln

(
s

2
2

)
s(d−μ)/2−1

+ (−1)(d−μ)/2−1ψ
(

d−μ

2

)
2(d−μ)/2(4π )d/2�

(
d
2

) s(d−μ)/2−1 −
(

1 − δ1,(d−μ)/2−1

4 − d + μ
− 1 − δ0,(d−μ)/2−1

2 − d + μ

)
(
2)(d−μ)/2−1�

(
d−μ

2

)
(4π )d/2�

(
d
2

)
2
2

s + o(s).

(B4)

Here, the digamma function can be approximated for integer values by the series ψ(n) = ∑n−1
k=0 k−1 − γ , where γ � 0.5772 is

the Euler-Mascheroni constant.
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The series shown above can be used to expand (A1) which leads to three different cases, namely when (i) d − μ even and d

odd, (ii) d − μ odd and d even, (iii) d − μ even and d even,
leading respectively to the following results:

Y 2
L(s) = D−1

0

[
M0 − M1ln

(
s

2
2

)
s(d−μ)/2−1 − M0D1

D0
sd/2−1

]
,

Y 2
L(s) = E−1

0

[
N0 + N1s

(d−μ)/2−1 − N0E1

E0
ln

(
s

2
2

)
sd/2−1

]
, (B5)

Y 2
L(s) = E−1

0

[
M0 + M1ln

(
s

2
2

)
s(d−μ)/2−1 − M0E1

E0
ln

(
s

2
2

)
sd/2−1

]
.

The coefficients Di and Ni are given in (B3) and

M0 = 1 + 2g�
(−1)(d−μ)/2−1ψ

(
d−μ

2

)
2(d−μ)/2(4π )d/2�

(
d
2

) δ0,(d−μ)/2−1 − 2g�
(
2)(d−μ)/2−1�

(
d−μ

2

)
(4π )d/2�

(
d
2

)
(2 − d + μ)

(1 − δ0,(d−μ)2−1),

M1 = −2g�
(−1)(d−μ)/2−1

2(d−μ)/2(4π )d/2�
(

d
2

) , E0 = −2r − 4gTf

(
2)d/2−1(1 − δ0,d/2−1)

(4π )d/2(2 − d)
, E1 = 4gTf

(−1)d/2−1

(8π )d/2�
(

d
2

) . (B6)
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(1990); C. Godrèche and J. M. Luck, ibid. 33, 9141 (2000).

052105-16

http://arxiv.org/abs/arXiv:cond-mat/0210312
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevLett.71.173
http://dx.doi.org/10.1103/PhysRevLett.71.173
http://dx.doi.org/10.1103/PhysRevLett.71.173
http://dx.doi.org/10.1103/PhysRevLett.71.173
http://dx.doi.org/10.1088/0305-4470/27/17/011
http://dx.doi.org/10.1088/0305-4470/27/17/011
http://dx.doi.org/10.1088/0305-4470/27/17/011
http://dx.doi.org/10.1088/0305-4470/27/17/011
http://dx.doi.org/10.1103/PhysRevLett.81.1758
http://dx.doi.org/10.1103/PhysRevLett.81.1758
http://dx.doi.org/10.1103/PhysRevLett.81.1758
http://dx.doi.org/10.1103/PhysRevLett.81.1758
http://dx.doi.org/10.1023/A:1004602906332
http://dx.doi.org/10.1023/A:1004602906332
http://dx.doi.org/10.1023/A:1004602906332
http://dx.doi.org/10.1023/A:1004602906332
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1143/JPSJ.58.216
http://dx.doi.org/10.1143/JPSJ.58.216
http://dx.doi.org/10.1143/JPSJ.58.216
http://dx.doi.org/10.1143/JPSJ.58.216
http://dx.doi.org/10.1103/PhysRevB.40.2341
http://dx.doi.org/10.1103/PhysRevB.40.2341
http://dx.doi.org/10.1103/PhysRevB.40.2341
http://dx.doi.org/10.1103/PhysRevB.40.2341
http://dx.doi.org/10.1103/PhysRevE.63.061506
http://dx.doi.org/10.1103/PhysRevE.63.061506
http://dx.doi.org/10.1103/PhysRevE.63.061506
http://dx.doi.org/10.1103/PhysRevE.63.061506
http://dx.doi.org/10.1007/s10051-001-8685-2
http://dx.doi.org/10.1007/s10051-001-8685-2
http://dx.doi.org/10.1007/s10051-001-8685-2
http://dx.doi.org/10.1007/s10051-001-8685-2
http://dx.doi.org/10.1103/PhysRevLett.90.099601
http://dx.doi.org/10.1103/PhysRevLett.90.099601
http://dx.doi.org/10.1103/PhysRevLett.90.099601
http://dx.doi.org/10.1103/PhysRevLett.90.099601
http://dx.doi.org/10.1103/PhysRevE.68.046131
http://dx.doi.org/10.1103/PhysRevE.68.046131
http://dx.doi.org/10.1103/PhysRevE.68.046131
http://dx.doi.org/10.1103/PhysRevE.68.046131
http://dx.doi.org/10.1103/PhysRevE.72.028103
http://dx.doi.org/10.1103/PhysRevE.72.028103
http://dx.doi.org/10.1103/PhysRevE.72.028103
http://dx.doi.org/10.1103/PhysRevE.72.056103
http://dx.doi.org/10.1103/PhysRevE.72.056103
http://dx.doi.org/10.1103/PhysRevE.72.056103
http://dx.doi.org/10.1103/PhysRevE.72.056103
http://dx.doi.org/10.1088/1742-5468/2008/02/P02013
http://dx.doi.org/10.1088/1742-5468/2008/02/P02013
http://dx.doi.org/10.1088/1742-5468/2008/02/P02013
http://dx.doi.org/10.1103/PhysRevE.74.041113
http://dx.doi.org/10.1103/PhysRevE.74.041113
http://dx.doi.org/10.1103/PhysRevE.74.041113
http://dx.doi.org/10.1103/PhysRevE.74.041113
http://dx.doi.org/10.1103/PhysRevE.71.036104
http://dx.doi.org/10.1103/PhysRevE.71.036104
http://dx.doi.org/10.1103/PhysRevE.71.036104
http://dx.doi.org/10.1103/PhysRevE.71.036104
http://dx.doi.org/10.1103/PhysRevE.72.028104
http://dx.doi.org/10.1103/PhysRevE.72.028104
http://dx.doi.org/10.1103/PhysRevE.72.028104
http://dx.doi.org/10.1103/PhysRevE.72.028104
http://dx.doi.org/10.1103/PhysRevB.41.6724
http://dx.doi.org/10.1103/PhysRevB.41.6724
http://dx.doi.org/10.1103/PhysRevB.41.6724
http://dx.doi.org/10.1103/PhysRevB.41.6724
http://dx.doi.org/10.1088/0305-4470/24/8/030
http://dx.doi.org/10.1088/0305-4470/24/8/030
http://dx.doi.org/10.1088/0305-4470/24/8/030
http://dx.doi.org/10.1088/0305-4470/24/8/030
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1209/0295-5075/106/66001
http://dx.doi.org/10.1209/0295-5075/106/66001
http://dx.doi.org/10.1209/0295-5075/106/66001
http://dx.doi.org/10.1209/0295-5075/106/66001
http://dx.doi.org/10.1007/BF01512792
http://dx.doi.org/10.1007/BF01512792
http://dx.doi.org/10.1007/BF01512792
http://dx.doi.org/10.1007/BF01512792
http://dx.doi.org/10.1007/BF01519615
http://dx.doi.org/10.1007/BF01519615
http://dx.doi.org/10.1007/BF01519615
http://dx.doi.org/10.1103/PhysRevB.44.9185
http://dx.doi.org/10.1103/PhysRevB.44.9185
http://dx.doi.org/10.1103/PhysRevB.44.9185
http://dx.doi.org/10.1103/PhysRevB.44.9185
http://dx.doi.org/10.1103/PhysRevE.78.041120
http://dx.doi.org/10.1103/PhysRevE.78.041120
http://dx.doi.org/10.1103/PhysRevE.78.041120
http://dx.doi.org/10.1103/PhysRevE.78.041120
http://dx.doi.org/10.1103/PhysRevB.77.212201
http://dx.doi.org/10.1103/PhysRevB.77.212201
http://dx.doi.org/10.1103/PhysRevB.77.212201
http://dx.doi.org/10.1103/PhysRevB.77.212201
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevE.81.011124
http://dx.doi.org/10.1103/PhysRevE.81.011124
http://dx.doi.org/10.1103/PhysRevE.81.011124
http://dx.doi.org/10.1103/PhysRevE.81.011124
http://dx.doi.org/10.1088/1742-5468/2007/07/P07002
http://dx.doi.org/10.1088/1742-5468/2007/07/P07002
http://dx.doi.org/10.1088/1742-5468/2007/07/P07002
http://dx.doi.org/10.1142/S0217979204024215
http://dx.doi.org/10.1142/S0217979204024215
http://dx.doi.org/10.1142/S0217979204024215
http://dx.doi.org/10.1142/S0217979204024215
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevE.70.017103
http://dx.doi.org/10.1103/PhysRevE.70.017103
http://dx.doi.org/10.1103/PhysRevE.70.017103
http://dx.doi.org/10.1103/PhysRevE.70.017103
http://dx.doi.org/10.1103/PhysRevE.78.011109
http://dx.doi.org/10.1103/PhysRevE.78.011109
http://dx.doi.org/10.1103/PhysRevE.78.011109
http://dx.doi.org/10.1103/PhysRevE.78.011109
http://dx.doi.org/10.1209/0295-5075/10/6/012
http://dx.doi.org/10.1209/0295-5075/10/6/012
http://dx.doi.org/10.1209/0295-5075/10/6/012
http://dx.doi.org/10.1209/0295-5075/10/6/012
http://dx.doi.org/10.1103/PhysRevB.32.4565
http://dx.doi.org/10.1103/PhysRevB.32.4565
http://dx.doi.org/10.1103/PhysRevB.32.4565
http://dx.doi.org/10.1103/PhysRevB.32.4565
http://dx.doi.org/10.1103/PhysRevE.50.1046
http://dx.doi.org/10.1103/PhysRevE.50.1046
http://dx.doi.org/10.1103/PhysRevE.50.1046
http://dx.doi.org/10.1103/PhysRevE.50.1046
http://dx.doi.org/10.1103/PhysRevE.56.4973
http://dx.doi.org/10.1103/PhysRevE.56.4973
http://dx.doi.org/10.1103/PhysRevE.56.4973
http://dx.doi.org/10.1103/PhysRevE.56.4973
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1088/0305-4470/23/20/011
http://dx.doi.org/10.1088/0305-4470/23/20/011
http://dx.doi.org/10.1088/0305-4470/23/20/011
http://dx.doi.org/10.1088/0305-4470/23/20/011
http://dx.doi.org/10.1088/0305-4470/33/50/302
http://dx.doi.org/10.1088/0305-4470/33/50/302
http://dx.doi.org/10.1088/0305-4470/33/50/302
http://dx.doi.org/10.1088/0305-4470/33/50/302



