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Nonspectral modes and how to find them in the Ornstein-Uhlenbeck
process with white μ-stable noise

F. Thiel* and I. M. Sokolov†

Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany

E. B. Postnikov‡

Department of Theoretical Physics, Kursk State University, Radishcheva Street, 33, 305000 Kursk, Russia
(Received 15 February 2016; revised manuscript received 11 April 2016; published 2 May 2016)

We consider the Ornstein-Uhlenbeck process with a broad initial probability distribution (Lévy distribution),
which exhibits so-called nonspectral modes. The relaxation rate of such modes differs from those determined
from the parameters of the corresponding Fokker-Plank equation. The first nonspectral mode is shown to govern
the relaxation process and allows for estimation of the initial distribution’s Lévy index. A method based on
continuous wavelet transformation is proposed to extract both (spectral and nonspectral) relaxation rates from a
stochastic data sample.
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I. INTRODUCTION

The dynamics of systems in the vicinity of a stable
equilibrium subject to fluctuations presents a diffusion pro-
cess governed by a Fokker-Planck equation (FPE). In the
sufficiently general case of small displacements from a
stable equilibrium and Gaussian fluctuations (“Gaussian white
noise”) that corresponds to the Ornstein-Uhlenbeck process
(OUP) [1]. The assumption of Gaussianity can be relaxed,
when stable noise of index μ ∈ (0,2] is used. The fractional
Fokker-Plank equation (FFPE) takes the form

ρ̇(x; t) = ν
∂

∂x
[xρ(x; t)] + K

∂μ

∂|x|μ ρ(x; t), (1)

where ν and K are the friction and diffusion coefficient,
respectively. ∂μ/(∂|x|μ) is the Riesz-Weyl fractional deriva-
tive, defined by its Fourier transform −|k|μ. OUPs and their
generalizations are used in physics and other fields and are
especially important in finance where it is called Vasicek
model; see Refs. [2–5] and references therein.

The problem whose solution we seek is the initial value
problem on the whole real axis: we are interested in the
evolution and relaxation to equilibrium of the probability
density function (PDF) ρ(x; t) of the distribution of a system’s
state X(t) for given initial state ρin(x) and concentrate on
the temporal pattern of relaxation, especially on its long-time
behavior. The initial PDF is, of course, nonnegative and
normalized to unity.

With help of a similarity transformation presented in
Ref. [6], the fractional FPE can be reduced to the common
OUP’s FPE. The methods of solution of FPEs, including
those based on spectral decomposition, are discussed in
detail in the classical monograph [7]. Provided the stationary
distribution ρeq exists, the initial Fokker-Planck problem can
be reduced to a Schrödinger-like equation using another
similarity transformation. The Fokker-Planck equation for
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the Ornstein-Uhlenbeck process is mapped to the quantum
mechanical harmonic oscillator. Due to this, it is often assumed
that the diffusion problem and the quantum mechanical
one are isospectral. Therefore, the relaxation of the initial
distribution to the equilibrium one is expected to follow the
multiexponential pattern ρ(x; t) = ∑

λ ρλ(x)e−λt with rates
λj = jμν corresponding to the equidistant spectrum of a
quantum harmonic oscillator. Reference [6] has shown that
this is not always the case. It has been shown that rates absent
in the spectrum of the Schrödinger operator might appear for
initial conditions corresponding to probability densities that
decay at infinity slow enough (as power laws). These rates
were termed as “nonspectral” rates. More detailed description
of the spectrum are given in Refs. [8] and [9]. Reference [10]
studies relaxation of power-law initial conditions, as well,
but it is mainly concerned with nonexponential relaxation
due to nonlinear force. Broad initial distributions have also
been used to explain effects in scattering experiments [11]
and electron mobility measurements [12] in semiconductors.
The authors of Ref. [13] already considered the FPE with
power-law initial data. Although they did discuss how the
Boltzmann equilibrium is restored, they did not consider the
way there to, i.e., the relaxation process itself. This gap is filled
in this article.

The principal goal of the present work is to show that
nonspectral relaxation rates can be observed in simulations
and to propose a technique to reveal “broad” initial conditions
from the relaxation spectrum.

Although the following manuscript considers the one-
dimensional OUP, we stress that the approach is easily
generalizable to higher dimensions by replacing the derivatives
in Eq. (1) with divergence and fractional Laplace operator.
Furthermore, all considerations in Fourier domain can also be
applied in the general case of infinitely divisible noise [4].

II. VARIABLE SEPARATION WITHOUT PRESELECTION

The problem we encounter is an initial value problem for
the FFPE on the whole real axis. We note that the form of the
equation guarantees that for any integrable initial condition its
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integral over the whole line is conserved, and moreover, that
if the initial state is represented by a nonnegative function, the
nonnegativity of solution is retained at all later times. More-
over, provided the stationary (equilibrium) solution exists, the
solution for any initial condition converges to this one; no
blowing up and no oscillations are possible. As we show in
the Appendix, none of these properties rely on assumptions
on spectral properties of the corresponding Fokker-Planck
operator, and can be obtained from the equation as it is. These
properties make explicit introduction of boundary conditions
superfluous for the class of problems under consideration;
introduction of boundary conditions not motivated by the
physics of the problem may lead to wrong or paradoxical
results.

The fact that the discussion of nonspectral relaxation pat-
terns was missing in the literature is connected to the standard
approach of eigenvalue decomposition as discussed in Sec. 5.4
of Ref. [7]. This ansatz leads a multiexponential relaxation
pattern with the spectral rates λj = jμν corresponding to
the equidistant spectrum of a quantum harmonic oscillator.
Here it was explicitly assumed that ρ(x; t) decays faster
than e−(νx2)/(4K) at infinity, but the restrictions put by this
assumption were not discussed. Those boundary conditions
make an assumption on the “correct” parts of the operator’s
spectrum even before the eigenstates are found!

The set of the eigenfunctions of the Hermitian Schrödinger
operator is, however, insufficient for expansion of the growing
functions, which inevitably appear for “broad” initial con-
ditions with power-law tails [8]. As a result, the operator’s
modes correspond to the system’s relaxation properties, which
in turn manifest in the system’s long-time behavior. We will
therefore find the (correct) solution of the initial value problem
for Eq. (1) and determine its relaxation pattern.

A. Relaxation in the PDF

As a first step, we write Eq. (1) in Fourier space, where it
becomes a first-order partial differential equation:

˙̂ρ(k; t) = −νk
∂

∂k
ρ̂(k; t) − K|k|μρ̂, (2)

where ρ̂(k; t) = ∫
R dx eikxρ(x; t) is the usual Fourier trans-

form. As already noted in [6], any FFPE for the OUP
can be mapped into the equation for μ′ = 2 by taking k =
κ|κ|−1+2/μ. Equations (1) and (2) are homogeneous linear
differential equations, which means that their solutions satisfy
the superposition principle.

Many methods of solution of linear homogeneous equations
are based on the superposition principle, which include the
Green’s function approach and the variable separation method
(which may lead to the eigenfunction expansion). In these
methods, the solutions to the initial value problems are built as
weighted sums or integrals of candidate solutions (which we
will call components), with weights chosen in such a way that
the initial condition is satisfied for t = 0.

The variable separation method starts from looking for com-
ponents that have the form of a product ρ̂(k; t) = τλ(t)ρ̂λ(k).
Substituting this form into Eq. (2), we find that such a solution
is only possible if ρ̂λ and τλ are eigenfunctions of the operators

appearing in Eq. (2), i.e.,

1

τλ(t)

dτ

dt
= −λ = −ν

1

ρ̂(k)
k

d

dk
ρ̂λ(k) − K|k|μ. (3)

Solving the equation for the temporal part, we immediately
get

τλ(t) = e−λt ;

the fact that the solution of any initial condition tends to a
stationary (equilibrium) state and doesn’t show oscillations
implies that the relevant values of parameter λ are real and
nonnegative. The spatial part of the equation is solved by

ρ̂λ(k) = C(k/|k|)|k|
λ
ν e

− K
μν

|k|μ
. (4)

The eigenstate ρλ can be identified as the λ/νth fractional
derivative of the stationary state ρeq = ρ0 (which is the char-
acteristic function of a symmetric μ-stable random variable).
The prefactor C(k/|k|) determines the parity of the solution
(in higher dimensions it determines the angular behavior as
well). We will only consider the symmetric situation and
put C(k/|k|) = 1; that means all eigenvalues except λ = 0
are degenerate. The solution for λ = 0 is the equilibrium,
stationary solution of the initial Fokker-Planck equation. If
the initial state can be represented as a sum,

ρin(x) =
∑

λ

aλρλ(x),

according to superposition principle, the further time evolution
is known:

ρ(x; t) =
∑

λ

aλρλ(x)e−λt . (5)

The mode coefficients aλ select the appropriate eigenvalues.
The set of admissible eigenvalues {λ} ⊂ C is determined by
the boundary conditions of the equation and by the initial
state. For the Fokker-Planck equation, we have the conditions
of unit normalization, positivity of the PDF, and the existence
of the stationary state. These restrict the eigenvalues to be
nonnegative and real (no blow-up, no oscillations of the
solution) and enforce that λ = 0 is an admissible eigenvalue.
Then the solution will converge to the stationary state. Such are
the natural selection rules of the spectrum of the Fokker-Planck
equation. They cannot be considered as boundary conditions
for the eigenvalue problem, since they pose restrictions on
the sum Eq. (5) and not on the eigenstates ρλ. Initial data
determines the values of the mode coefficients (the weights)
via Eq. (5). The solution of the problem thus reduces to fitting
the initial condition by the weighted sum (or integral) over
functions from the set of the component functions. This was
done in Ref. [9] by a Taylor expansion in the propagator.

When transforming the problem to a Schrödinger equation,
a similarity transformation must be used. The similarity
transformation renders the normalization condition in the
original problem useless. Additionally, one imposes the
square-integrability of the Schrödinger-eigenfunctions, which
is completely unrelated to the original problem.

The spectral decomposition methods correspond to a
preselection of components with the λ values necessary to
define a set of biorthogonal basis functions that might appear
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in the expansion. For the Fokker-Planck problem this set has
to be completed by a dual set of left-eigenfunctions, which
together with the (right) eigenfunctions build a biorthogonal
system. Considerable simplification is therefore given by
transformation of the Fokker-Planck operator to a Schrödinger
one, which is Hermitian and possesses an orthonormal basis
of eigenfunctions. However, as Ref. [8] shows, some fully
legitimate initial conditions are transformed into functions
growing at infinity, which are not square-integrable, and
which cannot be expanded over the known eigenfunctions;
the temporal decay of these functions does not follow the
“spectral” pattern.

The variable separation method is, however, applicable
without any preselection, and the difference to a spectral
approach is only pertinent to how the corresponding sums
or integrals over candidate components are fitted to the initial
state. The corresponding examples show how spectral and
nonspectral relaxation patterns appear.

Since we are not operating in the space of square-integrable
functions, the series in Eq. (5) is not a decomposition into
orthonormal base functions, but rather a formal series. It has
to be understood in the sense of an asymptotic expansion.
The reverse procedure is determining the mode coefficients
by asymptotically fitting the solution of Eq. (1) to the
eigenfunctions. In the case of the OUP, this can done via
the Fourier representation of ρλ. Let us fix some upper bound
for the considered exponents, �/ν. Combining Eq. (4) with
Eq. (5) and expanding up to order |k|�/ν bears

e
K
μν

|k|μ
ρ̂in(k) =

∑
λ<�

|k|
λ
ν aλ + O

(|k| �
ν

)
.

The coefficients found from the power series expansion are
the sought-after values for the spectral coefficients: aλ. In case
the initial condition is given by a stable law with index α, i.e.,
ρ̂in(k) = exp(−|σk|α), we can expand the two exponentials
and have

M∑
m,j=0

(
K
μν

|k|μ)m
(−|σk|α)j

m!j !
−

∑
λ<�

|k|
λ
ν aλ = O

(|k| �
ν

)
.

The equation can be solved by taking the mode coefficients

am,j =
(

K
μν

)m
(−σα)j

m!j !
, (6)

and the relaxation rates λm,j = mμν + jαν.
Let us shortly discuss this result. The relaxation rates

mμν are the spectral ones, i.e. also belong to the associ-
ated Schrödinger operator. However, all other nonnegative
relaxation rates are admissible for a Fokker-Planck equation,
too. Since they do not appear in the associated Schrödinger
operator, they are considered “nonspectral.” In our case, the
nonspectral rates are αjν and come from the “broad” initial
condition. Of course, the distinction only makes sense, when α

is not a multiple of μ. Note that a term proportional to |k|α with
α < 2 occurs whenever the initial state lacks a finite second
moment; well-behaved initial conditions can be expanded in
powers of |k|, bearing the same spectrum as in Refs. [9,14]. For
an ordinary OUP, we have μ = 2, and (symmetric) initial state
without power-law tails always leads to spectral relaxation.

Hence, nonspectral relaxation is a rather artificial situation in
the ordinary OUP. For a Lévy OUP with fractional derivative
in Eq. (1), however, nonspectral relaxation is the rule, because
α is rarely an integer multiple of μ. This is the case even for
the very large class of well-behaved initial states, where we
have α = 2, which is not necessarily a multiple of μ. Hence,
purely spectral relaxation in Lévy OUP can be considered
“rare.” Please note that we only considered symmetric initial
conditions—even functions ρin. Admitting asymmetry lifts the
degeneracy of the eigenstates in Eq. (4), i.e., C(k/|k|) is no
longer unity. In the absence of broad initial state, this leads
to terms proportional to k in the expansion of the initial state
and, consequently, the spectrum is mμ + j , just as reported in
Ref. [9].

The procedure described shows the exact reason for the
appearance of the nonspectral series: the spectrum of the
Fokker-Planck operator is not defined without specifying
the boundary conditions; one can say, it is trivially continuous,
because the solution to any λ does exist and is legitimate since
its behavior is not restricted by any additional condition. The
choice from the candidate solutions is done by asymptotically
matching them to the initial state. Strictly speaking, it might
happen that the choice is not unique, but in this case the results
will have to be different asymptotic representations of the
same solution. We note that the procedure does not imply the
solution of the initial equation by the method of characteristics
and does not rely on the existence of the analytic form of the
full solution, but just on an asymptotic expansion.

Let us turn to the relaxation behavior of observables.

B. Relaxation in observables

From the spectral decomposition Eq. (5) we can com-
pute the long-time behavior of any observable of the sys-
tem’s state. Let us consider some function f (x), such that∫
R dx f (x)ρ(x; t) exists for all times. In particular the integrals

with respect to ρeq as well as with respect to ρin exist. Let’s
additionally assume that f is an even function of x. Then
the temporal behavior of F (t) = 〈f (X(t))〉 is, according to
Eq. (5), given by

F (t) =
∑
λ<�

aλe
−λt

∫
R

dx f (x)ρλ(x)

=
∑
λ<�

Aλe
−λt + O (e−�t ). (7)

In the case of spectral relaxation, the rates are eigenvalues
of the associated Schrödinger operator. As we have seen,
depending on the initial condition, nonspectral rates can occur
as well. These rates occur in every (!) observable, and—more
importantly—may dominate the complete relaxation process.

Let us return to our example. If the initial state is an α-stable
distribution with α < μ, the first rate occurring in Eq. (7) is
αν, which is smaller than the first spectral rate μν. Hence,
the process remains a signature of its initial state, during the
whole relaxation process. Finding the lowest relaxation rate
thus allows for testing whether the initial state was broad or
not.
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III. INFERRING THE INITIAL STATE
FROM THE RELAXATION

We set out for finding the smallest rate λmin in the relaxation
of some observable. For example, we take the γ th moment of
position,

〈|X(t)|γ 〉 =
∫
R

dx |x|γ ρ(x; t) ∝ A0 + Aανe
−ανt + Aμνe

−μνt ,

(8)
for large times t . We take γ < α < μ, so that the moment
exists for all times, as discussed before. The γ -dependence is
hidden in the coefficients A0, Aαν, Aμν , which are defined by
the corresponding integrals with respect to the eigenfunctions
ρ0 (the stationary value), ραν , and ρμν ; compare with Eq. (7).
For broad initial states we have λmin = αν < μν. We stress
here that although we illustrate the procedure in some moment,
the expansion holds for all observables!

When the stable index of the noise, μ, is known, this
quite universal relaxation pattern allows for inferring the
preparation state from the relaxation spectrum. The reason
is that broad initial state results in the existence of a relaxation
rate αν < μν, which in turn dominates the long time behavior.
Hence, given the time evolution of any observable, we set
out to find the smallest relaxation rate λmin. A value of λmin

significantly smaller than μν proves the existence of a “broad”
preparation state. If it is possible to access more than just the
first relaxation rate, another possible test would be to examine
the ratio λnext/λmin. This method is, however, not very robust,
since α could also be a rational fraction of μ. We show
that determining λmin is indeed possible by using synthetic
data from computer simulations and present some possible
algorithms to infer the slowest relaxation rate. We present
two naive approaches: the first based on linear regression, the
second based on complexification and Fourier analysis. In case
they fail, the method can be augmented by wavelet analysis.
The procedure is very similar to the one in Ref. [15], where the
authors sought for the smallest relaxation rate in a fractional
escape problem.

We performed Monte-Carlo simulations of an ordinary
OUP’s Itô-Langevin equation [with corresponding FPE given
by Eq.(1)] with different μ and α. The chosen values can
be inspected in Table I. We used γ = 4

10 min (α,μ). This
way the γ th moment will always exist and the corresponding
sample average will have a finite variance (because 2γ < α and
2γ < μ). By the central limit theorem, the sample average’s

TABLE I. Results of the naive approaches. The third column lists
the result of a simple linear regression of Z(t). r denotes Pearson’s
correlation coefficient of the data. The last column is computed from
the maximal position of the Fourier transform of ζ (t).

μ α λLR r λF

1.0 0.5 0.501 −0.9934 0.352
1.5 0.5 0.526 −0.9950 0.493
1.5 1.0 0.892 −0.9932 0.835
2.0 0.5 0.475 −0.9967 0.462
2.0 1.5 1.466 −0.9963 1.401
2.0 2.0 2.033 −0.9976 2.083

fluctuations are asymptotically Gaussian, despite the Lévy
initial state. We also analyzed a data set with Gaussian initial
distribution and standard deviation equal to 0.1; i.e., α = 2. In
that case, we chose γ = 2. We averaged over 8 192 trajectories
with 32 768 time steps and a total length of T = 32ν−1. At
last, we chose natural units; i.e., ν = K = 1.

A. Finding the equilibrium value

Given some observable, we must first find the equilibrium
value A0. This is very simple and it is done by time averaging
the data from the end to the beginning and finding the time teq

when the signal enters the strip of average value ± standard
deviation. The time average is an estimate to A0:

A0 = 1

T − teq

∫ T

teq

dt 〈|X(t)|γ 〉.

The moments are plotted in Fig. 1, together with the area of
time average and standard deviation. The equilibration time is
indicated as an arrow in the figure.

For further processing we restrict the data to the interval
[0,teq] and may now define

Z(t) = log(|F (t) − A0|) ∝ log(|Aλ|) − λt. (9)

In this representation we can neglect the error coming from
the next exponential term, because

log(Aλe
−λt + Aλ′e−λ′t ) = Z(t) + log

(
1 + Aλ′

Aλ

e−(λ′−λ)t

)

≈ Z(t) + Aλ′

Aλ

e−(λ′−λ)t ,

and the remaining exponential is small for large enough times,
since λ′ − λ > 0. We will refer to Z(t) simply as the signal.

0 4 8 12 16 20 24 28 32
0

0.5

1

1.5

ν−1Time t (units of )

γ
−

th
 M

om
en

t 
〈|

X
(t

)|
γ

〉
 (

K
 / 

ν)
γ

/ 2
(u

ni
ts

 o
f 

)

FIG. 1. Signal and the time-averaged zone. The γ th moment is
plotted against time for different values of α and for μ = 2.0. We take
γ = 0.4 min (α,μ). From top to bottom: (blue) α = 0.5, (green) α =
1.5, (red) α = 2.0. The colored area corresponds to the time average
plus its standard deviation. The equilibration time teq is determined as
the time when the solid curve first enters the colored area, as indicated
by the arrows.
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FIG. 2. Logarithmic signal with linear regression curves. The
logarithmic signal Z(t) is plotted over time; the dotted lines are the
linear regression curves. The slopes are given in Table I, μ is 2.0, α

values from top to bottom: 0.5 (blue), 1.5 (green), and 2.0 (red).
Signals are only plotted up to teq, such that Z(t) remains finite. The
linear fit gives good results in the whole time domain.

B. Asymptotic fitting

In terms of Z(t), the exponential fit becomes a simple
linear regression. In Fig. 2, we show the signal Z(t) and
the exponential fit in a log-linear plot, which demonstrates
that log Z(t) relaxes monotonically and almost linearly from
its initial value to the stationary value A0. Thus, one option
to estimate λmin is a simple linear regression of Z(t). The
corresponding values of α derived by this method are listed in
Table I.

Utilizing another approach proposed in Ref. [16], we can
map the real valued Z(t) onto the complex function,

ζ (t) = exp(iξZ(t)) ∝ exp(iξ log |Aλ| − iξλt), (10)

and we can apply the naive Fourier transform because the
function Eq. (10) has constant unit amplitude and the original
function multiplied by the appropriate constant factor ξ has a
sense of the phase. Here ξ ≈ 20π/|Z(teq) − Z(0)| is chosen in
such a way that there are multiple oscillation over the interval
[Z(0),Z(teq)]. A purely periodic signal should result in a sharp
peak in the Fourier transform, and one can find its maximum
as an estimate for λmin; see Table I.

However, both these procedures have the same weakness:
they do not measure the first relaxation rate, but rather some
average, similar to Ref. [15]. Therefore, we must use a local
technique, like wavelet analysis.

IV. WAVELET-BASED ANALYSIS

In contrast to the situations studied in Ref. [16], the time
dependence of the complexified signal’s phase is not linear in a
general case. Thus, we need to generalize Fourier transform to

a transform providing local spectral analysis, e.g., the wavelet
transform with the Morlet wavelet:

w(a; t) = 1√
2πa2

∫
R

dt ′ ζ (t ′)eiω0
(t ′−t)

a e
− (t ′−t)2

2a2 . (11)

Here ω0 is called the central frequency; the choice ω0 = 2π

enables us to interpret the scale parameter a as the period of
the wavelet.

By direct calculation, it can easily be shown that the
complexified signal from Eq. (10) results in the transform,

w(a; t) = ζ (t)e− (ξλa−ω0)2

2 ,

which implies that the maximum of its absolute value
|w(ã(t); t)| = max|w(a; t)| allows the determination of the
local relaxation rate:

λ(t) = ω0

ξ ã(t)
. (12)

In practical realizations, the transform Eq. (11) can be easily
evaluated by using the convolution theorem. The version,
which operates with a discrete sample, reads as

w(ai ; tj ) = F̂−1
[
F̂ [ζ ](ωl)e

− (ωl ai−ω0)2

2
]
(tj ), (13)

where F̂ and F̂−1 denote the direct and inverse fast Fourier
transforms, respectively.

As an example, we consider the complex function ζ (t) for
μ = 2.0 and α = 1.5. Figure 3(a) shows Z(t) and Fig. 3(b)
shows ζ (t) with ξ = 8π for that case. Both are plotted
until teq to avoid taking logarithms of negative numbers.
One can see that the dynamics of ζ (t) changes from the
regular oscillations with a growing period to extremely slow
dynamics with random phase changes. The latter corre-
spond to the fluctuations of the observable as it enters the
stationary state. In principle, the correct boundary of the

0 0.5 1 1.5 2 2.5 3

−5

0

Z

0 0.5 1 1.5 2 2.5 3
−1

0

1

ζ

t

λ 1

|w(λ
1
,b)|

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

(a)

(b)

(c)

FIG. 3. Logarithmic and complexified signal, and wavelet trans-
form. All data given for μ = 2.0 and α = 1.5. (a) Logarithmic
signal. Vertical dash-dotted lines mark the approximate transition
time points. The solid line (black) corresponds to the linear fit in
t ∈ [0,1], the dashed line (red) is the linear fit in t ∈ [1,2.6]. (b)
Complexified signal in real (blue, full line) and imaginary (red, dashed
line) part. (c) Wavelet transform’s absolute value. It is calculated from
the complexified signal above. Darker regions correspond to larger
absolute value. The dashed curve (yellow) traces the global absolute
value maximum for each moment.
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emerging stationary state could be estimated even from this
picture.

Figure 3(c) shows the absolute value of the continuous
wavelet transform applied to the equidistant sample of the
analyzed function via procedure Eq. (13). The transform
is plotted as an explicit function of the relaxation rate by
using Eq. (12). We can clearly separate three subintervals
with different absolute value maxima trends and find the
corresponding relaxation rates. The first interval starts from
zero and continues to t ≈ 1. Following the absolute values’
maximum, we obtain a rate with a slightly growing time
dependence. Around t ≈ 1 the absolute value’s maximum
transits to the one of the first nonspectral relaxation rate. This
part goes on to approximately t ≈ 2.6. It should be pointed
out that the definite irregularity of the instant relaxation rate
reflects a sensitivity of the continuous wavelet transform to
short-time fluctuations of the observable. It originates from the
Gaussian window in Eq. (11), the width of which is adjusted to
the detected periods: about five individual oscillations fit into
the bell-shaped window. The rest of the interval, where there
are no intensive absolute values maxima, presents fluctuations
around the equilibrium state.

The revealed transition points are used to determine the
intervals for the least mean square fits within the boundaries,
which they define. Such linear fit over t ∈ [0,1] is shown as
the solid line with the slope −λ[0,1] = −1.06. Its absolute
value coincides (with a quite reasonable accuracy) with the
parameter ν in the studied Ornstein-Uhlenbeck process. There-
fore, we can conclude that this first regime of the relaxation
process is completely classical (spectral) one. The fit line
practically undistinguished from the relaxation dependence
up to t = 1 (the correlation coefficient: 0.9996) but further its
inadequacy is quite visible. This bounding value also supports
the explanation as a spectral relaxation since t = ν−1 is the
classical relaxation time for the Ornstein-Uhlenbeck process.
However, since it appears in the short-time limit, it is not
covered in above theory. Our theory is only concerned about
the long-time behavior.

At the same time, the dependence of Z(t) for t > 1
remains linear as well (the correlation coefficient: 0.9967),
but with another slope coefficient. The linear fit within t ∈
[1,2.6] provides the slope value λmin = 1.30, i.e., its absolute
value is sufficiently close to the leading relaxation rate of
the non-spectral mode 1.5, which, as one can see, prevails
within this region. Moreover, comparison of the relaxation
dependence and the last linear fit (dashed straight line) in
Fig. 3(a) demonstrates that the later relaxation process follows
this nonspectral character: the logarithmic observable only
trembles around this linear fit (although with larger, almost
symmetric, deviations).

In conclusion, linear fitting procedures can be suitable
for the determination of λmin. In addition, the wavelet scale
parameter regression of the logarithm of nonstationary excess
part of the observable is preferable if one needs to study in
details the transient process between two regimes such as one
located within the time interval t ∈ [0.6,1].

Here, we analyzed λ(t) just with the bare eyes. A more
quantitative analysis is possible using techniques of change-
point detection [17,18].

V. SUMMARY, DISCUSSION, AND CONCLUSION

We discussed the Lévy-Ornstein-Uhlenbeck process with
respect to its nontrivial property stating that all nonnegative
relaxation rates are admissible, i.e., for broad initial state, such
with power-law tails, “nonspectral” relaxation rates occur that
do not belong to the spectrum of an associated Schrödinger
operator. These rates are visible in the relaxation pattern of
every observable and can be inferred from the pattern. Hence,
given some data F (t), it is possible to test for broad initial state.

The proposed technique of the Ornstein-Uhlenbeck random
process analysis can be summarizes as follows:

(1) First find the equilibration time teq, when F (t) assumes
its equilibrium, by computing time averages from the end of
the data set. teq is the first time, when |F (t) − Feq| < δFeq.

(2) Construct the logarithmic signal Z(t)= log |F (t)−Feq|,
the complexified signal ζ (t) = exp (iξZ(t)) and calculate its
continuous Morlet-wavelet transform w(a; t).

(3) The relaxation rates can be inferred from a linear
regression of Z(t), from the maximum of ζ (t) Fourier spectrum
or locally from the maximal line of the wavelet transform’s
absolute value. If the absolute value of this transform contains
points where sharp transitions occur, then this means that
different (spectral and nonspectral) relaxation processes exist.
The transitions mark boundaries for those regimes. The
relaxation curve for each subinterval can be fitted separately.

Note that we have been concerned with the long-time
behavior of relaxation. It is not surprising that the most
visible manifestation of nonspectral relaxation occurs after
the standard relaxation time ν−1 only.
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APPENDIX: PROPERTIES OF THE FRACTIONAL
FOKKER-PLANCK OPERATOR

Although a general approach to the relaxation properties of
the FFPE (based on the convergence of the Kullback-Leibler
distance) seems possible for the generalized OUP as well, it
is not necessary in our case. All relevant properties can be
shown explicitly, since the solution to Eq. (1) is known in
Fourier domain. We already have shown in the main text that
the stationary state of Eq. (2) is given by

ρ̂eq(k) = e
− K

μν
|k|μ ; (A1)

furthermore, it was shown in Ref. [6], Eq. (11), that the initial
value problem is solved by

ρ̂(k; t) = ρ̂in(ke−νt )

ρ̂eq(ke−νt )
ρ̂eq(k) = ρ̂in(ke−νt )e−|k|μ(1−e−μνt ). (A2)

By taking the limit t → ∞, we immediately see that the
solution converges to the stationary state. The normalization—
which is obtained in Fourier domain by taking k → 0—also
is conserved. In real space, the solution as given by Eq. (A2)
is a convolution of the initial state with the pdf of a μ-stable
random variable. Hence, if the initial state is not oscillating,
i.e., is nonnegative, it will remain like this forever. This shows
all statements of the main text.
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