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Majority-vote model on spatially embedded networks: Crossover from mean-field
to Ising universality classes

C. I. N. Sampaio Filho,1,* T. B. dos Santos,1 A. A. Moreira,1 F. G. B. Moreira,2 and J. S. Andrade Jr.1
1Departamento de Fı́sica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
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We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions
of the majority-vote model taking place on spatially embedded networks. These structures are built from an
underlying regular lattice over which directed long-range connections are randomly added according to the
probability Pij ∼ r−α , where rij is the Manhattan distance between nodes i and j , and the exponent α is a
controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000)]. Our results show that the collective
behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a
decreasing function of the exponent α. Precisely, considering the scaling functions and the critical exponents
calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α � 3 the
critical behavior is described by mean-field exponents, while for α � 4 it belongs to the Ising universality class.
Finally, in the region where the crossover occurs, 3 < α < 4, the critical exponents are dependent on α.

DOI: 10.1103/PhysRevE.93.052101

I. INTRODUCTION

It is a remarkable feature of the theory of critical phenomena
to condense a large range of systems that undergoes a
continuous phase transition in terms of universality classes [1].
Regardless of microscopic details of interactions, critical
exponents are influenced only by fundamental properties
such as symmetries or dimensionality. However, under some
conditions, it is possible to observe a crossover phenomenon
for a given system or model, namely, a change in its
universality class. Examples of crossover phenomena are
known in equilibrium, such as in ferromagnetic systems [2,3],
as well as in nonequilibrium statistical physics [4–9], where
the zeroth law of thermodynamics is not satisfied. In the
present work we analyze a crossover from mean-field to Ising
universality classes in a nonequilibrium model, namely, the
majority-voter model. However, as will be described, these
regimes are separated by a singular region where the critical
exponents change continuously.

It is worth noticing that other models have shown continu-
ous variation of the critical exponents with a given parameter.
Indeed, in equilibrium statistical mechanics, such as in the
continuum percolation problem [10] or in the eight-vertex
model [11], there is a generalization of the ice-type models,
where critical exponents vary continuously. In nonequilibrium
statistical mechanics, the transition from ordinary directed
percolation to tricritical directed percolation occurs with a
continuous variation of the exponents [1]. Moreover, when
scale-free networks are considered, several models, such as
the Ising [12], the sandpile [13], the contact process [14–16],
and epidemiological models [17], all have critical exponents
varying continuously as a function of the exponent controlling
the distribution of connections.

The majority-vote model (MVM) with noise [18,19] is
a nonequilibrium model system, which presents up-down
symmetry and a continuous order-disorder phase transition.

*Corresponding author: cesar@fisica.ufc.br

The nature of the transition and the phase diagram for the
MVM defined on both regular and complex networks have
been extensively investigated, including a significant number
of generalizations [8,20–22]. Besides their own motivation
within the context of nonequilibrium statistical mechanics,
these studies have focused on the area of phase transitions
and critical phenomena to improve our understanding on the
robustness and formation of social consensus [23–27].

In the present study, we perform Monte Carlo simulations
and employ the finite-size scaling theory to obtain the phase
diagram and critical behavior of the the MVM on spatially
embedded networks [28,29], namely, networks constituted of
d-dimensional lattices as substrates over which long-range
connections are randomly added to connect any two sites
according to a probability that depends on the distance between
these sites.

The remainder of the paper is organized as follows. In Sec. II
we describe the main features of the social networking model
proposed by Kleinberg and the majority-vote dynamics used
here to determine the time evolution of the Ising variables
associated with each node of this network. In Sec. III the
results of our simulations are presented and the finite-size
scaling analysis is used to investigate the critical properties of
the model. We conclude in Sec. IV.

II. THE MODEL DEFINITION

In order to study the effects of nonlocal interactions on
the global ordering, we associate one Ising spin variable with
each one of the N sites of a regular lattice and perform
Monte Carlo simulations considering each spin evolving in
time according to the majority-vote dynamics [18,19]. Here
we adopt Kleinberg’s network [28] as a model to insert
long-range couplings between sites in the system. Starting
from a regular d-dimensional lattice each site is connected
with its 2d nearest-neighbor sites. Next, every site i can
receive a directed connection with a site j with probability
Pij ∼ r−α

ij , where rij is the Manhattan distance defined by the
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number of connections separating the nodes i and j in the
underlying regular lattice, α is the parameter that controls
the length of these long-range connections (shortcuts), and the
proportionality factor is calculated for each α considered, in
order to have Pij as a normalized quantity. Since the probability
of long-range connections depends on the distance between
sites, this network is said to be spatially embedded [29]. Here,
we consider a two-dimensional square lattice with periodic
boundary conditions as a substrate over which directed
long-range connections are added [30,31]. However, other
studies [12,24,32] have shown that models with directed and
undirected links tend to have different behavior.

Previous studies have shown that the MVM model on
regular lattices undergoes a typical order-disorder phase
transition at the stationary state [18,19]. Its dynamics is
governed by the probabilities p to attribute to a randomly
chosen spin the same state of the majority of its neighbors,
and q = 1 − p the opposite state. Moreover, in the case of
a tie, each state is chosen at random with equal probability.
Therefore, the control parameter α and the probability q define
the parameter space for the phase diagram of the MVM on
Kleinberg’s network. The critical noise approaches a limiting
value as α → ∞, but due to the extra connections, remains
above the value for a regular square lattice, qc = 0.075(1) [19].

The MVM is microscopically irreversible, i.e., its stationary
state does not satisfy detailed balance, and presents up-down
symmetry. The former property implies that we are dealing
with a nonequilibrium system in which neither energy nor
temperature are defined, whereas the existence of up-down
symmetry would ensure the Ising universality class for the
MVM on regular lattices. Remarkably, we show here that the
addition of nonlocal interactions, via Kleinberg’s prescription,
modifies this scenario. Indeed, our results show that the
universality class of the majority-vote model on these networks
does depend on the range of the control parameter α.

In order to study the effect of the noise parameter q

and the control parameter α on the phase diagram and
critical behavior of the majority-vote model, we consider
the magnetization MN , the susceptibility χN , and the Binder
fourth-order cumulant UN , which are defined by

MN (q) = 〈〈m〉time〉sample, (1)

χN (q) = N [〈〈m2〉time − 〈m〉2
time〉sample], (2)

UN (q) = 1 −
〈 〈m4〉time

3〈m2〉2
time

〉
sample

, (3)

where N is the number of spins in the system and
m = |∑N

i=1 σi |/N . The symbols 〈· · · 〉time and 〈· · · 〉sample,
respectively, denote time averages taken at the station-
ary state and configurational averages taken over several
samples. For a fixed value of α, we have performed
Monte Carlo simulations on Kleinberg’s networks with N =
2500,10 000,22 500,40 000,90 000,250 000. Time in our sim-
ulations is measured in Monte Carlo steps (MCS). More
precisely, one Monte Carlo step is accomplished when we
choose randomly N spins and try to flip each one with the

probability rate

w(σi) = 1

2

[
1 − (1 − 2q)σiS

(∑
δ

σi+δ

)]
, (4)

where the summation is over all spins connected with the
chosen spin σi , and S(x) = sgn(x) if x �= 0 and S(0) = 0
otherwise. We wait 105 MCS for the system to reach the steady
state and the time averages are calculated based on the next
105 MCS. At the critical region, larger runs are performed with
2 × 105 MCS to reach the steady state and 106 for computing
time averages. For all sets of parameters (q,α), at least 100
independent samples are considered in the calculation of
the configurational averages. Moreover, the simulations were
performed using different initial spin configurations.

III. RESULTS AND DISCUSSION

In the thermodynamic limit (N → ∞), we expect the
system to show nonzero magnetization only below the critical
noise qc(α). In Fig. 1 we show the phase diagram of the MVM
on Kleinberg’s networks. For each value of the parameter α,
the critical value qc(α) is obtained by calculating the Binder
fourth-order cumulant UN (q), Eq. (3), as a function of the
noise parameter q, considering networks with different number
of nodes N . For sufficiently large system sizes, these curves
intercept each other at a single point U (qc). Since the Binder
cumulant has zero anomalous dimensions [33], the resulting
value of the critical parameter qc(α) is independent of N . As
depicted, the phase diagram in the α vs q parameter space of
Fig. 1 shows that the critical noise qc decreases monotonically
with the control parameter α. This reflects the fact that larger
values of α result in lower densities of long-range links
(shortcuts), and vice versa. For α > 6, the curve for qc(α)
presents an asymptotic behavior (dashed line) to the value qc =
0.075(1) which corresponds to the critical point of the regular
square lattice [19]. In fact, in the limit α → ∞ we recover the
topology of a square lattice and therefore the majority-vote
model is described by the 2D Ising universality class [8,19,22].
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FIG. 1. Phase diagram for the majority-vote model on Klein-
berg’s networks. The critical parameter qc decreases monotonically
with the control parameter α. The critical values remain always above
the value for the regular square lattice qc = 0.075 [19] (dashed line).
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FIG. 2. Binder’s cumulant calculated at the critical noise qc. The
bottom (red) dotted line corresponds to the mean-field value (U ∗ =
0.2705208) [37] and the upper (blue) dashed line to the limit for the
2D Ising universality U ∗ = 0.61069014(1) [22,38]. For some data
points the error bars are smaller than the symbols. A minimum of
U (qc) at α = 2 is reminiscent of the optimal navigation condition
with local knowledge [28]. The 2D Ising regime is recovered for
α � 4.

For α = 0, however, the system is described by the mean-field
theory [4,12,34], since for this value of the control parameter
the probability of adding a shortcut is the same for all pairs of
sites and independent of their distances [28,35,36]. Our next
results characterize this crossover [4,5] from the mean-field to
the 2D Ising universality class.

In general, some dependency of the critical noise value
on the control parameter α should be expected since critical
points (for example, critical temperatures [32] and critical rates
of surviving [39]) are not universal properties. Nevertheless,
it is remarkable that the value of the Binder cumulant at
the critical noise also depends on α, as shown in Fig. 2.
For each value of the parameter α considered, we determine
U ∗ (open circles) as the intersection point of the set of
curves of the Binder cumulant [UN (q)]. Indeed, for systems
with the same symmetry of the Ising model in the regime
of short-range interactions, the Binder cumulant takes the
value U ∗ = 0.61069014(1), considering square lattices with
periodic boundary condition [38,40–43]. For the case of
the majority-vote model on the same topology, the same
value for the critical Binder cumulant was found [22]. In
the mean-field regime, one has the reference value U ∗ =
0.2705208 [3,37,41,44,45]. Both the mean-field and Ising
limits are represented by dashed lines in Fig. 2. The value of the
Binder cumulant at the critical point has a minimum when the
parameter α is assigned to the dimensionality of the underlying
square lattice, α = 2. Moreover, in the range 0 < α < 3, the α-
dependent values for the critical cumulant are all located below
the mean-field line. This is a rather unusual behavior, since the
lower bound for U ∗ normally corresponds to the mean-field
value. Curiously, in the framework of Kleinberg’s prescription,
at α = d, the navigation time has a minimum [28], while the
Laplacian transport displays a maximum conductance [46].
The 2D Ising behavior is observed only for α � 4. The results
shown in Fig. 2 suggest a crossover between the mean-field and

the 2D Ising universality classes as one varies the parameter α.
To investigate the critical behavior of the model, we analyze
the finite-size scaling behavior of the system, which allows
us to extrapolate the information available from finite-system
simulations to the thermodynamic limit. Near the critical point,
the finite-size scaling equations for the observables considered
here are

MN (q) ∼ N−β/νM̃(εN1/ν), (5)

χN (q) ∼ Nγ/νχ̃ (εN1/ν), (6)

UN (q) ∼ Ũ (εN1/ν), (7)

where ε = (q − qc) is the distance from the critical noise.
The exponents β, γ , and ν are, respectively, associated
with the decay of the order parameter MN (q), the divergence of
the susceptibility χN (q), and the divergence of the correlation
volume (ξ ∼ ε−ν). Their exact values for the Ising universality
class are β = 1/8, γ = 7/4, and ν = 2, whereas the mean-
field exponents are β = 1/2, γ = 1, and ν = 2 [1]. Notice
that we are using N in the definition of the scaling variable
x = εN1/ν , where ν = dν [8].

To determine how the parameter α affects the critical
behavior of the model, we have explored the dependence of
the magnetization and the susceptibility on the system size
N at q = qc, by considering the finite-size scaling relations
Eqs. (5) and (6). From this analysis, we are able to estimate
the exponents β/ν and γ /ν. Moreover, the correlation length
exponent ν can be obtained applying the same analysis, but
now from the derivative of Binder’s cumulant with respect
to the noise parameter. For the susceptibility, this analysis is
illustrated in Fig. 3 considering four values of the parameter
α. The results for the critical points and the critical exponents,
obtained from simulations with several values of α, are
summarized in Table I and Fig. 4. Within the error bars,
we can conclude that, for 0 � α � 3, the critical exponents
are consistent with those of the mean-field critical behavior,
whereas for α > 4 we get 2D Ising exponents. In the range 3 <

α < 4, we obtain α-dependent exponents, so that the critical

3.5 4.0 4.5 5.0 5.5
log10 N
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α = 3.8
α = 3.2
α = 3.0

FIG. 3. Logarithmic plot showing the finite-size scaling for
the critical susceptibility with α = 3.0 (circles), 3.2 (squares), 3.8
(triangles), and 4.0 (stars). The solid lines represent the least-squares
fits to data, whose slopes correspond to the exponent γ /ν (see Table I).
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TABLE I. Results for the critical noise qc and critical exponents
β/ν and γ /ν of the majority-vote model on Kleinberg’s network for
different values of the parameter α. The mean-field values are β/ν =
0.250 and γ /ν = 0.500, while the exponents for the two-dimensional
Ising model are β/ν = 0.0625 and γ /ν = 0.875 [1,19].

α qc β/ν γ /ν

0.0 0.1998 ± 0.0001 0.253 ± 0.032 0.490 ± 0.055
1.0 0.1997 ± 0.0002 0.25 ± 0.040 0.505 ± 0.055
2.0 0.1892 ± 0.0001 0.250 ± 0.063 0.480 ± 0.060
2.3 0.1754 ± 0.0004 0.249 ± 0.032 0.535 ± 0.071
2.5 0.1650 ± 0.0009 0.260 ± 0.080 0.480 ± 0.063
2.8 0.1464 ± 0.0007 0.251 ± 0.055 0.500 ± 0.063
3.0 0.1350 ± 0.0003 0.256 ± 0.055 0.533 ± 0.050
3.2 0.1235 ± 0.0003 0.134 ± 0.060 0.710 ± 0.070
3.5 0.1097 ± 0.0010 0.110 ± 0.060 0.815 ± 0.032
3.8 0.1005 ± 0.0001 0.069 ± 0.044 0.850 ± 0.055
4.0 0.0963 ± 0.0005 0.066 ± 0.041 0.870 ± 0.060
5.0 0.0820 ± 0.0003 0.064 ± 0.040 0.873 ± 0.065

behavior of the majority-vote model is described neither by
mean-field nor by Ising universality classes. This continuous
variation of the critical exponents with α is consistent with
the observed effective dimensionality in spatially embedded
networks [29].

In order to accurately determine the exponents and the
nature of the continuous phase transition, we now consider
the data collapse of the results from our simulations with
different system sizes N for a fixed value of α. These data
collapses reflect [see Eqs. (5) and (6)] the existence of universal
functions for the rescaled magnetization M̃(x) = MN (q)Nβ/ν

and for the rescaled susceptibility χ̃(x) = χN (q)N−γ /ν , with
both depending only on the scaling variable x = εN1/ν . The
universal curves shown in Fig. 5 for the order parameter
(magnetization) reveal the presence of two regimes. In Fig. 5(a)
the resulting data collapse is compatible with mean-field
critical behavior; that is, the universal function for α = 3 is
consistent with mean-field exponents: β = 1/2, γ = 1, and
ν = 2. The same set of exponents was considered to obtain
data collapses of excellent quality for other values of α < 3.
However, the data collapse for α = 4 shown in Fig. 5(b) is

α

FIG. 4. The dependence of the critical exponents β/ν and γ /ν

on the parameter α (see Table I). Here, ν = 2 for all values of α.
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FIG. 5. Data collapse for the magnetization for system
sizes N = 10 000 (circles), 22 500 (stars), 40 000 (rectangles),
62 500 (triangles), and 90 000 (diamonds). (a) The universal curve
for α = 3 is consistent with mean-field exponents: β = 1/2, γ = 1,
ν = 2. (b) For α = 4, the data collapse is obtained using Ising
exponents: β = 1/8, γ = 7/4, ν = 2.

consistent with 2D Ising exponents. Satisfactory data collapse
was also obtained for the susceptibility and Binder’s cumulant
(not shown).

Figure 6 shows the data collapse for the critical am-
plitude [4,8] of the susceptibility as a function of the
parameter α, considering four values of system sizes N =
10 000,40 000,62 500, and 90 000. More precisely, we plot
the rescaled susceptibility, χN (qc)N−γ /ν , using the set of
calculated exponents, namely, mean-field exponents for α < 3,
α-dependent exponents for 3 < α < 4, and 2D Ising exponents
for α > 4. As can be seen, the results shown in Fig. 6 give
support to our conjecture, highlighting the singular region,
characterized by nonuniversal exponents. Moreover, α = 2 is
not associated with the lowest limit for the critical amplitude
of the susceptibility, differently from the critical amplitude of
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FIG. 6. Data collapse for the susceptibility at the critical point as
a function of α. The exponents used are those from our conjecture:
for α � 3, γ /ν = 0.5 (mean field), for 3 < α < 4 the exponents are
α-dependent (see Table I), and for α � 4, γ /ν = 0.875 (2D Ising).
Notice that the maximum of the fluctuations occurs at α = 3.
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Binder’s cumulant. However, an upper limit can be observed
for α = 3 in the fluctuations of the order parameter.

IV. CONCLUSIONS

In this work, the effects of nonlocal interactions on the phase
diagram and critical behavior of the majority-vote model on
Kleinberg’s networks are determined by Monte Carlo simula-
tions and finite-size scaling analysis. The model is defined in
terms of the noise parameter q associated with the resistance
for accepting the majority state and the control parameter α

for the addition of long-range connections (shortcuts). The
resulting phase diagram in the α vs q parameter space indicates
that the critical noise, qc(α), above which the system does
not display global order (consensus) decreases with α. The
Binder cumulant calculated at the critical noise, whose value
has been usually considered as indicative of a given class of
universality, yields results below the mean-field line as α varies
in the interval 0 < α < 3, where a minimum occurs at α = 2.

Nevertheless, for the entire region 0 � α � 3 the obtained set
of critical exponents is consistent with mean-field behavior. On
the other hand, for α � 4, the calculated values of the critical
Binder’s cumulant and critical exponents are both indicative of
a system that belongs to the two-dimensional Ising universality
class.

Finally, in the region 3 < α < 4, a continuum crossover
can be observed from the mean-field to the 2D-Ising critical
behaviors, which suggests that the majority-vote model on
Kleinberg networks is described by α-dependent exponents.
Indeed, this is not a strange result, since the universality class of
a system is determined by its symmetries and dimensionality,
which here are parametrized by the exponent α.
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[4] S. Lübeck, Phys. Rev. Lett. 90, 210601 (2003).
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