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Momentum and heat transport scalings in laminar vertical convection
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We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number
Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two
differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling
regimes: Nu ∼ Pr1/4 Ra1/4, Re ∼ Pr−1/2 Ra1/2 for Pr � 1 and Nu ∼ Pr0 Ra1/4, Re ∼ Pr−1 Ra1/2 for Pr � 1. These
theoretical results are in excellent agreement with direct numerical simulations for Ra from 105 to 1010 and Pr
from 10−2 to 30. The transition between the regimes takes place for Pr around 10−1.
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Thermally driven flows are ubiquitous in nature. The
classically paradigmatic systems for studying such flows are
Rayleigh-Bénard convection (RBC) [1–7], where a fluid is
confined between a heated bottom plate and a cooled top
plate, horizontal convection (HC) [8–10], where the fluid is
heated at one part of the bottom plate and cooled at some
other part, and vertical convection (VC), where the fluid is
confined between two differently heated isothermal vertical
walls [11–13]. The different boundary conditions (BCs) and
convection cell geometries are known to significantly influence
the mean convective heat and momentum transport [14–17],
measured by the Nusselt number (Nu) and Reynolds number
(Re), respectively.

In VC, as in RBC, the mean characteristics of the flow
are determined by the Rayleigh number Ra ≡ αg�H 3/(κν),
the Prandtl number Pr ≡ ν/κ , and the cell geometry. Here, ν

denotes the kinematic viscosity, κ the thermal diffusivity, α

the isobaric thermal expansion coefficient of the fluid, g the
acceleration due to gravity, H the diameter of the plates (in VC)
or distance between the plates (in RBC), and � ≡ T+ − T− >

0, with T+ and T− the temperature of, respectively, the heated
and cooled plates.

How Re and Nu scale with Ra and Pr is one of the main
issues in the study of thermally driven flows. For RBC, where
the time- and volume-averaged kinetic dissipation rate (εu)
and thermal dissipation rate (εθ ) are exactly expressed in
terms of Ra, Nu, and fluid properties, Grossmann and Lohse
developed a scaling theory (GL) [18,19], which is based on
a decomposition of εu and εθ into their boundary-layer (BL)
and bulk contributions and their further analysis. The theory
successfully predicts heat transport in RBC [1,20] and is also
applicable to HC [10]. In contrast to RBC, in VC, the exact
relation for εu generally does not hold, which impedes the
applicability of GL to predict the scalings in VC.

Previous experimental and numerical studies of VC report
the scaling exponent β in the power law Nu ∼ Raβ , varying
from 1/4 to 1/3. In laminar VC it is about 1/4 [21–24],
being slightly larger for very small Ra, where the geometrical
cell confinement influences the heat transport [11,13,25,26],
and for very large Ra, where the VC flows become fully
turbulent [27,28]. The dependences of Nu on Pr and of Re
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on Ra and Pr in VC have been less investigated. For similar
cell geometry and ranges of Ra and Pr, the heat transport in
VC (from vertical surfaces) generally differs from that in RBC
(from horizontal surfaces) [11,29–33]. Furthermore, for the
same Ra, Pr, and cell geometry, the VC and RBC flows can be
in different states. For example, for Pr = 1, Ra = 108, and a
cylindrical container of aspect ratio 1, the VC flow is steady,
while the RBC flow is turbulent, as has been shown in direct
numerical simulations (DNS), where the inclination angle of
the cell varied from 0 (RBC) to π/2 (VC) [12].

In this Rapid Communication we derive the dependences of
Re and Nu on Ra and Pr in laminar VC, based on an analysis of
the BL equations. The theoretical scalings of Nu and Re with
Ra are supported by the DNS of VC in a cylindrical container
of equal height and diameter, for Pr = 0.1, 1, and 10 in the
range 105 � Ra � 1010, while the scalings of Nu and Re with
Pr are supported by the DNS for Ra = 106 and 107 in the
range 10−2 � Pr � 30 (Fig. 1). We show that the theoretical
predictions are in excellent agreement with the DNS results
(Fig. 3).

Following Ostrach [34], we consider a fluid flow along a
vertical heated plate and set up the coordinate system so that the
x direction is along the plate and the z direction is horizontal
away from the plate. We assume that the mean flow in the other
horizontal direction is much weaker than that in x or z and,
therefore, consider a two-dimensional flow that depends on x

and z only. Under the standard BL approximation we obtain
the BL equations (1)–(3) with BCs (4) and (5) for fluid motion
near a hot vertical plate,

ux∂xux + uz∂zux = ν∂2
z ux + αg(T − T0), (1)

ux∂xT + uz∂zT = κ∂2
z T , (2)

∂xux + ∂zuz = 0, (3)

ux(x,0) = uz(x,0) = 0, T (x,0) = T+, (4)

ux(x,∞) = 0, T (x,∞) = T0, (5)

where (ux,uz) is the velocity vector in the coordinates (x,z)
and T denotes the temperature, T0 = (T+ + T−)/2.

Note that in the case when the heated plate is placed
horizontally, as in RBC, the last term in (1) is absent, since
the buoyancy is orthogonal to the plate, and in the BCs
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FIG. 1. (a) Sketch of the conducted DNS of VC in a cylindrical cell filled with a fluid of Pr = 0.1 (dotted circle), Pr = 1 (upward triangle),
Pr = 10 (dotted square), and Ra = 106 (dotted diamond), Ra = 107 (downward triangle), in a (Ra,Pr) plane. (b) Eight isosufaces of the
instantaneous temperature T , as obtained in the DNS for Pr = 1 and Ra = 108. The left vertical wall of the container is heated (T = T+), while
the right vertical wall is cooled (T = T−); the other walls are adiabatic.

ux(x,∞) = U �= 0 is assumed, where U is the flow velocity
above the plate, i.e., the so-called wind outside the BL. The
resulting BL momentum equation (1) without a buoyancy
term was first derived by Prandtl [35,36] and solved by
Blasius [37] for a constant flow above an infinite horizontal
plate, while Eq. (2) was obtained first by Pohlhausen [38]. For a
generalization of this approach to a nonconstant wind above the
horizontal plate (or to a nonvanishing pressure gradient within
the BL), we refer to Refs. [39,40], and for a generalization due
to the influence of the fluctuations within the BL, we refer to
Ref. [6].

In the case of a vertical heated plate, as in VC, a buoyancy
term is present in (1). Considering a similarity variable
η ∝ z x−1/4 and stream function � ∝ x3/4F (η), Ostrach [34]
showed that for a similarity solution to exist, Nu must scale as
∼Ra1/4, where the proportionality coefficient depends on Pr
and F (η) is a function of η. Numerical solutions [34] of the
resulting BL equations for particular Pr were found to be in
good agreement with measurements of Nu at the vertical hot
plate for laminar flows in air [21], oil [22], and mercury [23].

Below we advance the approach [34] in such a way that it
allows us to find the Nu and Re scalings with respect to Ra and
Pr in laminar VC. The idea of the method is the following. Let
us consider the similarity variable ξ , stream function �, and
temperature T in the forms

ξ = Pra Rab(z/H )(x/H )c, (6)

� = Prd Rae ν(x/H )f φ(ξ ), ux = ∂z�, uz = −∂x�, (7)

T = T0 + (T+ − T0)θ (ξ ) = T0 + (�/2)θ (ξ ). (8)

If there exist certain constants a, b, c, d, e, and f such that the
resulting BL equations for VC depend exclusively on ξ , φ(ξ ),
and θ (ξ ), and do not depend explicitly on Pr and Ra (as well
as their BCs), then θξ (0) is independent of Ra and Pr. (Here
the subscript ξ denotes the derivative with respect to ξ .) In this
case, the Nusselt number

Nu ≡ −H−1
∫ H

0 κ∂zT |z=0 dx

κ�/H
= −θξ (0)

2(c + 1)
Pra Rab, (9)

scales as ∼Pra Rab. Analogously one can derive the scaling of
the Reynolds number, which is defined on the maximal mean
velocity along the heated plate, i.e.,

Re ≡ UH/ν, U ≡ max
z

H−1
∫ H

0
ux dx. (10)

FIG. 2. (a), (c) Ra dependences and (b), (d) Pr dependences of (a),
(b) the mean thermal dissipation rate εθ and (c), (d) the mean kinetic
dissipation rate εu, as obtained in the DNS of VC for (a), (c) Pr = 0.1
(dotted circle), Pr = 1 (upward triangle), Pr = 10 (dotted square),
and for (b), (d) Ra = 106 (dotted diamond) and Ra = 107 (downward
triangle). Dashed lines in (c) show the corresponding exact values for
RBC.
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FIG. 3. (a), (c) Ra dependences and (b), (d) Pr dependences of (a), (b) the Nusselt number and (c), (d) the Reynolds number, as obtained in
the DNS of VC for (a), (c) Pr = 0.1 (dotted circle), Pr = 1 (upward triangle), Pr = 10 (dotted square), and for (b), (d) Ra = 106 (dotted diamond)
and Ra = 107 (downward triangle). For laminar vertical convection the simulations support the scalings Nu ∼ Pr1/4 Ra1/4, Re ∼ Pr−1/2 Ra1/2

for small Pr [Eq. (22)], and Nu ∼ Pr0 Ra1/4, Re ∼ Pr−1 Ra1/2 for large Pr [Eq. (20)]. There is a transition from one scaling regime to another at
Pr ≈ 0.1.

Indeed, the vertical velocity equals

ux = ∂z� = Pra+d Rab+e(ν/H )(x/H )c+f φξ (11)

and its maximum is achieved at a certain value of ξ = ξ̂ , where
φξξ (ξ̂ ) = 0. From (10) and (11) we obtain

Re = Pra+d Rab+e(c + f + 1)−1φξ

(
ξ̂
)
. (12)

Thus, Re ∼ Pra+d Rab+e if there exist constants a, b, c, d, e,
and f such that the BL equations for φ(ξ ) (7) and θ (ξ ) (8) and
their BCs are independent of Pr and Ra.

From (4) and (5) and (6)–(8) we obtain that the BCs for
φ and θ are indeed independent of Pr and Ra, i.e., φ(0) =
φξ (0) = 0, φξ (∞) = 0, and θ (0) = 1, θ (∞) = 0. To find the
desired constants a, b, c, d, e, and f , we substitute (6)–(8)
into (1) and (2) and require the independence of the resulting
BL equations from Pr and Ra. Thus, the substitution into the
energy equation (2) leads to

θξξ + f Prd−a+1 Rae−b(x/H )f −c−1φ θξ = 0, (13)

and, hence, the constants are related as follows:

d = a − 1, e = b, f = c + 1. (14)

The energy equation (13) is then reduced to

θξξ + (c + 1)φ θξ = 0. (15)

Using (6)–(8) and (14), from (1) we obtain

Pr4a φξξξ + Pr4a−1[(c + 1)φφξξ − (2c + 1)(φξ )2]

−Ra1−4b(x/H )−4c−1θ/2 = 0. (16)

For the independence of the momentum equation (16) from
Ra and for the existence of the similarity solution with respect

to ξ , the constants b and c must be equal to

b = 1/4, c = −1/4, (17)

and, therefore, (16) is reduced to

4 Pr4a φξξξ + Pr4a−1[3φφξξ − 2(φξ )2] − 2θ = 0. (18)

For Pr � 1 the first term in (18) dominates the second one,
therefore a must be taken equal to 0 and the second term in (18)
is negligible in this case. Thus, for Pr � 1,

a = 0, b = 1
4 , c = − 1

4 , d = −1, e = 1
4 , f = 3

4 ,

(19)

and Nu (9) and Re (12) scale with Pr and Ra as

Nu ∼ Pr0 Ra1/4, Re ∼ Pr−1 Ra1/2, for Pr � 1. (20)

For Pr � 1, the first term in (18) is negligible and a = 1/4.
In this case,

a = 1
4 , b = 1

4 , c = − 1
4 , d = − 3

4 , e = 1
4 , f = 3

4 ,

(21)

and the corresponding scalings are

Nu ∼ Pr1/4 Ra1/4, Re ∼ Pr−1/2 Ra1/2, for Pr � 1. (22)

To check whether the scalings (20) and (22) hold in laminar
VC for, respectively, large and small Pr, a set of simulations
was conducted (Fig. 1). The code used was GOLDFISH, as in
Refs. [6,12], and the mesh resolution requirements of Ref. [41]
were fulfilled. The number of computational grid nodes ranges
from 2.4 × 106 for Ra = 105 to 1.5 × 108 for Ra = 1010,
which correspond to the grids 96 × 128 × 192 and 384 ×
512 × 768 in cylindrical coordinates (r,ϕ,z), respectively.
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In VC, as in RBC, the exact relation H 2/(κ�2) εθ = Nu
always holds [Figs. 2(a) and 2(b)]. In contrast, the values
of (H 4/ν3)(Nu − 1)−1 Ra−1εu are always smaller than the
corresponding values in RBC (i.e., Pr−2) [Fig. 2(c)]. For small
Pr, this quantity gradually decreases as ∼Ra−0.06 with growing
Ra [Fig. 2(c)], although its proportionality to Pr−2 still holds
[Fig. 2(d)].

The here derived scalings (20) and (22) are fully supported
by the simulations, as one can see in Fig. 3. In all studied cases
Nu ∼ Ra1/4 [Fig. 3(a)] and Re ∼ Ra1/2 [Fig. 3(c)]. A slightly
faster growth of Nu with Ra is obtained for Ra � 106, where
the geometrical confinement of the convection cell influences
the heat and mass transport. A similar increase of the scaling
exponent for small Ra was found also in Refs. [11,13,25,26].
For small Pr the heat flux scales with Pr as Nu ∼ Pr1/4, while
for large Pr the Nusselt number is independent of Pr [Fig. 3(b)].
The Reynolds number scales as Re ∼ Pr−1/2 for small Pr

and as Re ∼ Pr−1 for large Pr [Fig. 3(d)]. The transition
from one regime to another takes place for Pr on the order
of 10−1.

In summary, a slight advancement of the Prandtl ap-
proach [35] to study laminar BLs allowed us to derive the
scalings of Nu and Re with Ra and Pr in laminar VC. The
simulation results for VC in a cylindrical convection cell with
equal height and diameter, for Ra from 105 to 1010 and Pr from
10−2 to 30, are in excellent agreement with the theoretical
predictions.
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