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Diffusion of a nanowire rod through an obstacle field
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We report the experimental realization of a rod diffusing in a two-dimensional obstacle field following the
single rod dynamics. We use a silver nanowire as our rod and two types of obstacles: repelling light beams and
polymer pillars. We study the effect of hydrodynamic interactions on the transport of the rod, comparing both
experimental realizations and recent simulations. We propose a framework for analyzing the transport through
such systems, and we predict a new superdiffusive regime of rod transport at high obstacle concentration and
short times.
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A rodlike particle moving between randomly and uniformly
distributed obstacles on a plane is a toy model studied
in relation to physical situations of diffusion in crowded
environments. Examples of such systems include diffusion in
polymer melts [1] and dense liquid-crystal suspensions [2–4],
diffusion of viruses in cell membranes [5], and diffusion in
porous media. The rich and surprising dynamics emerging
from the elongated nature of the diffusive particles renders this
model interesting also from the perspective of transport theory.
For example, at low densities the center-of-mass diffusion
decreases with obstacle density, as expected from Enskog
theory [6] for spheres. However, above a certain threshold, this
trend is reversed and the diffusion coefficient increases with
obstacle density. This behavior was predicted theoretically
by kinetic theory [7] and demonstrated in simulations [8–10]
assuming the rod moves ballistically between collisions with
obstacles. The increase in diffusion coefficient was predicted
to follow a power law of

√
n, where n is the obstacle density. In

simulations, powers between 0.3 and 0.8 were reported [9,10].
The aforementioned results apply to an infinitely thin rod,
pointlike obstacles, and motion in two dimensions. If the rod
thickness is finite, a new confinement regime [10] appears, and
if the rod is allowed to move in three dimensions, the enhanced
diffusion regime disappears [11].

The entire density dependence of the rod center-of-mass
diffusion coefficient, Dcm, changes if the underlying motion of
the rod between collisions is Brownian instead of ballistic [12].
In this case, Dcm is constant at very low densities and
decreases to a lower constant at high densities. The diffusion
of a rod at high obstacle densities, both in the case of
underlying ballistic motion and diffusive motion, is unique
for elongated particles. Experimental works on this subject
have been few so far, focusing on the motion of elongated
objects in dense suspensions rather than through fixed obstacle
fields [2,3,13,14]. Recently, a three-dimensional (3D) study of
the movement of carbon nanotubes in porous agarose was
reported focusing on the effect of rod flexibility [15].

Here we present measurements of single rod dynamics in
a static obstacle field. We focus on the short-time diffusion
of rods and characterize the obstacle density effect on their
transport in two different experimental realizations: one with
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polymer obstacles and one with virtual optical obstacles. We
then apply external driving on the rods to induce ballistic-like
characteristics to the otherwise Brownian motion of the rods,
and finally we introduce an analysis approach that highlights
the effect of the underlying motion type (ballistic or Brownian)
on the transport of rods in such systems.

Our samples consist of silver nanowires (nanostructured
and amorphous materials, AgNw, diameter b ∼ 386 ± 48 nm,
length L ∼ 5–30 μm) dispersed in deionized water. A drop
of the nanowires suspension is placed between a slide and
a cover slip, both passivated with 10 wt % solution of BSA
(bovine serum albumin) to prevent the nanowires from sticking
to the surfaces. Our sample chamber is approximately 40 μm
high, and the obstacle effective height is h ∼ 2 μm (for
both types of obstacles [16]). The relatively dense silver rods
sediment to the bottom of the sample chamber, effectively
diffusing in two dimensions. We use two methods to create
randomly positioned obstacles (Fig. 1). The first technique
is to decorate the sample floor with polymer pillars (SU8
2002 MicroChem, height and diameter ∼2 μm) using standard
photolithography. The second technique uses holographic
optical tweezers (HOTs) [17–20] to create a random array of
focused light beams. The light from the beams is reflected
by the rods repelling them by momentum transfer with a
force in the range of tens of fN [16]. Additional experiments
were performed with external driving of the rods. Flow was
created by moving the sample (i.e., by automated motion of
the microscope stage) relative to the optical scatterers array,
with constant velocity.

Our HOTs are based on a Coherent Verdi laser (λ = 532 nm,
6 W) and a Hamamatsu (LCOS X10468-04) liquid-crystal
spatial light modulator to create our soft optical scatterers [21].
Imaging takes place in an inverted microscope (Olympus
IX71) in reflection mode using a charge-coupled device
(CCD) camera (Grasshopper3, PointGrey). A single objective
(Olympus, 100× oil immersion NA = 1.4) is used both for
imaging and focusing of the laser light into the sample plane.
The experiments in the polymer pillar configuration were
performed on the same imaging system.

A random arrangement of obstacles, at various densities,
was drawn from a random distribution. A minimum distance
was enforced to ensure an approximately uniform density. The
obstacles’ coordinates were then used both to create a pho-
tolithography mask for the polymer pillar array experiments
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FIG. 1. Two experimental realizations of a rod diffusing in an
obstacle field. A silver nanowire suspended in water is subjected to
(a) a random field of repelling focused laser beams, and (b) an array
of randomly positioned polymer pillars.

and to create the holograms for the optical arrays. Holograms
were calculated using the direct search algorithm [19]. The
experiments consisted of taking videos (at 10 Hz) of the
movement of the rods between the different obstacle arrays.
In addition, videos of freely diffusing rods were taken for
reference. Rod position and orientation were extracted from
each image by a sequential process of thresholding, identi-
fying closed regions, and extracting their properties (center
of mass, orientation, and length). Consequently, a tracking
algorithm [22] was used to identify single rod trajectories.
Trajectories were usually 10–30 min long. Only relatively long
wires (L � 5 μm) that retain their 2D motion were followed,
while trajectories of shorter wires, which tend to move in three
dimensions, were not used for calculations.

We start by characterizing the quasi-2D diffusion of
free rods close to the sample floor (similarly to [23–25]).
Toward that end, we calculate the time-averaged mean-squared
displacement (MSD) for each rod, from which we extract
the following three diffusion coefficients: rotational Dr ,
longitudinal D‖, and transverse D⊥ (Fig. 2 [16]).

Our results agree well with theory [26], allowing us to
extract three different measurements of the effective viscosity
of the solvent in the vicinity of the sample floor: η

‖
s =

0.984 ± 0.055 mPa s, η⊥
s = 0.858 ± 0.055 mPa s, and ηr

s =
3.0 ± 0.09 mPa s. In an unbound fluid, we would expect
ηs = 0.955 mPa s, which is in accord with our results for D‖
and D⊥. Surprisingly, the viscosity extracted from Dr is much
larger. A similar effect was reported previously for short actin
rods diffusing in two dimensions [24]. We find the average ratio
D‖/D⊥ = 1.97 ± 0.09 in accord with the predicted value of 2.

FIG. 2. The diffusion coefficient of a freely moving rod as a
function of rod length L, (a) translational diffusion coefficients,
D‖,D⊥, and (b) rotational diffusion coefficient Dr . Fits to theory [26]
with friction coefficient γ = 0.8 (dashed line). Inset: a typical
trajectory of a free rod.

FIG. 3. Log-log MSD graphs for the trajectories of nanowires
15 μm long diffusing through an optical obstacle field array in three
conditions: (a) no flow, n∗ ∼ 3; (b) flow, 0.2 μ m/s, n∗ ∼ 5.3; and
(c) flow, 0.2 μm/s, n∗ ∼ 3. The slopes of the graphs are (from
bottom to top) 1.4, 1.8, and 1.9. Right: center-of-mass trajectories
of nanowires at these three conditions.

Having established the diffusion properties of the free rods,
we proceed to analyze the short-time diffusion of rods moving
in an obstacle field (Fig. 3), with and without external driving.

For the case of no external flow, we plot the diffusion
coefficients normalized by the theoretical values for free rods
(Fig. 4 [16]). To compare diffusion of rods of different length
and different realizations of obstacle fields, we normalized the
obstacle density by the length of the rod, n∗ = nL2 = (L/ε)2.
The results from the optical scatterers setup [Fig. 4(a)] show
that D⊥ and Dr decrease with density while D‖ remains fairly
constant, confirming previous simulation results [12].

The polymer pillar setup allows for measurements with a
larger range of normalized densities up to n∗ ∼ 30 [Fig. 4(b)].
Here, a sharp decline after n∗ ∼ 10 is observed for both D⊥
and Dr . We measure a power-law decay of α ∼ −2.6 and −1.1
for the perpendicular and rotational movement, respectively.
Theoretically, both declines should decay asymptotically with
α ∼ −2 for infinitely thin rods. However, for rods with finite
thickness it was found in simulations that Dr ∼ (n∗)−1 [27],

FIG. 4. The normalized diffusion coefficients of a confined rod
as a function of normalized density n∗, (a) optical scatterers, and
(b) polymer pillars, red dashed lines fit for D ∼ (n∗)−α at high density,
green dashed line fit for D ∼ (n∗)−2. (c) Comparison of D‖/D⊥
for optical and polymer obstacles. (d) Center-of-mass diffusion
coefficient for the polymer pillar experiments.
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in accord with our measurement. Hydrodynamic interactions
may also contribute to this deviation from theory.

Although both experimental setups exhibit similar behavior,
there are several differences worth highlighting. First, D‖
decays slowly in the polymer pillar experiments [Fig. 4(b)]
contrary to its independence on obstacle density both in
simulations [12] and in the optical obstacles experiments
[Fig. 4(a)]. Second, the ratio D‖/D⊥ increases gradually in
the polymer pillar experiments, but in the optical scatterers
realization it remains constant up to a threshold density
over which it starts to increase [Fig. 4(c)], similar to its
behavior in nematic liquid crystals [2,4]. This threshold density
n∗ ∼ 8 also signifies a strong change in the dependence
of Dr and D ⊥ on n∗. The two types of obstacle arrays
differ in two main ways: one, the optical obstacles do not
affect flow (i.e., flow induced by rod diffusion or external
driving) in the sample, as opposed to the polymer pillars;
and two, the optical obstacles constitute a soft repulsive
potential for the wires, whereas the polymer pillars constitute
hard-core repulsion. We believe the differences between the
results of the two types of experiments arise mainly from
the existence of hydrodynamic interactions (between the rod
and the obstacles) in the polymer pillar experiments. One
effect solid boundaries have on hydrodynamic interactions is
to increase the effective viscosity of the fluid [28]. This is due
to the no-slip boundary conditions on the fluid upon contact
with a solid boundary [29]. Here the solid obstacles between
which the nanowires diffuse introduce more boundaries. As
their number increases, the effective viscosity increases and
the diffusion coefficient decreases. This effect is manifested in
the decrease of the center-of-mass diffusion coefficient with
the increase of polymer pillars density. Additional nontrivial
effects can arise from the change in the flow field due to
the polymer pillars. An indication of such an effect is the
difference in the ratio of the parallel to perpendicular diffusion
coefficients when comparing optical to polymer obstacles. In
addition, we find that the center-of-mass diffusion coefficient
Dcm in the pillar array experiments agrees only qualitatively
with simulations [12] and does not plateau at the expected
value [Fig. 4(d)].

The addition of flow due to external driving of the suspend-
ing fluid relative to the obstacle field creates elongated and
directional trajectories with 〈R2〉 ∼ tα and α > 1.5 [Figs. 3(b)
and 3(c)]. It can be seen that the addition of flow excludes
trajectories with back and forth motion on large scales.
This observation inspired us to decouple the analysis of
rod transport through obstacle fields into two characteristics:
the trajectory shape and the underlying motion along said
trajectory. The shape of the path is a function of obstacle
density, particle shape, and driving, while the transport type
is a function of medium and driving. Back and forth motion,
which occurs in diffusive transport, was also not observed in
simulations of ballistically moving rods [9].

For example, let us consider the effect of obstacle density
on a rod scattering ballistically from obstacles. Here we do not
assume flow, but rather motion without Brownian dissipation,
as was examined in previous simulations [8–10]. We assume
that the shape of the rod’s trajectory can be described by the
wormlike-chain (WLC) model for semiflexible polymers [26].
A WLC is characterized by the extended polymer chain length

Rmax and by its persistence length �p, which is the decay length
of its orientational memory. The end-to-end distance of a WLC
is given by

〈R2〉 = 2Rmax�p − 2�2
p(1 − e−Rmax/�p ). (1)

To relate the WLC model to a transport process, we use
the following relations [30]: Rmax = �N = � t

to
and �p =

− �
ln[cos(θ)] ∼ � 2

θ2 , where N is the number of segments in the
chain or collisions with obstacles, � is the length of a segment
or the average distance traveled between collisions, to is the
average time interval between collisions, and t is the duration
of the experiment. The relation between �p and θ , the average
change in angle after a collision, is estimated according to the
freely rotating chain model [30]. The length and duration of
motion in between collisions depends on density.

At low obstacle densities, n∗ << 1, we may treat the rod
as a point particle. The distance between collisions is given by
its mean free path, which, for uniformly distributed obstacles,
is � ∼ 1/n∗. The duration between collisions is given by to =
�/v, where v is the average rod velocity, hence to ∼ 1/n∗.
In this limit, there is no constraint on the scattering angle,
and the WLC description amounts to a Gaussian chain with
〈R2〉 = �2N ∼ t/n∗ and Dcm ∼ 1/n∗. This is in accord with
Enskog theory and simulation results [9,10].

At the limit of infinite obstacle density, assuming infinitely
thin rods and pointlike obstacles, the rod motion is confined
to a straight thin tube. Along that tube the rod barely
collides, propagating at approximately constant velocity ±v.
The motion of the rod is thus ballistic with 〈R2〉 = (vt)2. This
prediction differs from previous predictions [8–10], showing
diffusive motion with Dcm 	 √

n∗.
At intermediate obstacle densities, the length of the rod

becomes larger than the mean free path, and the trajectory
shape resembles a WLC configuration. We assume now that
� is related to the distance traveled parallel to the rod’s long
axis between two collisions that occurs due to perpendicular
(or rotational) motion, i.e., � ∼ ε. The scattering angle is
constrained and can be estimated by θ 	 ε/L ∼ 1/

√
n∗. The

time between collisions becomes to ∼ 1/
√

n∗, the persistence
length becomes �p ∼ √

n∗, and Rmax ∼ t . Substituting these
relations into Eq. (1), we have

〈R2〉
n∗ ∼ 2

t√
n∗ − 2(1 − e

t√
n∗ ), (2)

which tailors the two discussed limits of motion: along a
straight line and along a Gaussian chain. A closer look
at Eq. (2) suggests two regimes of motion [Fig. 5(a)]: for

t√
n∗ 
 0.5 the motion is superdiffusive, while for t√

n∗ � 0.5
the rod diffuses normally, i.e., the multiple collisions result in
a random walk, even though the underlying motion is ballistic.
If we take the limit of large t while n∗ is kept constant, we
recover previous results [8–10], Dcm ∼ √

n∗ [Fig. 1(b)].
The superdiffusive regime of motion at short times at

intermediate densities identified above [Eq. (2) and Fig. 5]
relates to the superdiffusive motion we observe for the driven
rods [Figs. 3(b) and 3(c)]. Here, driving causes the shape of
the center-of-mass trajectory to resemble that of a WLC at
intermediate time scales.
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FIG. 5. Mean-square displacement of a rod moving ballistically
in an obstacle field of our WLC inspired model [Eq. (2)]. (a) Transition
from anomalous diffusion to regular diffusion at different n∗.
(b) Mean-square displacement as a function of t and n∗. At large
t , the scaling Dcm ∼ √

n∗ is recovered (see the black solid line).

Along the same lines, we can model the motion of rods
diffusing in between collisions. At low densities, the mean
free path scales as 1/n∗ as before. to = √

�/4Dcm ∼ 1/n∗2,
which corresponds to 〈R2〉 ∼ Dcmt in accord with experiment
[Fig. 4(b)] and simulation [12]. At large densities, the rod is dif-
fusing in a quasi-1D tube, also independent of obstacle density
as confirmed by experiment [Fig. 4(d)] and simulation [12].
Applying this analysis at intermediate densities results in an
unphysical solution (i.e., Dcm ∼ n∗). This is expected, since
the trajectory shape of diffusing rods differs significantly from
WLC configurations, as discussed above.

In this paper, we present two different experimental realiza-
tions of the motion of a rod in a 2D static obstacle field on the
single-particle level. Afterward, we compare this motion to the
motion of a diffusing rod that is also driven by flow through the
obstacle field. Our results agree qualitatively with simulations
of diffusing rods [12], highlighting two significant differences
between theory and experiment. Specifically, at high density
Dcm saturates to a smaller value than expected, and D⊥ and Dr

do not decay according to the same expected power law. These
differences may arise from hydrodynamic interactions, which
were not taken into consideration previously, or from the finite
size of our rods and obstacles. Our two experimental real-
izations allow us to characterize such hydrodynamic effects.
For example, hydrodynamic interactions near a wall affect the

rotational diffusion of a rod much more than the translational
diffusion. Another consequence of hydrodynamic interactions
between the rod and the polymer obstacles is that D‖ decreases
with increasing obstacle density even at low densities. In
addition, the ratio between parallel and perpendicular diffusion
changes gradually with obstacle density for real obstacles.
This is in contrast to the more intuitive result obtained for
optical obstacles, where the ratio deviates from that of a free
rod only at the onset of confinement, n∗ > 8. It should be
noted that there is another important difference between both
experimental systems that may affect our results, namely the
softness of the repulsive potential of the optical scatterers
as compared to the hard-core repulsion of the polymer
pillars.

By addressing separately the trajectory shape and the
transport mechanism, we were able to identify a regime of
motion exhibiting superdiffusion for systems with underlying
ballistic motion. In addition, the analysis allowed us to
pinpoint the significant implications of the different underlying
transport mechanisms, both in trajectory shape and area
coverage. A better framework to study the transport of a
diffusive rod in such systems might be in terms of motion in a
percolating cluster or in porous media. Another open question
is whether motion on a preassigned trajectory, as assumed in
our analysis, is inherently different from motion on a freely
chosen trajectory. We note that the use of the WLC description
to tailor the transport in high and low obstacle densities is one
of many possible choices expressing the orientational memory
of the rod’s trajectory.

Finally, the WLC shape of the trajectory of a rod with
drift velocity and its apparent superdiffusive motion suggest
a connection between a ballistic moving rod and a diffusive
one in the presence of driving, at least at short time scales.
This may imply that driving (either externally or internally)
can lead to enhanced transport of elongated objects in
crowded environments. Therefore, we expect particle shape
and especially its aspect ratio to have important implications
from the point of view of clogging.

We thank David Andelman, Haim Diamant, and Rigoberto
Hernandez for helpful discussions.
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