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Molecular insights into the boundary conditions in the Stokes-Einstein relation
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In order to mimic the Brownian particle in liquid, molecular dynamics calculations of dilute solutions of
spherical fullerene molecules with various sizes in liquid Ar were performed. To establish the scaling equation
for self-diffusion coefficient, D, of the fullerenes, the dependence of D was examined on the mass ratio of
solute to solvent and on the energy-parameter ratio used in the Lennard-Jones potentials. The dependence on
the energy-parameter ratio remains up to C540, whereas D rapidly becomes independent of the mass ratio with
increasing mass of the solute. The product of the scaling equations obtained for the D of the solute and for
shear viscosity, ηsv, for the solvent gives a relation which replaces the Stokes-Einstein relation based on the
hydrodynamics. The present expression does not need both the boundary conditions and the hydrodynamic
particle size, but instead the energy-parameter ratio, packing fraction of solvent, and bare size of solute. From
the viewpoint of the tackiness at the boundary, the cage correlation function around the diffusing particle was
examined; it was found that the decay time of the function depends mainly on the the energy-parameter ratio.
Therefore, the energy-parameter ratio accounts for the main part of both the boundary conditions and the
hydrodynamic particle size in the Stokes equation, which have so far been ill-defined in any molecular theories.
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The Einstein equation for self-diffusion coefficient, D, of
Brownian particle in liquid [1] is given as

D = kBT

ζ
, (1)

where kB is the Boltzmann constant, T is the absolute
temperature, and ζ is the translational frictional constant on
the surface of the particle. The Stokes equation for ζ is given
as

ζ = CηsvrS, (2)

where C is the constant of 4π or 6π , depending on the
boundary conditions, slip or stick, respectively, at the surface
of Brownian particle, rS is the Stokes radius, and ηsv is the shear
viscosity of liquid surrounding the particle. A combination of
these equations is known as the Stokes-Einstein (SE) relation:

Dηsv

T
= kB

CrS
. (3)

Since no interaction between diffusing particles is consid-
ered in the SE relation, strictly speaking, it is applicable only
to large particles in infinitely dilute solutions. Furthermore, it
is assumed that the liquid is a continuum medium in the Stokes
equation. In spite of these limitations, however, the SE relation
has been regarded as an important benchmark in discussions
on transport properties in not only various states of liquids
including complex liquids such as colloid [2] and polymer [3]
solutions but also aerosols [4]. As a result, the Stokes equation
brings two controversies into the discussion: the boundary
conditions and the hydrodynamic size of diffusing particle.
While the boundary conditions at fluid-solid interfaces have
so far been studied extensively in many experimental [5],
theoretical [6,7], and simulation [8] works, an ambiguity still
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remains between these two parameters when applying the
SE relation to these various systems. In other words, these
concepts have been ill-defined even in any molecular theories
[9]. The related problem can be found also in the dielectric
friction in electrolyte solutions [10].

The purpose of the present study is to elucidate a molecular
expression which replaces these hydrodynamic expressions.
Here we deal with only the translational short-time self-
diffusion and will report the results on the rotational diffusion,
i.e., the Stokes-Einstein-Debye relation, elsewhere. In addi-
tion, systems to be studied are simple ones which comply only
with requirements of the original SE relation: dilute solutions
of large spherical particles.

In our previous studies [11,12], the relation between D and
ηsv applicable to simple liquids was derived from molecular
dynamics (MD) simulation. The comprehensive expression
which holds for a whole range of compositions of binary
mixtures of the Lennard-Jones liquids is given as

Diηsv/T = (σi/σA)−1(εi/εA)−0.2(mi/mA)−0.1

×C ′(N/V )1/3, (4)

where σ and ε are the parameters used in the LJ potentials
described later, m is the mass of particle, C ′ is the constant, N
is the number of particles included in the system volume V ,
and subscripts i and A mean the component (i = 1 or 2) and
the average over both components, respectively. For pure LJ
liquids [11], this equation reads simply

Dηsv/T = C ′(N/V )1/3, (5)

and for infinitely dilute solutions of component 1 [12], it reads

D1ηsv/T = (σ1/σ2)−1(ε1/ε2)−0.2(m1/m2)−0.1

×C ′(N/V )1/3, (6)
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where N/V means the number density of the pure liquid of
component 2. In these systems, the value of C ′ is close to
kB/2π .

The dependence on the terms of σ1/σ2, ε1/ε2, and m1/m2

derives from that of D. The term (σ1/σ2)−1(N/V )1/3 can be
rewritten as σ1

−1(6/π )1/3η1/3, where η is the packing fraction
defined as (π/6)σ2

3N/V . Thus, using C ′ = kB/2π , Eq. (6)
can be rewritten as

D1ηsv

T
= kB

2πσ1
× (6/π )1/3η1/3(ε1/ε2)−0.2(m1/m2)−0.1. (7)

This bare dependence on σ1
−1 is common to that in the Eq. (3),

which is the core of the SE relation. The additional term of
(6/π )1/3η1/3 means the effect of void in liquid which is not
considered in the Stokes equation. The term m1/m2 means the
isotope effect of mass on the self-diffusion coefficient, which
has already been accounted for by the perturbation theory
[13]. On the other hand, the term ε1/ε2 still remains to be
studied.

In the course of molecular approach, we may replace the
Brownian particle and the continuum medium assumed in the
SE relation with a large spherical molecule and assembly
of small molecules, respectively. In order to simulate such
a system, we perform MD calculations of various sizes of
fullerene in liquid Ar. The distinct differences from the
previous study of the LJ liquid mixtures [12] are not only
the size of diffusing particles but also the surface condition,
which may be sticky or rough, since the fullerenes have many
interaction sites on their surfaces with solvent particles. We
focus on the dependence of D on the terms of ε1/ε2 and
m1/m2.

All the MD calculations of fullerenes, C20, C60, C180, C240,
or C540, in liquid Ar were performed using the Gromacs 4.5.5
package [14] under NV E conditions, where E was the internal
energy. The densities and temperatures simulated along the
saturated vapor line of liquid Ar are summarized in Table I.
All the bond lengths of C60 were fixed at the experimental
values [15]. In the other fullerene molecules, the pentagonal
bond lengths were set at 0.1450 nm, which is the same as
C60. The other hexagonal bond lengths were increased a little
so as to keep the spherical topology reported by Tománek
[16]. All the C-C distances in the fullerene molecules were
constrained with the LINCS algorithm [17]. In all the systems,
while the total number of Ar atoms as solvent, N , was 1.6 ×
105, that of fullerene molecules was eight. Intermolecular
interactions between Ar and fullerenes were evaluated as a

TABLE I. Thermodynamic states and related variables of liquid
Ar as solvent. T is the temperature (in K), d is the density (in kg m−3),
N/V is the number density (in nm−3), L is the side length (in nm) of
simulation cell, and ηsv and DAr is the viscosity (in 10−4kgm−1s−1)
and diffusion coefficients (in 10−9m2s−1), respectively.

T d N/V η (6/π )−1/3η−1/3 L ηsv DAr

95 1345 20.27 0.419 1.077 19.91 2.00 2.91
107 1263 19.03 0.393 1.100 20.33 1.48 4.43
120 1160 17.49 0.362 1.131 20.92 1.06 6.66
130 1065 16.05 0.332 1.164 21.52 0.85 9.05
140 942 14.20 0.293 1.213 22.42 0.63 12.60

sum of pair potentials between Ar and C atoms within a
cutoff distance of 1.2 nm. The interatomic LJ potential was
given as

φArC(r) = 4εArC

[(
σArC

r

)12

−
(

σArC

r

)6]
, (8)

where r is the distance between Ar and C atoms and both εArC

and σArC were determined using the Lorentz-Berthelot rules
[18]: σArC = (σAr + σC)/2 and εArC = (εArεC)1/2, where σAr =
0.3405 nm, εAr/kB = 119.8 K, σC = 0.3469 nm, and εC/kB =
33.24 K. The equations of motion were integrated using the
leap-frog algorithm with a time step of 1 fs, and each run
consisted of 2×106 steps: 2 ns. In each system, after careful
equilibration, we performed calculations of 10 runs to obtain
D1 from the different initial configurations, and then evaluated
their average and its standard deviation, σSD. The self-diffusion
coefficient of fullerene molecules under a periodic boundary
condition, D1, was calculated using the Einstein relation. Also
for the systems containing four fullerene molecules, we have
evaluated the self-diffusion coefficient and confirmed that the
results agree with those for the systems above stated within
the statistical errors. Thus, the effect of collective motion is
negligible for the present systems.

The particle size and energy parameter for a fullerene
molecule, σf and εf , where f = C20,C60,C180,C240, or C540,
were estimated, so as to keep a consistency with the previous
studies on simple LJ liquids [12], from a potential profile as a
function of distance between centers of mass in the Ar atom
and fullerene molecule. The distance where the energy was null
was defined as σArf = (σAr + σf)/2, and the minimum energy
of the profile was defined as εArf = (εArεf)1/2. The obtained
values for σf and εf are collected in Table II. Hereafter, as
σ1 and ε1 in Eq. (6), these parameters are used in the present
discussion. The m1 in Eq. (6) is simply a sum of the masses of
all C atoms included in each fullerene.

The present MD calculations consist of two categories: one
includes calculations to determine D1 of various fullerenes
in the same solvent of Ar at the same temperatures and
densities, and the other includes calculations to determine
each dependence of D1 on σ1/σ2, ε1/ε2, or m1/m2 in Eqs. (6)
and (7).

Figures 1(a) and 1(b) show the dependence of D1

on the terms of m1/m2 and ε1/ε2 in Eqs. (6) and (7),

TABLE II. The size and energy parameters for rare gas atoms and
fullerenes as solutes.

Solute σ1 [nm] ε1k
−1
B [K] (σ1/σ2) (ε1/ε2)0.2 (m1/m2)0.1

Rare gas atoms
Ar 0.3405 119.8 1.000 1.000 1.000
Kr 0.3670 167.0 1.078 1.069 1.077
Xe 0.3924 257.4 1.152 1.165 1.126

Fullerenes
C20 0.614 1197 1.802 1.585 –
C60 0.914 2448 2.683 1.828 –
C180 1.478 3476 4.339 1.961 –
C240 1.694 3746 4.974 1.991 –
C540 2.412 4155 7.082 2.032 –

050104-2



RAPID COMMUNICATIONS

MOLECULAR INSIGHTS INTO THE BOUNDARY . . . PHYSICAL REVIEW E 93, 050104(R) (2016)

FIG. 1. Dependence of the self-diffusion coefficient of some sizes
of fullerenes and Kr in liquid Ar on (a) the mass ratio and (b)
the energy-parameter ratio of solute to solvent. In (b), the plots at
ε1/ε2 = 1 mean simply those for the extrapolated values of D1.

respectively. These results clearly show that, while the
mass-ratio dependence vanishes with increasing mass of
fullerene, the same dependence as Eqs. (6) and (7) on
the ratio of the energy parameters remains up to C180. In
our previous study [12], we showed that the dependence
on the mass ratio has the same origin with the isotope
effect of mass on the self-diffusion coefficient. The ef-
fect can be explained by the perturbation theory on the
small difference between masses [13]. In addition, since the
theory tells also that the effect vanishes with increasing mass
difference, the observed behavior is a natural consequence.
Therefore, we conclude that the mass-ratio term can be
negligible in fullerenes, and hereafter we exclude the mass-
ratio term from the discussion about fullerenes. In Fig. 1(b)
the virtual values of D1 at ε1/ε2 = 1 were estimated for each
fullerene by extrapolation of the dependence, which will be
discussed later.

Figures 2(a) and 2(b) compare two expressions for
D1ηsv/T . Figure 2(a) based on the original SE relation shows
that, whereas Ar in liquid Ar seems to behave under the slip

FIG. 2. Plots of D1ηsv/T vs (a) σ−1
1 and (b) (σ1/σ2)−1

(ε1/ε2)−0.2(N/V )1/3. The multiple plots for the same symbol mean
the different temperatures shown in Table I.

boundary condition, the fullerenes do under the stick boundary
condition. These seem to agree with expectations from the
Stokes law. However, the plots for Kr and Xe in liquid Ar
seem to deviate significantly from the slip boundary condition.
Furthermore, in fact, even those for the fullerenes significantly
deviate from the stick boundary condition as discussed later.
On the other hand, Fig. 2(b) shows that these results follows
consistently

D1ηsv

T
= kB

2πσ1
× (6/π )1/3η1/3(ε1/ε2)−0.2. (9)

In addition, as shown in the previous study [12], D1 of
rare gas atoms follows Eqs. (6) and (7). Thus, all the D1

follows Eq. (7) or (9) with the same slope, i.e., without
any modifications by the boundary conditions. The plot of
D1ηsv/T versus (σ1)−1(6/π )1/3η1/3, using D1 extrapolated
at ε1/ε2 = 1 shown in Fig. 1(b), also clearly follows the
line with the same slope, as shown in Fig. 3. This definitely
shows that, conversely, deviations of ε1/ε2 from unity cause the
deviations from the line with slope of kB/2π in the original SE
relation.
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FIG. 3. Plots of D1ηsv/T using D1 extrapolated at ε1/ε2 = 1 vs
(σ1/σ2)−1(N/V )1/3. The multiple plots for the same symbol mean
the different temperatures shown in Table I.

Next, we discuss another option in the molecular interpreta-
tion of the SE relation: hydrodynamic particle size. Applying
Eq. (3) to the present results, we can obtain the apparent or
hydrodynamic molecular size, which depends on the boundary
conditions. Figure 4 compares the apparent diameter derived
from Eqs. (3) and (9). While Eq. (9) gives always very close
values to σ1, Eq. (3) gives about 30% larger values than σ1 for
large fullerenes even under the stick boundary condition. The
increase in the apparent size under the slip boundary condition
can be explained by a product between the packing fraction
and the energy-parameter terms, which are numerically shown
in Tables I and II, respectively.

All the problems discussed above arise from Eq. (2) and
vanish simply if Eq. (2) is replaced with

ζ = 2πηsvσ1(6/π )−1/3η−1/3(ε1/ε2)0.2. (10)

FIG. 4. Hydrodynamic size of the solute molecules in liquid Ar
at 120 K. The left and right axes correspond to the slip and stick
boundary conditions, respectively.

FIG. 5. Dependence of the decay time of half of the cage
surrounding the fullerene molecules or rare gas atoms in liquid Ar
on (ε1/ε2)−0.2. The decay time was evaluated for the same values of
(ε1/ε2)−0.2, which is used in Fig. 1(b). The inset shows the decay time
simply for all the kinds of solutes.

This is the unambiguous molecular expression for the friction
constant of large spherical particles in a simple liquid. This
equation holds for both rough and smooth surfaces [19]. Since
correct evaluations of the friction constant using numerical
simulations have so far been supposed to be not easy [20],
the present approach can be another option for studies of the
friction constant at any interfaces.

Last, in order to clarify the effect of the ε1/ε2 term
on the boundary between solute and solvent, we evaluated
the normalized cage correlation function with respect to the
diffusing particles, where the radius of cage was defined
as the first minimum of pair distribution function between
fullerene and Ar. Figure 5 shows the dependence on the
ε1/ε2 term of the decay time of 50% of cage surrounding the
diffusing particles. Note that, while the open symbols show
the dependence on the artificial variation of (ε1/ε2)−0.2, the
closed symbols show the decay times for the original values
of (ε1/ε2)−0.2 shown in Table II, as inverse. The figure shows
clearly that the decay time decreases, i.e., its sticky property
increases, with increasing (ε1/ε2)−0.2. A more important point
is that, in spite of the difference in materials, i.e., size or
mass, the same value of ε1/ε2 produces almost the same level
of decay time. This means that the decay time is a function
mainly of the energy-parameter ratio. As shown in Tables I
and II, the weight of the ε1/ε2 term is much larger than that
of packing-fraction term. Therefore, we can conclude that the
ε1/ε2 term in Eq. (10) accounts for the main part of both the
boundary conditions and the hydrodynamic particle size in
Eq. (2).
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