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Large compact clusters and fast dynamics in coupled nonequilibrium systems
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We demonstrate particle clustering on macroscopic scales in a coupled nonequilibrium system where two
species of particles are advected by a fluctuating landscape and modify the landscape in the process. The phase
diagram generated by varying the particle-landscape coupling, valid for all particle densities and in both one and
two dimensions, shows novel nonequilibrium phases. While particle species are completely phase separated, the
landscape develops macroscopically ordered regions coexisting with a disordered region, resulting in coarsening
and steady state dynamics on time scales which grow algebraically with size, not seen earlier in systems with
pure domains.
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Particle clustering is important in many natural physical
and biological phenomena, for instance, the formation of
sediments [1] and protein clustering on a biological membrane
[2]. Evidently, it is important to understand processes that
cause clustering in different physical contexts, and how these
processes influence the properties of the cluster and the
time taken to form it. Often, large-scale clustering is driven
by interactions with an external medium which itself has
correlations in space and time [3–5]. An important physical
effect in such systems is the back influence of the particles
on the medium. This interaction can aid clustering, or destroy
it. If a cluster does form, it may be compact and robust, or
a dynamic object that undergoes constant reorganization. The
formation time may grow exponentially with the size, or as a
power law. Given this wealth of possibilities, it is important
to look for an understanding, within simple models, of the
circumstances under which different sorts of macroscopically
clustered states occur.

In this Rapid Communication, we derive the phase diagram
of a simple model system as we vary the interaction between
the environment and particles. In the process, we unmask
a novel nonequilibrium phase of particles with compact
clustering and rich and rapid dynamics coexisting with a
macroscopically organized landscape. The model has partial
overlap with the lattice gas model of Lahiri and Ramaswamy
(LR) for sedimenting colloidal crystals [6,7], but the new
phases manifest themselves outside the LR regime. Our results
hold in both one and two dimensions.

The model consists of two sets of particles moving
stochastically in a fluctuating potential energy landscape.
Particles try to minimize their energy by (a) moving along
the local potential gradient of the landscape and (b) modifying
the landscape around them in such a way as to lower the energy
further. The model is generic but we discuss it in the language
of particles confined to move on a fluctuating surface in the
presence of gravity, where the particles can locally distort
the surface shape to further lower the energy (see Fig. 1).
One of the particle species is considered lighter and the other
is heavier; we use the name LH (light-heavy) model to describe
the system. Process (b) affects the landscape dynamics quite

*sakuntala.chatterjee@bose.res.in

differently in parts which are rich or poor in one species
of particle, ultimately resulting in the formation of distinct
macroscopic regions, each corresponding to a phase. Our
study reveals a rich set of phenomena: strong phase separation
with fluctuationless phases for particles, but a different sort of
organization for the landscape; a rapid approach to the steady
state; and intricate steady state dynamics of the interfaces
between phases, with three distinct temporal regimes.

There has been a recent surge of activity in the field of
coupled driven diffusive systems [8–10], and it is useful to
view our work in this context. This activity has resulted in a
catalog of universality classes which describe how propagating
modes in these systems decay in time. The modes themselves
are defined by diagonalizing coupled hydrodynamic equations
to linear order, with eigenvalues giving their speeds of
propagation. The disordered phase of our system is indeed
described by this theory. But the ordered phases of primary
interest to us correspond to complex eigenvalues at the linear
level [11]; the imaginary parts signal instabilities, heralding
macroscopic phase separation. However, such linear analysis
cannot reveal the characteristics of the final phases, which
can and do differ from each other in fundamental respects.
Our results provide the necessary characterization and thus
contribute to the important goal of classifying ordered phases
in coupled driven diffusive systems.

In a nutshell, the quintessentially nonequilibrium states
found here exhibit phase separation, with qualitatively dif-
ferent types of ordering for the particles and landscape,
quite unlike systems known earlier. In particular, particles
display strong phase separation [7] characterized by pure,
fluctuationless phases, which cohabit with three macroscopic
regions of the surface, two of which possess long-range order,
while the third does not. These findings differ markedly from
the strongly phase separated states found earlier in the LR and
ABC models [7,12] and imply strong changes for both static
and dynamical properties. Notably, the approach to our steady
state is rapid, with a coarsening time that grows as a power law
of size, as opposed to the much slower exponentially growing
time scales found earlier.

The LH model consists of two coupled driven diffusive
systems, with conserved quantities. This is a lattice model
of H (heavier) and L (lighter) particles with damped motion
under gravity and residing on a fluctuating surface. The local
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FIG. 1. Schematic presentation of different phases in one and two
dimensions. (a) shows the coarsening mechanism in one dimension
for b′ � 0. H (L) particles are shown by solid (open) circles. (b) and
(c) show typical configurations in two dimensions. In (b) the H (L)
cluster is shown in red (blue) and (c) shows the equal height contours.

dynamics of the particles and the surface are coupled: H and
L particles at neighboring sites may interchange locations,
and do so preferentially if the local tilt of the surface favors a
downward move for H . Particles reside on lattice sites and
interact via hard-core exclusion: a site holds at most one
particle (H or L). If the symbols / and \ indicate upward and
downward tilts of the surface, respectively, then the particles
follow the dynamics:

W (H\L → L\H ) = D + a,

W (L\H → H\L) = D − a,

W (H/L → L/H ) = D − a,

W (L/H → H/L) = D + a, (1)

where W denotes the probability per unit time for a particular
process to occur. This dynamics conserves the total number
of H (and L) particles. Under the weight of the particles, a
local hill on the surface gets pushed downward, at a higher rate
by H than by L. In one dimension, the surface consists of a
chain with N sites. The lattice bonds representing discrete
surface elements, can have two possible orientations with
slopes τi+1/2 = ±1, which are called upslope and downslope
bonds, respectively. In one dimension surface dynamics can
be represented as

W (/H\ → \H/) = E + b,

W (\H/ → /H\) = E − b,

W (/L\ → \L/) = E − b′,

W (\L/ → /L\) = E + b′. (2)

FIG. 2. Phase diagram in the b-b′ plane. For b > 0 and b′ > 0, the
system shows SPS. The dotted horizontal and vertical lines are related
to each other via interchange of the two particle species. On these
lines the system is in IPS phase. The striped region (−b < b′ < 0)
represents the FPS phase. The b = −b′ line corresponds to the FDPO
phase. The dotted region (b′ < −b) corresponds to the disordered
phase.

This dynamics conserves the overall slope. In two dimensions
the surface consists of a square lattice and the height of a site
can change, provided all four neighboring sites are at the same
height [13,14]. We consider periodic boundary conditions with
no overall tilt of the surface.

Figure 2 shows the phase diagram of the system in the bb′
plane, with a taken to be positive. It follows from Eq. (2) that
interchanging b and b′ is tantamount to interchanging the H

and L species. Hence we consider positive b, while b′ can be
positive or negative or zero.

Strong phase separation (SPS): The right half of the
phase diagram, b′ > 0, corresponds to the LR model [6,7],
as appropriate to sedimenting colloidal crystals [6]. In this
regime, the light particles tend to move the surface upward.
In steady state, the upslope and downslope surface bonds
phase separate to form a single macroscopic valley and
hill, which hold all the H and L particles, respectively, in
separated clusters. Both particles and tilts show SPS; the
approach to steady state is extremely slow [involving times
Trelax ∼ exp(αN )] owing to the formation of large metastable
barriers.

In the left half of the phase diagram in Fig. 2 we have b′ < 0,
which means that the part of the surface occupied by L particles
shows a downward drift. As discussed below, different phases
are obtained depending on whether this velocity is larger than,
smaller than, or the same as the velocity imparted by the H

particles.
Disordered phase: When the L particles push the surface

faster (dotted region in Fig. 2), neither of the particle species
nor the tilts shows long-range order. Interesting dynamical as-
pects of this wave-carrying disordered phase will be presented
elsewhere [15].

Fluctuation-dominated phase ordering (FDPO): On the
line b = −b′, both L and H particles push the landscape down
at the same rate. This implies Kardar-Parisi-Zhang dynamics
for the surface while L-H exchange rules [Eq. (1)] imply that
H particles tend to collect in local valleys. This reduces to
the passive scalar problem studied earlier, in which particles
exhibit FDPO, characterized by singularities of the two-point

050102-2



RAPID COMMUNICATIONS

LARGE COMPACT CLUSTERS AND FAST DYNAMICS IN . . . PHYSICAL REVIEW E 93, 050102(R) (2016)

correlations and giant fluctuations of the density [16,17].
Interestingly, this phase boundary can be identified exactly
by looking for the onset of complex eigenvalues in a linear
stability analysis of the coupled hydrodynamic equations for
the landscape and the particles [14].

Fast fall with phase separation (FPS): When L particles
push the surface down at a slower rate than H ’s, a new phase
ensues (shown striped in Fig. 2). In steady state, L and H par-
ticles separate completely as in SPS. The surface underlying
the H cluster forms a macroscopic valley but unlike SPS, the
phases are not pure, e.g., the macroscopic majority-upslope
region accommodates a finite fraction (1 − m) of downslope
bonds. The majority-upslope region in turn acts as a ‘tilt
reservoir’ which drives a finite tilt current through the part of
the surface which holds L particles. By identifying an upslope
(downslope) bond with a particle (hole) we identify the phase
as the maximal current phase in an open-chain asymmetric
exclusion process [14,18]. Consequently, near the edges of the
L domain the tilt density ρ shows an algebraic 1/

√
r variation,

while in the bulk ρ ≈ 1/2 [14]. Equating the tilt current J =
2bm(1 − m) in the two arms holding the H particles with that
in the maximal current phase J ′ = 2b′/4 in the L-rich portion,
we deduce 4m(1 − m) = b′/b, a relation we have verified
numerically. The presence of a finite tilt current through the
system results in a finite downward velocity of the surface and
in steady state, the full surface moves downward at finite speed,
preserving the macroscopic valley and disordered tilt region,
along with the pure domains of H and L particles [Fig. 1(a)].

Infinitesimal fall with phase separation (IPS): For b′ = 0
(the vertical dashed line in Fig. 2) the local fluctuations in
the surface occupied by L particles are of the symmetric
Edwards-Wilkinson type. In this phase, the H and L particles
again form pure domains. The surface beneath the H cluster
has the shape of a deep valley consisting of pure domains
of upslope and downslope bonds. By contrast, the surface
occupied by the cluster in this case behaves like an open-chain
symmetric exclusion process connected to the two reservoirs
of upslope and downslope tilts at the two ends. Thus the tilt
density varies linearly in this region with a gradient ∼1/N

[14,19], leading to a tilt current and an infinitesimal downward
velocity ∼1/N of the entire landscape. We schematically show
a typical configuration in Fig. 1(a).

The general properties of the phases discussed above remain
valid even in two dimensions, where H and L particles form
compact clusters. The shape of these two dimensional clusters
depends on the topography of the surface heights. As in one
dimension, we find a deep valley that holds the H cluster.
Measured from the bottommost point, the height increases
linearly in both x and y directions and it is easy to see that
in this case the equal height contours have the shape of a
diamond. In Figs. 1(b) and 1(c), we show some representative
configurations.

The way in which the landscape is organized in the IPS and
FPS phases has a profound influence on dynamical properties.
For instance, although the center of mass of the H cluster
remains stationary for a long time, the landscape immediately
below it undulates in time, leading to three distinct temporal
regimes in steady state. These are captured by monitoring
the mean-squared displacement σ 2 of the deepest point of
the valley. Figure 3 presents the data for b′ = 0. At small time
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FIG. 3. Occurrence of three regimes in the steady state dynamics
of the deepest point of the valley. Main plot: Mean squared
displacement of the deepest point of the valley as a function of time.
The displacement shows an initial diffusive growth, followed by a
plateau, and finally another diffusive regime at large time. Bottom
inset: Small time diffusivity D1 ∼ 1/N . Top inset: For large time,
the diffusivity D2 ∼ e−αN , with α � 0.26. These data correspond
to b′ = 0, b = E, a = D and have been averaged over 5000 steady
state configurations.

t � N2, we find σ 2 grows diffusively with a diffusion constant
D1 ∼ 1/N . But after times of order N2, a plateau for σ 2 is
reached at a value ∼N . From a simple consideration of the
total (gravitational) energy of the H particles, it is easy to show
that when the deepest point coincides with the center of mass
of the H cluster, the energy is minimum. Any displacement
from this position gives rise to a restoring force that scales
linearly with the displacement. The motion of the deepest
point is thus described by an Ornstein-Uhlenbeck process [20];
consequently, the deepest point diffuses within a region of
size

√
N around the H cluster center of mass [14]. Finally,

at very large t , the H cluster itself moves diffusively around
the system and the valley moves along with it (see [14]). The
mean-squared displacement of the deepest point in this regime
has a diffusion coefficient D2 ∼ e−αN .

Another important aspect of the dynamics concerns the
relaxation to steady state starting from an initially disordered
state. Interestingly, IPS and FPS phases show an enormous
reduction in this relaxation time, as compared to earlier known
examples of SPS as in the LR and ABC models [7,12]. For
b′ > 0 (LR model), the landscape occupied by an L cluster
tends to move upwards and forms a hill, while an H cluster
pushes the landscape down and forms a valley. For two adjacent
valleys with H clusters to merge, the time to dissolve the
intermediate hill containing the L cluster grows exponentially
with the size of the L cluster, and hence the final SPS state is
reached over a time scale eγN . By contrast, in the FPS and IPS
(b′ � 0) phases, the landscape is organized differently, and
this leads to fast relaxation, with times growing as Nz. This
is because the part of the landscape beneath the intervening
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FIG. 4. Scaling of particle density correlation in the coarsening
phase in both one and two dimensions. The equal time density
correlation for the particles C(r,t) shows a collapse when r is scaled
by L(t) ∼ t1/z. (a) and (c) show scaled data for b = 0.5, b′ = 0 in
one and two dimensions, respectively. Here we find z � 2. (b) and (d)
show similar plots for b = 0.3, b′ = −0.2. Here, in one dimension,
z � 2 and in two dimensions z � 2.6. We have used N = 1024 (a),
N = 16384 (b), and N = 256 × 256 [(c) and (d)] here.

L cluster either shows symmetric fluctuations (for b′ = 0) or
gets pushed downward (for b′ < 0). Figure 4 shows the scaling
collapse of the equal time density correlation function for H

particles when separations are scaled by the coarsening length
scaleL(t), which is found to grow as t1/z. In IPS phase (b′ = 0)
we find z = 2 in both one and two dimensions. The FPS phase
(−b < b′ < 0) shows z � 2 in one dimension for very large

N and t , while for smaller values of these variables, our data
show finite size effects (see [14] for details). In two dimensions
for FPS, we measured z � 2.6, for the largest values of
N and t we could access. Our plots in Fig. 4 demonstrate
algebraic coarsening for completely phase-separated systems,
and stand in strong contrast to the ultraslow logarithmic
coarsening observed in the LR and ABC models [7,12].
Underlying the speedup of the coarsening process is a simple
mechanism, namely, the formation of disordered segments
of the landscape between ordered clusters. These segments
generate fluctuations which allow mergers of ordered regions
to occur on a rapid time scale.

To summarize, we have considered coupled driven systems
consisting of two species of particles being advected by
an energy landscape whose dynamics is in turn influenced
by the particles. The differential interaction between the
landscape and the two particle species gives rise to different
phases in the system as the interaction parameters are varied.
We have demonstrated the occurrence of new phases with
fast dynamics, where both the particles and the landscape
show long-range order and the composite system is in a
nonequilibrium current-carrying state.

We conclude with a discussion of the implications of our
work for modeling in biophysical contexts. It is known that on
the cell membrane, various proteins, and lipids like integrins,
T-cell receptors are present in the form of nanoclusters [21,22].
This clustering is shown to be induced by the cortical actin
cytoskeleton [2,23], and within a recent theoretical model of
the process, an FDPO state has been observed [24]. There
is now experimental evidence that the actin cytoskeleton also
gets reorganized by these membrane components [22,25]. This
raises the interesting possibility of new phases arising if the
treatment of [24] is extended to account for the back action of
membrane components on the cytoskeleton.

Acknowledgments. We acknowledge useful discussions
with T. Sadhu, M. Rao, and A. Das. The computational facility
used in this work was provided through Thematic Unit of
Excellence on Computational Materials Science, funded by
Nanomission, Department of Science and Technology (India).

[1] S. Ramaswamy, Adv. Phys. 50, 297 (2001).
[2] K. Gowrishankar, S. Ghosh, S. Saha, C. Rumamol, S. Mayor,

and M. Rao, Cell 149, 1353 (2012).
[3] J. M. Deutsch, J. Phys. A 18, 1449 (1985).
[4] M. Wilkinson and B. Mehlig, Phys. Rev. E 68, 040101 (2003).
[5] B. Drossel and M. Kardar, Phys. Rev. Lett. 85, 614 (2000);

A. Nagar, M. Barma, and S. N. Majumdar, ibid. 94, 240601
(2005).

[6] R. Lahiri and S. Ramaswamy, Phys. Rev. Lett. 79, 1150 (1997).
[7] R. Lahiri, M. Barma, and S. Ramaswamy, Phys. Rev. E 61, 1648

(2000).
[8] H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012).
[9] P. Ferrari, S. Sasamoto, and H. Spohn, J. Stat. Phys. 153, 377

(2013).
[10] V. Popkov, A. Schadschneider, J. Schmidt, and G. Schütz, Proc.
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