
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 93, 050101(R) (2016)

Maximum efficiency of steady-state heat engines at arbitrary power
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We discuss the efficiency of a heat engine operating in a nonequilibrium steady state maintained by two heat
reservoirs. Within the general framework of linear irreversible thermodynamics we derive a universal upper
bound on the efficiency of the engine operating at arbitrary fixed power. Furthermore, we show that a slight
decrease of the power below its maximal value can lead to a significant gain in efficiency. The presented analysis
yields the exact expression for this gain and the corresponding upper bound.
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The Carnot efficiency ηC = 1 − Tc/Th [1,2] provides the
upper bound on efficiency of heat engines working between
two reservoirs at temperatures Th and Tc,Th > Tc. Though
crucial from the theoretical point of view [3], practical appli-
cations of ηC are rather limited, since the Carnot efficiency
can be reached only when the heat engine operates reversibly.
Reversible operation implies extremely long duration of the
working cycle. As a result, when the engine efficiency reaches
the upper bound ηC , the output power is zero. Appealing
universality of the upper bound ηC , which depends solely on
the two temperatures, and the needs of engineering solutions
stimulated an intensive search for a more practical upper bound
on the efficiency of heat engines operating at finite power.
A promising candidate for which at least some universal
properties can be derived was introduced about a half-century
ago [4–6]; it is the efficiency at maximum power η�.

The upper bound on the efficiency at maximum power
(EMP) in the linear response regime (linear in ηC) is equal to
the famous Curzon-Ahlborn [7] formula ηCA = 1 − √

Tc/Th,
which is to the linear order in ηC equal to the half of the
Carnot efficiency, ηCA = ηC/2 + O(η2

C) [8]. The upper bound
η� = ηC/2 is achieved by a particular class of heat engines
with strongly coupled thermodynamic fluxes. The assumption
of strong coupling [see discussion below Eq. (5)] means that
the heat flux is proportional to the flux, which generates work
on the surrounding [9–11].

In the present study we stay in the linear response regime
(linear in ηC); however, we go beyond the regime of maximum
power and study the engine efficiency at an arbitrary power
P,0 � P � P � (P � stands for the maximum power). One of
the main messages is that the universal bounds on efficiency
can be derived for an arbitrary P and not only at the
point of maximum power, which was considered in several
recent studies [8–14]; see, however, Refs. [15–22] for optimal
regimes other than that with maximum power. To this end
we introduce relative deviations from the regime of maximum
power, the relative gain in efficiency δη and power δP :

δP = P − P �

P �
, δη = η − η�

η�
, (1)
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where −1 � δP � 0. Such normalization of the two principal
engine characteristics allows us to derive several explicit
results. One of them is that it is possible to provide a universal
upper bound for the efficiency at an arbitrary power P . The
bound depends explicitly on δP and it reads

η(P ) = ηC

2
(1 + √−δP ). (2)

At the maximum power regime δP = 0, the above formula
reduces to the well-known upper bound ηC/2 for the EMP in
the linear response theory (ηC small). On the other hand, for
a zero power, i.e., for δP → −1, Eq. (2) yields the Carnot
efficiency.

The upper bound (2) on the efficiency at arbitrary power
paves the way for better understanding of the behavior of
real-world engines and thermal plants. These devices in most
cases do not operate in the regime of maximum power. Instead,
the compromise between power and efficiency is chosen since
decreasing the power (δP < 0) can significantly enhance the
efficiency as compared to η� [21,23–26]. The upper bound (2)
predicts that significant enhancement can be achieved by a
slight decrease of the power, since the relative gain in efficiency
as compared to the relative power loss

δη

(−δP )
= 1√−δP

(3)

diverges for powers near the maximum power, P ≈ P �. Again,
Eq. (3) represents the upper bound for the relative enhancement
of efficiency achieved by strong-coupling models. At an
arbitrary coupling the result will differ by a constant model-
dependent prefactor; see Eq. (14). Quite remarkably, this
significant enhancement of efficiency δη ∼ √−δP is observed
in several particular models even beyond the linear response
regime, e.g., in recent studies on quantum thermoelectric
devices [27,28], for a stochastic heat engine based on the
underdamped particle diffusing in a parabolic potential [26],
and also for the so-called low-dissipation heat engines [29].

Steady-state heat engine. We consider the simplest steady-
state model of work extraction from the heat flow [8]. The
model is illustrated in Fig. 1, and it comprises just two
thermodynamic forces X1,X2 and fluxes J1,J2. The first
thermodynamic force X1 = F/T determines the work W =
−Fx performed by the system on the surrounding, where x

is the conjugate variable to F and T stands for the system
temperature. In general, the force F can be of mechanical,
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Cold reservoir (Tc)

Hot reservoir (Th)

Q̇

Q̇ − Ẇ

{Lij}
Ẇ = −Fẋ

FIG. 1. Steady-state heat engine. Part of the heat flow Q̇ from
the hot reservoir is transformed by off-diagonal elements of linear
relations (4) into the engine output power Ẇ .

chemical, or electrostatic origin. The corresponding thermody-
namic flux is J1 = ẋ, where the dot denotes the time derivative.
The system performs work against F due to the heat flux
J2 = Q̇ through the system from the hot reservoir to the
cold one. The temperature of the hot reservoir Th is larger
but comparable to the temperature of the cold reservoir Tc.
The temperature difference �T = Th − Tc is assumed to be
small as compared to T ≈ Tc ≈ Th; hence we can write the
second thermodynamic force X2 to the first order in the relative
temperature difference as X2 = 1/Tc − 1/Th ≈ �T/T 2.

Within the framework of linear irreversible thermodynam-
ics the forces X1,X2 and fluxes J1,J2 are coupled by the linear
relations

J1 = L11X1 + L12X2, J2 = L21X1 + L22X2. (4)

Following Ref. [30], we introduce the so-called degree of
coupling q between the fluxes J1 and J2, which is defined
in terms of the coefficients Lij as

q2 = L2
12

L11L22
, − 1 � q � 1. (5)

Physically reasonable values of q follow from the requirement
that the entropy production is non-negative, Ṡ = J1X1 +
J2X2 � 0. This implies for the Onsager coefficients Lij

that L11 � 0, L22 � 0, L11L22 − L12L21 � 0 and hence we
must have −1 � q � 1. In the case of the so-called strong
coupling, q2 = 1, the two fluxes are proportional to each
other [8,11,30,31]. Recently, the idea of strong coupling
has been extended beyond the linear-response regime. It is
essential for deriving the universal properties of EMP [9–11]
for nanoscale heat engines.

The efficiency η and the power output P = −F ẋ of the
engine are defined as

P = Ẇ = −J1X1T , η = P

Q̇
= −�T

T

J1X1

J2X2
. (6)

The efficiency at maximum power in the present model was
derived in Ref. [8]. For a fixed temperature difference �T the
model contains just one optimization parameter, the external
load F . The optimal value X�

1 = F�/T of the force X1

follows immediately from the expression for the output power
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FIG. 2. Efficiencies higher than EMP η� are achieved for higher
loads F > F � (or X1 > X�

1). On the other hand, when the external
force is decreased (X1 < X�

1), the engine efficiency drops below η�.
Plotted according to Eqs. (9).

P = −(L11X1 + L12X2)X1T , which exhibits a maximum for

X�
1 = −L12X2

2L11
. (7)

Thus the maximum power is achieved at the half of the force
for which the engine stops (half of the maximal load). The
maximum power and the corresponding efficiency are

P � = η2
C

4
L22q

2T , η� = ηC

2

q2

2 − q2
. (8)

It is remarkable that the EMP η� depends on the coupling
parameter q only (i.e., the linear coefficients Lij enter the
result only in the combination given by q). Surprisingly, the
efficiency η for any power P , or more precisely for any δP ,
can be also given as a function of q only. To see this, it is
convenient to work with quantities relative to the point of
maximum power [21]. Then after some algebra we obtain

P

P �
=

(
2 − X1

X�
1

)
X1

X�
1

,
η

η�
= P

P �

2 − q2

2 − q2 X1
X�

1

. (9)

The relative power P/P � is given by a simple parabolic
relation and it does not depend explicitly on other model
parameters. On the other hand, the normalized efficiency η/η�

depends, similarly as the efficiency at maximum power (8), on
the coupling strength q.

The two engine characteristics (9) are illustrated in Fig. 2 for
different couplings q. Notice that efficiencies higher than EMP
η� are achieved for higher external loads X1 > X�

1 (or F >

F�). On the other hand, when the external force F is decreased
below its value F� (or X1 < X�

1), the engine efficiency drops
below η�. In order to express the efficiency as a function of the
power we first find the relative force to be given by

X1

X�
1

= 1 ± √−δP . (10)

The plus sign corresponds to the favorable case when the
external load is increased and the enhancement of efficiency
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occurs (η > η�,X1 > X�
1). The minus sign describes the

opposite branch, where decreasing the power from its maximal
value P � reduces the engine efficiency (η < η�,X1 < X�

1).
Using the definition of δP from Eq. (1), we obtain the engine
efficiency as the function of the relative power loss (−δP ):

η

η�
= (1 + δP )

2 − q2

2 − q2(1 ± √−δP )
, (11)

where again the plus sign corresponds to the region of
enhanced efficiency η > η�,X1 > X�

1.
In the strong coupling limit we obtain bounds on possible

values of the engine efficiency

η(P ) = ηC

2
(1 ± √−δP ), q2 = 1. (12)

In other words, the lower and the upper bounds on the
efficiency at any finite power are simply

ηC

2
(1 − √−δP ) � η � ηC

2
(1 + √−δP ). (13)

At this point we should make a remark concerning simple
formulas (12) and (13). After the pioneering work [8]
several linear models were studied with the main focus
on the universality of the EMP [32–37], on the maximum
efficiency [15,16,38–41], or/and on other specific performance
characteristics [16,42–47] for specific models. For minimal
nonlinear irreversible models we refer to Refs. [48–52], and
for periodically driven engines see Refs. [53–55]. However, to
the best of our knowledge, the explicit form of maximum (and
minimum) efficiency at a given power (12) was not discussed
in the literature. The formulas (12) and (13) represent universal
bounds on the efficiency of linear irreversible models. They
depend just on the upper bound for the EMP, which for all
these models is equal to ηC/2.

Another important general feature encoded in the exact
formula (11) is that the engine efficiency can increase
significantly when the power is changed slightly from its
maximal value. Focusing on the branch of the solution for
which η > η�, we obtain for the relative gain in efficiency

δη

(−δP )
≈ q2

2 − q2

1√−δP
, δP → 0−. (14)

The relative gain (14) diverges when power is close to P �,
which means that the gain in efficiency when working near

maximum power is much larger then the power loss. The
upper bound for this gain, 1/

√−δP , is obtained in the strong
coupling limit q2 → 1.

Concluding remarks. Universality of the efficiency at
maximum power has been discussed rather intensively in
recent years. Within the framework of linear irreversible
thermodynamics, EMP is bounded by ηC/2. Our present
work extends this universal upper bound to engines operating
at arbitrary fixed power. The result is given in Eq. (2). In
future studies it would be interesting to extend the present
ideas beyond the linear regime in ηC . In the case of EMP,
the quadratic term in ηC turns out to be universal under
assumptions of certain symmetries of nonlinear response
coefficients [9–11]. We believe that similar logic can lead to
the universal generalization of our result (2) beyond the linear
regime.

Equation (14) tells us how favorable it is to operate the
engine at a slightly lower power than at the maximal one. In
such a regime, the engine attains considerably larger efficiency
than the EMP. The upper bound (3) for the gain in efficiency
is obtained in the strong-coupling limit q2 → 1, where the
equality δη = √−δP holds. For a finite coupling strength,
the gain is controlled by the q-dependent prefactor. The two
results (the upper bound and the actual value of the prefactor)
were derived systematically from the exact expression for the
efficiency (11). However, the scaling relation δη ∼ √−δP

should be valid for a large class of models. To see this,
let us consider a small deviation ε from the point of the
maximum power (in the present model ε = X1 − X�

1). Since
the power attains its maximum at ε = 0, the series expansion
of the difference (P − P �) starts by the quadratic term,
(P − P �) ≈ −|c|ε2. When the efficiency can be expanded as
(η − η�) ≈ aε, we always have δη ∼ √−δP . Indeed, such
scaling is observed in different unrelated settings [26–29]. It
would be interesting to find an engine for which this scaling is
violated. Then one may obtain even stronger gain in efficiency
for a slight decrease of power below P �.

Finally, it should be noted that another class of universal
results for EMP is known for the so-called low-dissipation
heat engines [12–14,56]. In our subsequent work [29] we
generalize the present considerations to these systems, further
clarifying the universality of both the derived bound (2) and
the relation (14).
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