
PHYSICAL REVIEW E 93, 043321 (2016)

Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with
local interaction

Francesco Calcavecchia*
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We use the shadow wave function formalism as a convenient model to study the fermion sign problem
affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of
imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-
time propagation. Moreover, we derive an analytical expression that connects the localization of the system with
the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the
computational complexity of the fermion sign problem and methods for alleviating its severity.
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I. INTRODUCTION

The fermion sign problem is one of the most renowned
open problems in computational physics. It consists of finding
a general algorithm able to determine the exact fermionic
ground state with a computational cost that grows at most
polynomially with the number of simulated particles. In fact,
all known exact algorithms for classical computers scale
exponentially except for a small class of model systems [1–9].
In particular, quantum Monte Carlo (QMC) methods [10–13],
which are able to provide the exact bosonic ground state in
polynomial time for a wide range of Hamiltonians, suffer from
a sign problem when applied to fermions. In the following we
will often refer to the solution of the fermion sign problem,
implicitly meaning that the exact fermion ground state is
obtained in polynomial time rather than in exponential time
with respect to the number of particles.

In complexity theory, the class of decision problems solv-
able in polynomial time on a deterministic (classical) machine
is called P (deterministic Polynomial time), whereas problems
which can be efficiently solved by probabilistic algorithms are
called BPP (Bounded-error Probabilistic Polynomial time).
In respect to this terminology, general fermionic simulations
suffering from the sign problem seem to remain outside
the P-BPP classes. This is reminiscent of Non-deterministic
Polynomial Complete (NPC) problems, a set of hundreds of
apparently different problems that, despite many efforts, have
not been solved yet. The most famous of such problems is the
“traveling salesman” problem, formulated in 1930. Notably,
it has been found that all these problems are mappable one
into the other, so that the solution of one of them would
imply the solution of all of them [14]. The fact that it has
not been possible to solve even one of them justifies the
common belief that these problem are intractable. As a matter
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of fact, NPC problems are so firmly believed to be intractable
that all classical encryption schemes rely on this conjecture.
However, despite the importance of this conjecture (known
in the literature as the NP �= P hypothesis), a proof is still
missing.

In 2005, Troyer and Wiese provided a demonstration of the
NP-hardness of the Monte Carlo (MC) sign problem [15] for
a specific Hamiltonian. The NP-hard problems are a class of
problems which are mappable in polynomial time into NPC so
that solving any NP-hard problem would provide the solution
to all NPC problems. In this sense NP-hard problems are said
to be the hardest ones, as they are at least as hard as any other
NPC problem (see Fig 1).

In the present paper, we focus on fermionic QMC
simulations of continuum systems with local interactions,
e.g., nonrelativistic electrons interacting via static Coulomb
potential, and discuss in detail the corresponding fermion
sign problem. In particular, we study the performance of the
imaginary-time projection techniques for these systems, which
provide polynomial scaling solutions to the corresponding
bosonic problems. We give a general proof of the exponential
scaling of the efficiency of such algorithms, both in fermion
number and projection time. Further, we explicitly show that
localized orbitals can drastically reduce the sign problem.
Our discussion is based on the shadow wave function (SWF)
formalism [16]. If the fermion sign problem can be solved for
the SWF, such a solution will be extendable to all the other
QMC methods, whereas if SWF can be proved to fall in the
NP-hard class, the same will apply to the other imaginary-time
projection QMC methods.

We remark that, even if a problem is NP-hard, one can
obtain approximate solutions, and work on the improvement
of the approximations. For example, even though the traveling
salesman problem cannot be solved exactly for many problems
of practical interest, there are several methods that provide
excellent approximations [17,18]. Concerning the fermion
sign problem, remarkable progress has been obtained in
recent years by employing more flexible trial wave functions
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FIG. 1. Schematic representation of computational complexity of
QMC simulations.

and improved optimization procedures, which systematically
reduce the deviations from the exact ground state [19–22].

A different strategy which we follow in this paper is to
alleviate the sign problem, where one aims to reduce the
prefactor of the ultimate exponential decay in the signal of
the desired quantities, similarly to the released-node algorithm
[23] or different exact fermion simulations [24–30]. In order
to compare different approaches in the following, we refer to
the Monte Carlo efficiency, defined as

η ≡ 1

(cpu time) × var
, (1)

where var is the variance of the computed quantity. The SWF
is a perfect tool bench for a systematic study of the efficiency
of different strategies, as the severity of the sign problem
can be controlled by kernel parameters, and the method itself
is considerably cheaper than most imaginary-time projection
methods.

This paper is structured as follows. In Sec. II we introduce
the shadow wave function formalism, and then explain its
connection with diffusion Monte Carlo and path-integral
ground state in Sec. III. We will characterize its fermion
sign problem when using a Slater determinant of simple plane
waves in Sec. IV, and generalize this result to orbitals of any
kind in Sec. V. We will then review some general methods
that have been proposed to tackle the fermion sign problem in
Sec. VI, and finally discuss its computational complexity in
Sec. VII. The conclusions are drawn in Sec. VIII.

II. THE SHADOW WAVE FUNCTION FORMULATION

The shadow wave function (SWF) is a class of variational
trial wave functions which, by embedding an integral, can
profit from a great flexibility [16,31]. In general, the SWF can
be written as

�SWF(R) = JR(R)
∫

dS �(R,S)ϕT(S)

=
∫

dSϕSWF(R,S),

(2)

where R ≡ (r1,r2, . . . ,rN ) represents the particle coordinates,
S labels some 3N -dimensional auxiliary coordinates, JR is a
Jastrow, ϕT is a chosen trial wave function, and

�(R,S) = e−C(R−S)2
(3)

is the so-called kernel. The SWF efficiently removes a
large part of the bias introduced by the underlying trial
wave function, in particular close to phase transitions or in
inhomogeneous systems [32–37].

The application of the SWF to fermions requires the
fulfillment of the Fermi-Dirac statistics by the use of an
antisymmetric form for spinlike particles. In the following we
split the trial wave function into the product of a symmetrical
part, the Jastrow factor, times an antisymmetrical part, usually
taken as a Slater determinant.

A straightforward antisymmetrization of Eq. (2) gives the
fermionic shadow wave function (FSWF) form

�FSWF(R) = JR(R)
∫

dS �(R,S)JS(S)�(S)

=
∫

dSϕFSWF(R,S),

(4)

where � represents a Slater determinant and JS a Jastrow.
Unfortunately, the FSWF introduces a sign problem [38] which
emerges by the fact that the product ϕ∗

FSWF(R,S1)ϕFSWF(R,S2)
is not necessarily positive.

The sign problem of FSWF is avoided using the antisym-
metric shadow wave function (ASWF)

�ASWF(R) = JR(R)�(R)
∫

dS �(R,S)JS(S)

=
∫

dSϕASWF(R,S),

(5)

since ϕ∗
ASWF(R,S1)ϕASWF(R,S2) is guaranteed to be positive

for any R, S1, and S2.
Typically, FSWF is considered of higher quality and

expected to yield lower variational energies than ASWF.

III. CONNECTION BETWEEN SWF, DMC, AND PIGS

The SWF can be regarded as a prototype method for any
kind of imaginary-time projection method, since the kernel
has the form of an approximated Green’s function with C

proportional to the inverse imaginary-time propagation τ .
Let us consider a trial wave function ϕT which is not

orthogonal to the exact ground state. It is well known that
a propagation in imaginary time will eventually project it to
the exact ground state, i.e.,

e−τH |�T〉 τ→∞−−−→ |�GS〉. (6)

In order to build a concrete algorithm built upon such property,
we make use of the Suzuki-Trotter formula and write

e−τ (T +V ) � e−τT e−τV , (7)

which is exact in the limit τ → 0.
In order to conciliate the necessity of having a large τ

[Eq. (6)] with the Suzuki-Trotter approximation which requires
a small τ , we can break the propagation into several small ones.
Given an Nτ > 1 such that δτ ≡ τ/Nτ is small enough for the
approximation in Eq. (7) to hold, the operators e−δτT e−δτV can
be applied iteratively to the trial wave function to project out
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the ground state wave function

|�GS〉 � |�T[τ ]〉 ≡ e−τH |�T[0]〉

�
(

Nτ∏
i=1

e−δτT e−δτV

)
|�T[0]〉. (8)

The SWF has the functional form of single propagation δτ ,
since the kinetic energy propagator is a diffusor term in the
coordinate space, i.e.,

〈R|e−δτT |R′〉 ∝ e− (R′−R)2

4δτ . (9)

Using a variation of the Suzuki-Trotter approximation which
splits the potential propagator on the left and on the right
symmetrically,

e−δτ (T +V ) � e− δτ
2 V e−τT e− δτ

2 V , (10)

we can write (assuming that the potential V is real and local)

ϕT[δτ ](R) = 〈�T[δτ ]|R〉
= 〈�T[0]|e− δτ

2 V e−δτT e− δτ
2 V |R〉

=
∫

dS〈�T[0]|S〉〈S|e− δτ
2 V e−δτT e− δτ

2 V |R〉

=
∫

dS ϕT(S)e− δτ
2 V (S)e− (R−S)2

4δτ e− δτ
2 V (R). (11)

The generic form of the SWF [Eq. (2)] is the one obtained by
mapping

1

4δτ
�→ C,

ϕT(S)e− δτ
2 V (S) �→ ϕT(S), (12)

e− δτ
2 V (R) �→ JR(R).

Such improved trial wave function can be used in the context
of the variational Monte Carlo (VMC) method [39] for finding
an approximated ground state solution.

In contrast to projector Monte Carlo methods, e.g., diffusion
Monte Carlo (DMC) or path-integral ground state Monte Carlo
(PIGS), SWF can be considered as a single step of a chain of
small imaginary-time propagations. As a consequence, SWF is
in general not exact, even though it often captures most of the
corrections of the imaginary-time propagation, while retaining
a low computational cost. Further, SWF remains an explicit
trial wave function subject to the Rayleigh-Ritz variational
principle, and δτ (corresponding to C) can be regarded as a
variational parameter at variance with projector Monte Carlo
methods which must be extrapolated to the limit δτ → 0.

IV. THE SIGN PROBLEM OF THE FERMIONIC SHADOW
WAVE FUNCTION

The sign problem of the fermionic shadow wave function
has been explored numerically in Ref. [38]. In this section we
are going to introduce two different approaches which justify
qualitatively and quantitatively its occurrence.

We will assume that the orbitals of the Slater determinant
are simple plane waves throughout this whole section and
generalize the results to any kind of orbitals in Sec. V.

A. Ratio with a positive-definite distribution

The expectation value of an operator O computed averaging
over a shadow wave function is written

〈O〉 =
∫

dR dS1 dS2 ϕ∗
SWF(R,S1) O ϕSWF(R,S2)∫

dR dS1 dS2 ϕ∗
SWF(R,S1)ϕSWF(R,S2)

=
∫

dR dS1 dS2 ϕ∗
SWF(R,S1)ϕSWF(R,S2) OL(R,S2)∫

dR dS1 dS2 ϕ∗
SWF(R,S1)ϕSWF(R,S2)

,

(13)

where

OL(R,S) ≡ OϕSWF(R,S)

ϕSWF(R,S)
. (14)

If we denote by ρ(R,S1,S2) the probability density function
(pdf) that we intend to sample from, and introduce the
corresponding weight

w(R,S1,S2) = ϕ∗
SWF(R,S1)ϕSWF(R,S2)

ρ(R,S1,S2)
, (15)

then we can recast Eq. (13) as

〈O〉 =
∫

dR dS1 dS2 ρ(R,S1,S2) w(R,S1,S2) OL(R,S2)∫
dR dS1 dS2 ρ(R,S1,S2) w(R,S1,S2)

.

(16)
If the product ϕ∗

SWF(R,S1)ϕSWF(R,S2) is positive-definite,
we can chose ρ such that w = 1 and no sign problem will
occur.

However, if this is not the case, a typical choice is

ρ(R,S1,S2) ≡ |ϕ∗
SWF(R,S1)ϕSWF(R,S2)| (17)

and therefore

w(R,S1,S2) = sgn[ϕ∗
SWF(R,S1)ϕSWF(R,S2)] = ±1, (18)

introducing a sign problem. The expectation value of O is then

〈O〉 = 〈w OL〉ρ
〈w〉ρ , (19)

where by 〈. . . 〉ρ we mean the average resulting from sampling
the pdf ρ. Let us now focus on 〈w〉ρ .

In the case of PIGS with a projection time τ or path-integral
Monte Carlo at finite temperature T = 1/τ , 〈w〉ρ is equal
to the ratio between the fermionic and the bosonic partition
functions [40] (where the bosonic system is defined by the
positive-definite weight |w|) and therefore

〈w〉ρ = e−τN
F , (20)

where N is the number of particles and 
F � 0 is the free
energy difference per particle between the fermionic and the
bosonic system. Relation (20) explains the exponential decay
in efficiency, as

σ (〈w〉ρ)

〈w〉ρ =
√

〈w2〉ρ − 〈w〉2
ρ

M〈w〉2
ρ

=
√

1/〈w〉2
ρ − 1

M
∼ eτN
F

√
M

,

(21)
where M is the number of sampled points. Since the relative
error of 〈O〉 is given by the sum of the relative errors of 〈wOL〉ρ
and 〈w〉ρ , we can see that Eq. (21) is sufficient to explain the
exponential decay of the efficiency of any observable with N

and τ .
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In the case of SWF, we can evaluate 〈w〉ρ explicitly, by
making two assumptions:

(i) The bosonic system is represented by an ASWF;
(ii) correlation factors (Jastrow) do not play a crucial role

and therefore can be omitted.
Under these assumptions, 〈w〉ρ associated with �FSWF,

〈w〉FSWF =
∫

dR dS1 dS2 ϕ∗
FSWF(R,S1) ϕ∗

FSWF(R,S2)∫
dR dS1 dS2 ϕ∗

ASWF(R,S1) ϕ∗
ASWF(R,S2)

, (22)

can be simplified using

ϕFSWF(R,S) � e−C(R−S)2
det(eikα ·sβ ),

ϕASWF(R,S) � e−C(R−S)2
det(eikα ·rβ ),

(23)

where exactly N wave vectors k are occupied in the Slater
determinant, and where we assume a spin-polarized system
with N fermions for simplification. We then have∫

dSe−C(R−S)2
det(eikα ·sβ )

=
(

π

C

) 3N
2

e−
∑N

i=1 k2
i

4C det(eikα ·rβ ) (24)

so that we can integrate out dS1dS2 and obtain

〈w〉FSWF � e−
∑N

i=1 k2
i

4C

∫
dR det(e−ikα ·rβ ) det(eikα ·rβ )∫

dR det(e−ikα ·rβ ) det(eikα ·rβ )

= e−
∑N

i=1 k2
i

4C . (25)

In the thermodynamic limit we then get

〈w〉FSWF ∝ e− N
C

ρ2/3
, (26)

where ρ is the density. Therefore, the efficiency of a QMC
simulation for computing 〈O〉 employing the FSWF is written

η ∝ e− N
C

ρ2/3
. (27)

Assumptions (i) and (ii) may be relaxed for situations where
reweighting is possible, but in Sec. IV B we will derive the
same scaling without relying on them at all.

B. Difference with a positive-definite distribution

In the spirit of the control variates technique [41,42], we
recast the FSWF as

�FSWF(R) =
∫

dS[ϕFSWF(R,S) − ϕ̃FSWF(R,S)]

+
∫

dS ϕ̃FSWF(R,S), (28)

with

ϕ̃FSWF(R,S) = JR(R) J̃S(R) �(R,S)�(S). (29)

We can now chose the local normalization factor, J̃S(R), such
that ∫

dS ϕ̃FSWF(R,S) =
∫

dS ϕFSWF(R,S). (30)

We see that ϕ̃FSWF is a fermionic shadow wave function in
which the shadow-shadow correlation has been replaced by an

effective local Jastrow J̃S(R). Although needed for our proof,
the reader should bear in mind that the normalization factor
involved cannot be easily estimated; its computation itself will
lead to a sign problem.

We now integrate out the shadows, in order to eliminate the
sign problem in the second integral of Eq. (28):

�̄FSWF(R) ≡
∫

dS ϕ̃FSWF(R,S)

= JR(R) J̃S(R) �(R)

(
π

C

) 3N
2

e−
∑N

i=1 k2
i

4C

= JR(R) J̃S(R) �(R) e−
∑N

i=1 k2
i

4C

∫
dS �(R,S)

=
∫

dS ϕ̄FSWF(R,S), (31)

where we have formally reintroduced the shadows. We can
see that �̄FSWF can be regarded as the closest ASWF to the
given FSWF, i.e., a “bosonized” FSWF. Notice that �̄FSWF(R)
does not contain a Slater determinant evaluated on the shadow
coordinates anymore; hence this wave function is not affected
by the sign problem.

The FSWF can now be written as

�FSWF(R) =
∫

dS[ϕFSWF(R,S) − ϕ̃FSWF(R,S)

+ ϕ̄FSWF(R,S)]

= JR(R)
∫

dS�(R,S) J̃S(R)

×
[
�(S)

(
JS(S)

J̃S(R)
− 1

)
+ �(R) e−

∑N
i=1 k2

i
4C

]
. (32)

If the term ( JS(S)
J̃S(R)

− 1) were zero, we would have solved the
sign problem.

Let us now assume that we are able to sample from the
signal, i.e.,

ρ(R,S1,S2) = ϕ̄∗
FSWF(R,S1) ϕ̄FSWF(R,S2); (33)

then the weight corresponding to our original sampling,
Eq. (32), is written

w(R,S1,S2) =
[

1 + �(S1)

�(R)

(
JS(S1)

J̃S(R)
− 1

)
e

∑N
i=1 k2

i
4C

]

×
[

1 + �(S2)

�(R)

(
JS(S2)

J̃S(R)
− 1

)
e

∑N
i=1 k2

i
4C

]
, (34)

which can be seen as

weight = signal + noise, (35)

where signal = 1. Hence, we require that

|〈noise〉| < ε|〈signal〉|, (36)

where ε < 1 determines the final error of the calculation. We
get ∣∣∣∣

〈
�(S1)

�(R)

(
JS(S1)

J̃S(R)
− 1

)〉
e

∑N
i=1 k2

i
4C

+
〈
�(S2)

�(R)

(
JS(S2)

J̃S(R)
− 1

)〉
e

∑N
i=1 k2

i
4C
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+
〈
�(S1)�(S2)

�2(R)

(
JS(S1)

J̃S(R)
− 1

)

×
(

JS(S2)

J̃S(R)
− 1

)〉
e2

∑N
i=1 k2

i
4C

∣∣∣∣ < ε. (37)

Equation (37) is a necessary condition to avoid the sign
problem, and it contains all the information that we are looking
for.

In particular, we would like to know how the sign problem
scales with the number of particles. For that we use the
following reasoning: Suppose that we have performed a
calculation with N0 particles which provided us an estimate for
our observable within a given error bar and the corresponding
efficiency η0. We then change the number of particles to N =
κN0. To obtain the same accuracy, we must require that the
noise term in the weight is the same, i.e., 〈noise〉 = 〈noise0〉.
From Eq. (37), we can read a dependence from the number

of particles in the terms e−
∑N

i=1 k2
i

4C � e− N
C

ρ2/3
. Therefore, the

averages in Eq. (37) must be decreased by a factor e−κ
N0
C

ρ2/3
.

Assuming the variance of the noise integrand to be indepen-
dent of N , we have σ ∝ (number of sampled points)−1/2 ∝
(cpu time)−1/2 and we can conclude that log η/η0 ∝ −κ .

Similarly, we can derive the dependencies for C and ρ,
which gives

log η/η0 ∝ −N

C
ρ2/3, (38)

yielding the result of the previous subsection under more
general assumptions.

These prediction are confirmed by the numerical results re-
ported in [38] using FSWF trial wave functions to compute the

VMC energy of unpolarized liquid 3He (ρ = 0.016588 Å
−3

)
in three dimensions. In Figs. 2 and 3 these data are fitted
with an exponential function, demonstrating the exponential
dependency on N and C.
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1000
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FIG. 2. Efficiency of a VMC simulation of liquid 3He that
employs the FSWF [38], fitted with an exponential function ∼ e−kN ,
where k is a constant.

1.2 1.4 1.6 1.8 2

1/C =  [1/ ]
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1000
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100000

)]

FIG. 3. Efficiency of a VMC simulation of liquid 3He that
employs the FSWF [38], fitted with an exponential function ∼ e−k/C ,
where k is a constant.

V. GENERALIZATION TO ANY KIND OF ORBITALS

In this section we are going to generalize the dependence
of the efficiency on N , C, and ρ to the more general case of
Slater determinants which use any kind of orbitals.

To accomplish this result it is sufficient to work in Fourier
space. The matrix elements of the Slater determinant can be
expressed as an integral of a product of matrices over the
N-particle momentum space:

φα(rβ) =
∫

dkαe−ikα ·rβ φ̃α(kα)

∼
∫

dK

N∑
γ=1

(e−ikγ ·rβ )[φ̃α(kγ ) δγα]

=
∫

dK (e−ikγ ·rβ ) · (
Iφ̃α (kγ )

)
, (39)

where φ̃(k) is the Fourier transform of the orbital φ(r), and

Iφ̃α (kγ ) ≡ φ̃α(kγ ) δγα.

Therefore

det[φα(rβ)] ∼
∫

dK det(e−ikγ ·rβ ) det
(
Iφ̃α (kγ )

)

=
∫

dK det(e−ikγ ·rβ )
N∏

γ=1

φ̃γ (kγ ). (40)

In the following we will use the notation

�(R) ≡ det[φα(rβ)], �̃(K) ≡
N∏

γ=1

φ̃γ (kγ ), (41)

and

�pw(R,K) ≡ det(e−ikα ·rβ ). (42)

Following the idea used in Sec. IV B, we write:

ϕFSWF(R,S,K) = JR(R) �(R,S) JS(S) �̃(K) �pw(R,S),

ϕ̃FSWF(R,S,K) = JR(R) J̃S(R) �(R,S) �̃(K) �pw(R,S),
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ϕ̄FSWF(R,S,K) = JR(R) J̃S(R) �(R,S)e−
∑N

i=1 k2
i

4C

× �̃(K) �pw(R,K). (43)

Equation (32) can be recast as

�FSWF(R) ∼JR(R)
∫

dSdK�(R,S) J̃S(R)

×
[
�̃(K) �pw(S)

(
JS(S)

J̃S(R)
− 1

)

+ �̃(K) �pw(R)e−
∑N

i=1 k2
i

4C

]
, (44)

while Eq. (37) is written∣∣∣∣
〈
�pw(S1,K1)

�pw(R,K1)

(
JS(S1)

J̃S(R)
− 1

)
e

∑N
i=1 k2

i
4C

〉

+
〈
�pw(S2,K2)

�pw(R,K2)

(
JS(S2)

J̃S(R)
− 1

)
e

∑N
i=1 k2

i
4C

〉

+
〈
�pw(S1,K1)�pw(S2,K2)

�pw(R,K1) �pw(R,K2)

(
JS(S1)

J̃S(R)
− 1

)

×
(

JS(S2)

J̃S(R)
− 1

)
e2

∑N
i=1 k2

i
4C

〉∣∣∣∣ < ε. (45)

From Eq. (45) we see that the role played by e

∑N
i=1 k2

i
4C is now

played by 〈
�pw(S,K)

�pw(R,K)
e

∑N
i=1 k2

i
4C

〉
K

, (46)

where 〈. . . 〉K denotes the average over K obtained by sampling
from ϕ̄∗

FSWF(R,S1,K1)ϕ̄FSWF(R,S2,K2) for any given R, S1,
and S2. In other words, the factor which controls the efficiency
of the calculation is now a function of R and S.

Since we have no simple interpretation of Eq. (46), we
have numerically estimated its dependence on the degree of
localization of the orbitals employed in the Slater determinant.
For doing so we have neglected the Jastrow terms, and
considered only a kernel � and a Slater determinant �

containing Gaussian orbitals of the form e−G(S−P )2
, where P

labels some lattice positions. Figure 4 shows our results.
The numerical results demonstrate that the efficiency in-

creases exponentially when the orbitals become more localized
until it reaches a maximum and finally begins to decrease.
Such decrease at large G is due to other reasons than the sign
problem, as it affects also the ASWF. Therefore, in order to
isolate the sign problem dependency, we have introduced the
ratio between the FSWF efficiency and the ASWF one, which
are represented by triangular symbols in Fig. 4. Looking at
these data, we can notice that at large G there is a plateau
rather than a decay.

The threshold at which the ratio reaches a plateau can be
interpreted as the degree of localization at which the fermionic
statistics become irrelevant and the quantum particles can be
conveniently approximated as distinguishable.

In conclusion we have shown that there is a strong
correlation between the localization of the Slater determinant
orbitals and the sign problem which can be used to improve
the efficiency of fermion simulations.

0.5 1 1.5 2 2.5

G [1/Bohr ]

0.0001

0.001

0.01

0.1

1

10

100

1000

)]

FSWF
ASWF
Ratio

FIG. 4. Efficiency as a function of the Gaussian coefficient G
which enters in the Slater determinant orbitals. The data set ratio
reports the dimensionless ratio between the FSWF and the ASWF
values. Results were obtained by computing the expectation value
of the energy per particle of the electronic structure of a hydrogen
bcc atomic crystal with rs = 1.7 and periodic boundary conditions.
The lattice positions required by the Gaussians are the hydrogen’s
protons. We have used C = 1.

VI. ALLEVIATION OF THE FERMION SIGN PROBLEM
AND APPROXIMATED METHODS

As we have shown in the previous sections, Fermi statistics
entail a sign problem which in general makes simulations of
large number of fermions prohibitive. Nevertheless, given the
importance of fermionic systems for the comprehension of
many natural phenomena (e.g., quantum chemistry), different
methods which cope with these difficulties have been devised.
Here we will focus on methods which involve Monte Carlo
algorithms.

A first direct approach is to keep τ small, and employ a
very good starting trial function. In this way, it is possible
to find a lower upper bound to the exact ground state energy,
systematically improvable by increasing the quality of the trial
function. This approach goes under the name of release node
or transient estimates [23,24,43–46], and it corresponds to a
direct employment of the FSWF with a value of C as small
as possible within given computational limits. Such methods
would greatly benefit from any method able to alleviate the
severity of the sign problem. In the past years some remarkable
improvements have been achieved in this direction.

We begin by outlining briefly the Gaussian determinant
(Gdet) method [35], introduced for the study of vacancies in
solid 3He, and further investigated in [38]. The leading idea
is to sum over all the possible shadow permutations by means
of an antisymmetrical kernel consisting of a determinant of
Gaussian orbitals. In practice, it is sufficient to replace the
kernel with

�(R,S) → Gdet(R,S) ≡ det(e−C(rα−sβ )2
), (47)

where α and β label rows and columns of the matrix.
Figure 5 and 6 demonstrate that the exponential prefactor is
significantly reduced. The extension of the Gdet technique to
PIGS is straightforward, as it is sufficient to replace each
Gaussian kernel with a determinant of Gaussians, exactly

043321-6



FERMION SIGN PROBLEM IN IMAGINARY-TIME . . . PHYSICAL REVIEW E 93, 043321 (2016)
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1
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)]

Direct (pw)
GD (pw)
Direct (1s)
GD (1s)

FIG. 5. Comparison between a direct simulation employing the
FSWF and a calculation which employs the Gdet formulation. The
efficiency is calculated for different C and with two different choices
for the orbitals embedded in the Slater determinant: The 1s orbitals
and simple plane waves (pw). To obtain these results we simulated the
electronic structure of 3D solid hydrogen with a bcc crystal structure
and rs = 1.8, employing a Yukawa Jastrow both for JR and JS. The
results refer to simulations done with 16 atoms.

as for the SWF. In an unconstrained DMC method, where
walkers diffuse according to the standard Gaussian term, we
can multiply the branching probability by

Gdet(R,R′)/ exp

(
− (R − R′)2

4τ

)
, (48)

with typical values close to 1 for small τ . A negative value
of Gdet implies a switch of the walker from the population
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Direct - C=2.0 (pw)
Direct- C=2.0 (1s)
Direct - C=1.5 (pw)
Direct - C=1.5 (1s)
GD - C=2.0 (pw)
GD - C=2.0 (1s)
GD - C=1.5 (pw)
GD - C=1.5 (1s)

FIG. 6. Same as in Fig. 5 but exploring the dependency of the
efficiency on N . We show the results for different orbitals and choices
of C. The simulated physical system was the same as for Fig. 5.

0.7 0.8 0.9 1 1.1 1.2

1/C =  [1/Bohr ]

0.001

0.01

0.1

1

10

)] AMD
Direct

FIG. 7. Performance comparison between calculations with the
FSWF using the direct algorithm and the AMD method, for different
values of C. The results refer to the computation of the potential
energy of the electronic structure of 16 hydrogen atoms in a bcc crystal
structure at rs = 1.8. We employed a Yukawa Jastrow both for JR and
JS, and 1s orbitals within the Slater determinant. For approximating
the marginal distribution, we used a Slater determinant embedding
orbitals from Quantum Espresso [47]. The AMD results refer to the
best efficiency attainable by varying the parameters � and MS (see
[38]).

carrying a positive sign to the one representing negative
contributions.

A second method is the approximated marginal distribution
method (AMD) [38]. Here, the leading idea is to sample the
R coordinates from a modified sampling distribution which
is intended to account for the integration over the shadows,
and therefore provides a better representation of the marginal
distribution for R. At the same time, the weights which
carry the sign are computed by summing up the contributions
coming from multiple sampling of the shadows, according to
the grouping technique. The improvements attainable with this
method can be seen in Figs. 7 and 8. We point out that this
method is valuable when the sign problem is “strong,” whereas
the direct algorithm outperforms it in the opposite limit.

20 40 60 80 100 120

N

1x10-6

1x10-5

1x10-4

0.001

0.01

0.1

1

10

)] AMD
Direct

FIG. 8. Same as in Fig. 7 but changing the number of simulated
particles N . We used C = 1.3 bohr−2.
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Several approximated techniques which avoid the sign
problem are used routinely. Probably the most common one
is the fixed-node approximation [43,44,48–50] which imposes
a nodal surface, forcing the solution to be antisymmetrical.
Concretely, this is accomplished by taking an antisymmetrical
wave function ϕT and using the DMC scheme restricted to the
positive (or negative) domain of ϕT: Whenever a walker crosses
the nodal surface, it is suppressed. Through this procedure it is
possible to filter the best antisymmetrical ground state within
the given nodal surface. Therefore, the nodal surface is the
input that will determine the quality of the final result. The
fixed-node approximation has been successfully extended to
path-integral Monte Carlo [51]. For transferring the fixed-node
method to FSWF calculations, it is sufficient to choose a nodal
surface (typically using the Slater determinant of the FSWF)
and to require that S and its imaginary-time projection R be
in the same nodal region.

In the following we outline three general approaches which
have been devised in the past and aimed to an exact solution
of the fermion sign problem. Even if they have not been able
to fully overcome the exponential behavior, they might have
the potential to alleviate this trend.

In 1982, a Green’s function Monte Carlo algorithm for
fermions based on a cancellation process was introduced [52].
The proposed algorithm is based on the intuitive idea of having
two different populations of walker, one carrying a positive
sign and the other one a negative sign, which will cancel
each other if they get “close enough.” The method has been
employed for few-particle systems, but it suffers from a sub-
stantial drawback that prevents its application to many-body
system. The reason behind this is that the algorithm requires
a high density of walkers, and unfortunately such requirement
implies an exponential growth of the computational cost
proportional to the number of simulated particles, because of
the increased dimensionality of the problem. Further works in
the same direction [25,26,53,54] have shown that calculations
for small system sizes are feasible, but the fermion sign
problem is not solved in general.

In 1985 a method for treating the fermion sign problem
involving mirror potentials was devised [46], where a fictitious
repulsive interaction is used to keep the distribution of positive
and negative walkers apart from each other, and hence avoids
the collapse into the same bosonic ground state. By increasing
the repulsion between the two populations this method reduces
to the fixed-node approximation, whereas when it is set to zero
one obtains a release-node simulation. The mirror potential
method allows exact fermion calculations, but is limited to a
small number of particles due to the exponential growth in
number of walkers required to describe the mirror potential,
similarly to what happened with the cancellation idea. To
overcome this difficulty, it is possible to make use of a trial
wave function. However this will lead to an approximate result,
although potentially more accurate than the fixed-node one.

In the context of path-integral Monte Carlo, there was
an interesting attempt towards the solution of the fermion
sign problem in 1998–2000 [55,56]. The proposed approach
goes under the name of multilevel blocking, and consists
of distributing the integrals for the propagation of a single
imaginary time step 
τ in an elaborated pyramidal structure,
solving it in a bottom-up fashion. First one computes the

Nτ/2 integrals at the bottom, and then uses this information
to compute the integrals at a coarser level, i.e., for 2
τ .
This procedures is repeated until the integral for the full
imaginary-time propagation Nτ
τ is found. However, we
have seen that even a single integration step already introduces
a sign problem which scales exponentially in the number of
particles, so that the proposed scheme will eventually scale
exponentially, too.

In 2009 a new method, FCIQMC [57], for treating fermions
very accurately was introduced, based on a Monte Carlo
imaginary-time projection technique performed in the space
of Slater determinants, in the spirit of full configuration
interaction (FCI). In this method, if the number of walkers is
sufficient to populate such space, the FCI wave function will
emerge from the calculation within a less severe computational
cost compared to the traditional one [58]. However, the use of
such variational space for treating particle correlation implies a
size-extensivity problem. Nevertheless, this method has been
demonstrated to be competitive with other highly accurate
methods employed in quantum chemistry [59–63].

VII. COMPUTATIONAL COMPLEXITY OF THE FERMION
SIGN PROBLEM

In this section we discuss the computational complexity
of the fermion sign problem in QMC. Before going into the
details, we would like to briefly introduce the reader to the
complexity classes P, NP, NPC, and NP-hard. The interested
reader can refer to [14,64,65] for an exhaustive introduction to
the topic.

P is the class of problems which are solvable in polynomial
time: Provided an input problem of size n, there exists an
algorithm which can solve it in O(nk) time where k is a
constant. In our specific case, the input is provided by the
physical parameters of the system, the variational parameters
to be employed, and the Hamiltonian of the system. The
problem’s size is given by the number of simulated particles.

NP (nondeterministic polynomial) problems are the ones
which can be verified in polynomial time: Given a solution
(certificate) of the problem, there exists an algorithm that
can verify its correctness in O(nk) time. We remark that any
problem in P belongs also to NP, because if it is possible to
solve a problem in polynomial time, such a solution can be
used to verify a certificate.

In order to illustrate the NPC and the NP-hard classes
we need to further introduce the concept of reducibility. The
problem A is said to be polynomial-time reducible to problem
B if it is possible to find a map A �→ B which is computable
in polynomial time.

The NPC (NP-complete) problems are the NP problems
which have the additional property of being polynomial-time
reducible to any other NP problem. If a problem possesses the
latter property but not necessarily the first one, then it is said
to be NP-hard.

In the work of Troyer and Wiese [15], it has been shown that
a general QMC algorithm which is able to compute the most
general partition function can also be used to solve an NPC
problem. The reference NPC problem [66] is the following:
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Given a classical 3D Ising spin glass with Hamiltonian

H = −
∑
〈i1,i2〉

Ji1i2Si1Si2 (49)

and a bound energy E0, does a spin configuration with energy
E � E0 exist? The interaction matrix J has values j , 0, or −j

chosen randomly, and the spins S can have values ±1.
The latter decision problem is connected to Monte Carlo

calculations by the fact that provided a large enough inverse
temperature β, the average energy of the spin glass system will
be less than E0 + j/2 if a configuration with E � E0 exists,
and larger than E0 + j otherwise (basically, the simulated
annealing minimization method). As a consequence, the com-
putation of E with a Monte Carlo simulation would provide
an answer to the given 3D Ising spin glass NPC problem. In
other words, such Monte Carlo average is necessarily at least
as hard as an NPC problem; i.e., it is NP-hard.

Since the classical NPC problem in Eq. (49) can be mapped
in a quantum one simply by replacing classical spins with
quantum ones, a general algorithm to solve quantum problems
(including those with a sign problem) will provide also a
solution to our NPC problem and thus will be NP-hard
[15]. However, not all many-fermion systems pose NP-hard
problems and it remains open whether there is a criterion that
allows us to immediately distinguish an NP-hard situation from
P or BPP.

It would be of great importance to be able to better char-
acterize the fermion sign problem complexity. Is it possible to
devise a criterion in order to predict when the QMC simulation
will be NP-hard? Is it possible to find a case in which
the NP-hardness originates from the fermion statistic? Some
progress in this direction has been made recently [9,27,67–70]
identifying sets of Hamiltonians without the sign problem.

In the following we discuss a definition of the fermion sign
problem concerning purely continuum QMC simulation with
local interactions, using the SWF formalism.

Decisional fermion sign problem. Is the value of the integral∫
dS e−C(R−S)2

det
[
φα(sβ)

]
JS(S) (50)

strictly greater than zero?

If one could answer this decisional problem, exact fermion
calculations in polynomial time would be possible by employ-
ing the fixed-node algorithm. If the provided answer is affected
by a statistical error, as would be the case by using a Monte
Carlo technique, then the fixed-node method will have to make
use of the penalty method [71], whose efficiency will decrease
exponentially with the given statistical error.

Notice that this decisional problem does not admit the
existence of a certificate, as it is not in the form “does ... such
that ... exists?” Therefore one should find a corresponding
problem which will allow one to identify it as an NP-hard
problem (if it is such). Unfortunately, we have to leave this
question open.

VIII. CONCLUSION

We have presented the SWF formalism and showed that
the fermion sign problem appearing in typical imaginary-
time projection continuum QMC methods can be reduced to
the sign problem of the fermionic shadow wave function.
This formalism was used to characterize both analytically
and numerically the fermion sign problem, demonstrating
its dependence on the number of particles, length of the
imaginary-time projection, and localization of the system.
Even though it seems that the exponential decay of the
simulation efficiency cannot be overcome, we have shown
that some methods can lead to a significative reduction of
its exponential factor, thus extending the applicability of
exact QMC methods for fermions. Concerning the complex-
ity class of imaginary-time projection QMC algorithms, a
separate proof of the NP-hardness of 2D and 3D fermionic
systems with local interactions in continuum space is still
lacking.
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