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Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed
to be a realization of some parameterized model, the aim is to find parameter values that are able to explain
the observed data. In many situations, the dominant sources of uncertainty must be included into the model
for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter
inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics,
which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make
probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter
distributions for stochastic differential equation models calibrated to measured time series. The algorithm is
inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin
to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data.
To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple
time-scale integration. A separation of time scales naturally arises if either the number of measurement points
or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we
can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics
analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

DOI: 10.1103/PhysRevE.93.043313

I. INTRODUCTION

Modeling a dynamical process starts with a basic model
that is usually obtained from a more or less deep insight into
the nature of the process. The next step is the determination
of the parameters of the model, based on observed data,
which is generally a highly nontrivial task, in particular when
complex behavior of such systems needs to be predicted or
when the measurements are noisy. A minimal example is a
perceptron [1,2], the basic element of a neuronal network, that
predicts the double cosine value associated with the input of
the corresponding sine function plus the sine’s value at a fixed
earlier time. While this task can easily be achieved for clean
data using gradient descent learning, for noisy input data, this
is largely impossible, as noise cannot be learned. The result is
a distribution of potential parameter values (Fig. 1).

In Bayesian statistics, knowledge about parameters is
expressed by probability distributions and learning is imple-
mented as an update rule on these distributions (see, e.g.,
Ref. [3]). If a constant noise term is added to the output of
a deterministic model, such as in the perceptron example
above, then Bayesian inference is straightforward. If noise
enters the formulation of the model equations, however, then
Bayesian inference all of a sudden becomes computationally
very expensive.

In our paper, we demonstrate the calibration of ordinary
one-dimensional (1D) stochastic differential equation (SDE)
models based on noisy time series and the quantification of the
resulting parametric uncertainty. The generic approach that we
use is exemplified by a simple SDE model from hydrology.

Problems of this kind are commonly solved by Monte
Carlo (MC) methods that are based on simulating model
realizations and comparing them to the data. Popular methods
are particle filters [4,5], Metropolis-within-Gibbs algorithms

[6,7], or approximate Bayes computations [8–11]. A major
problem with these simulation-based methods is, however,
their inefficiency in the presence of many data points or high
dimensions. One solution is to map the output space to a
smaller dimensional space of summary statistics and accept
or reject proposed model parameters depending on how well
associated model runs conform with the data in terms of these
summary statistics [12]. However, a method to choose the
summary statistics to achieve a significant representation of the
posterior parameter distribution is a largely unsolved problem.

These difficulties can be remedied with a reinterpretation of
the Bayesian posterior distribution as the partition function of
a statistical mechanics system and by simulating the dynamics
of the latter. After discretizing the time of the original problem,
we are led to a problem akin to the statistical mechanics
of a polymer with harmonic bonds in an exterior potential
[13]. In this framework, the measurements are interpreted
as an additional exterior potential that acts only on the
polymer’s “measurement beads” and confines their dynamics
within the measurement uncertainty. The model parameters
are interpreted as additional degrees of freedom coupling to
all the beads of the polymer. To simulate the dynamics of
this system, we apply the Hamiltonian Monte Carlo (HMC)
algorithm [14], which combines molecular dynamics [15,16]
with the Metropolis algorithm [17]. Compared to traditional
methods, the use of the Hamiltonian approach achieves much
higher acceptance rates since data points are already used for
the suggestion of new parameters, and thus model realizations
incompatible with the data are never considered. The drawback
is that the model equations need to be known and derivatives
have to be calculated.

HMC requires two sets of parameters to be tuned: (i) the
parameters that define the kinetic energy of the statistical
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FIG. 1. General problem setting: Parameter estimation (synaptic
weights w1,w2) of a perceptron from (a) noiseless and (b) noisy data
(noise sampled from a flat distribution over the interval [−0.2,0.2]).
Whereas for noiseless data the estimates perfectly converge, for noisy
data the estimates the system attempts to also include the noise,
leading to a nontrivial distribution of the parameter estimates and
rendering the extraction of the optimal parameters a nontrivial task.
Open circles: location of the optimal parameters in the noiseless case.

mechanics system and (ii) the parameters that define the
numerical integration scheme of Hamilton’s equation in the
molecular dynamics part of the HMC algorithm. Efficiency of
HMC algorithms can be gained if the kinetic term is made
dependent on the configuration geometry of the statistical
mechanics system. If the Riemann geometry of the parameter
space of statistical models is taken into account, then the
simulated search of paths across this manifold samples the
target density in a very efficient way [18]. Unfortunately,
this procedure is both demanding and computationally costly,
depending strongly on the quality of the space’s extracted
geometry.

Here we explore a computationally simpler approach that,
to our knowledge, has never been applied in the context
of Bayesian inference before. Depending on the number of
discretization points needed to approximate the original SDE
system and the number of measurement points, the dynamics
of the statistical mechanics system happen on very different
time scales. This suggests a multiple time-scale integration
technique for the simulation of the statistical mechanics
system [19]. We will show that for 1D SDE we can always
find a parametrization that decouples the harmonic modes
in between measurement points from both the measurement
points and the model parameters and allows for an analytical
time-saving solution of the fastest part of the dynamics. While
for higher-dimensional problems it is not always possible
to solve part of the dynamics analytically, we believe that
scale separation alone will render many SDE amenable to a
full-fledged Bayesian inference with time series. In fact, scale
separation appears to be a generic feature if the dynamics of
the SDE requires a large number of discretization points.

II. INFERENCE PROBLEM SETTING

Consider, for simplicity and concreteness, a reservoir
dynamics S(t) that on the observation time scale is linear,
with other (inflow and outflow) processes happening at much
shorter time scales, so they can be described by white noise.
Furthermore, assume that this noise scales linearly with the
system state S(t). The model equation is thus given by the

SDE

Ṡ(t) = r(t) − 1

K

(
1 + γ

2

)
S(t) +

√
γ

K
S(t)η(t), (1)

where r(t) denotes the time-varying rain input, K denotes the
retention time, γ is the noise strength, and η(t) indicates the
white noise property, i.e.,

〈η(t)η(t ′)〉 = δ(t − t ′). (2)

Equation (1) is to be understood in the Stratonovich sense [20].
Properties of a transformed version of (1) have been derived

for constant input [21–23]. Here, suffice it to say that, for
constant input r(t) = r0, the equilibrium distribution, Peq(S),
is an inverse � distribution with scale parameter 2Kr0/γ and
shape parameter (2 + γ )/γ (see Sec. III A), i.e.,

Peq(S) ∝ S−2(1+γ )/γ e−2Kr0/(γ S). (3)

The mean of this expression equals the equilibrium solution of
the unperturbed system (γ = 0) 〈S〉eq = Kr0 and its variance,
for γ < 2, is given by 〈(S − 〈S〉eq)2〉eq = K2r2

0 γ /(2 − γ ),
which, for γ � 2, is seen to diverge. The power-law decay
of the inverse � distribution is reminiscent of the invariance
of Eq. (1) under rescaling of both r(t) and S(t). In real-world
hydrology, for which Eq. (1) is a model, indeed often fat-tailed
error distributions are observed [24].

While this equation was motivated by a popular hy-
drological model [25,26], it is by no means restricted to
this context. By means of the transformation S(t) = 1/n(t),
Eq. (1) turns into a model that has been suggested, e.g., as a
phenomenological description of the dynamics of the neutron
density in nuclear reactors [21].

In our setting, the input r(t) is a smooth and nowhere-
vanishing function. We assume the observed time series,
ys , to be the outflow of the reservoir, S(t)/K , observed
at times 0 = t1 < t2 < · · · < tn+1 = T , with multiplicative
independent log-normal errors,

ln (ys) = ln

[
S(ts)

K

]
+ σεs , s = 1, . . . ,n + 1, (4)

where the εs are uncorrelated standard normal errors. For
simplicity, we assume σ as well as the input r(t) to be known,
so we are left with the task of inferring parameter combinations
(K,γ ) that are compatible with the data given by Eq. (4)
in the Bayesian sense, where knowledge about parameters
is expressed in terms of probability distributions.

We start our treatise by assuming that we have prior
knowledge about a parameter vector, θθθ , in the form of a
probability distribution, fprior(θθθ), and measured data, y,
believed to be a realization of the model. The posterior
knowledge, combining prior knowledge with the one acquired
from the data, is calculated by means of equation

fpost(θθθ |y) = fprior(θθθ)L(y|θθθ)∫
fprior(θθθ ′)L(y|θθθ ′)dθθθ ′ , (5)

where L(y|θθθ) is the probability distribution for model outputs
given model parameters, evaluated at the measured data (the
infamous likelihood function).

Before we set out to derive from Eqs. (1), (2), and (4)
the likelihood function, we express the parameters and state
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variables by dimensionless quantities. Due to scale invariance
of the noise term, γ is already dimensionless. State variable
S(t) and parameter K are replaced by the dimensionless
quantities q(t) and β, respectively, which are defined by the
transformations β = √

T γ/K and S(t) = [T γ r(t)/β2]eβq(t).
In these new variables and parameters, Eq. (1) becomes the
nonlinear SDE with constant noise

q̇(t) = β

T γ
e−βq(t) − 1

T
ρ(t) + 1√

T
η(t) , (6)

with ρ(t) = (T/β)(d/dt){ln [r(t)]} + (2 + γ )β/(2γ ).

The probability P (q1,T |q0,0) of finding the system in a
state q1 at time t = T , if it was in an initial state q0 at time
t = 0, is expressed as a path integral as

P (q1,T |q0,0) = 1

Z

∫
e−S[q,q̇]δ[q(T ) − q1]δ[q(0) − q0]Dq,

(7)

where the integral extends over all paths q : [0,T ] → R and
where the path-measure Dq is formally written as the infinite
product Dq = ∏

t dq(t). The action is a functional on the
space of paths and reads [27]

S[q,q̇] = 1

T

∫ T

0
dt

{
1

2

[
T q̇(t) + ρ(t) − β

γ
e−βq(t)

]2

− β2

2γ
e−βq(t)

}
. (8)

This action includes the Jacobian that is introduced when changing coordinates from η(t) to q(t).
If we denote the parameter vector θθθ = (β,γ )T and assume a flat prior, then the posterior (5) is, as a function of θθθ , proportional

to the likelihood function

fpost(θθθ |y) ∝
∫

exp

(
−1

2

n+1∑
s=1

{ln[ys/r(ts)] − βq(ts)}2

σ 2
− S[q,q̇]

)
Dq. (9)

Whereas the first term in the exponent describes the log-
probability distribution of model outputs, for given model pa-
rameters, inputs, and a system realization q(ts), the second term
is the log-probability of the associated system realization q(t).

When applying this approach now to real-world problems,
instead of undertaking a prohibitive numerical computation of
the path integral, we apply HMC to sample parameter vectors
from a joint distribution of system realizations and model
parameters given by an appropriate discretization of the action
of the path integral. By doing so, we observe that we obtain
distinct regimes of time scales in the Hamiltonian that can be
separated (see Sec. III B). This time-scale separation simplifies
and boosts our algorithm; in many cases it even permits parts
of the required integrations to be done analytically.

III. ALGORITHM

A. Inference algorithm

For the inference algorithm, it is necessary to rewrite action
(8) with the help of the time-dependent potential U (q,t) =
1
γ
e−βq + qρ(t) as

S[q,q̇]

= 1

T

∫ T

0
dt

{
1

2
T 2q̇2(t) + 1

2

[
ρ(t) − β

γ
e−βq(t)

]2

−T
∂U (q,t)

∂t
− β2

2γ
e−βq(t)

}
+ U (q(T ),T ) − U (q(0),0)

= 1

T

∫ T

0
dt

{
1

2
T 2q̇2(t) + 1

2

[
ρ(t) − β

γ
e−βq(t)

]2

−T q(t)ρ̇(t) − β2

2γ
e−βq(t)

}

+ 1

γ
e−βq(T ) + q(T )ρ(T ) − 1

γ
e−βq(0) − q(0)ρ(0). (10)

With the action in this form, we easily derive the equilibrium
distribution, for constant input r(t) = r0, by plugging (7) and
(10) into the detailed balance condition

P (q1t1|q0t0)Peq(q0) = P (q0t1|q1t0)Peq(q1), (11)

and using the transformation q(t) → q(−t). We get, since
ρ̇(t) = 0,

Peq(q) ∝ e−2U (q).

Back-transformation to the original variables leads to Eq. (3).
For efficiently drawing parameter samples from (9), we

interpret the latter as the partition function of a 1D statistical
mechanics system and simulate its dynamics employing the
HMC algorithm [14]. The model parameters θθθ are interpreted
as additional dynamical degrees of freedom coupling to the
system variables q(t). Each degree of freedom, q(t) and θθθ , is
paired with a conjugate variable, p(t) and πππ , respectively, so
the system is defined by the Hamiltonian

HHMC(q,θθθ ; p,πππ ) = K(p,πππ) + V (q,θθθ ), (12)

where

K(p,πππ ) =
∫ T

0

p2(t)

2m(t)
dt +

2∑
α=1

π2
α

2mα

, (13)

and V (q,θθθ ) is the negative logarithm of the kernel of (9). The
posterior (9) can then be expressed by the phase-space path
integral

fpost(θθθ |y) ∝
∫

e−HHMC(q,θθθ ;p,πππ )DpDqdπππ. (14)

The HMC method, as a combination of the Metropolis
algorithm [17] and molecular dynamics methods [15,16],
iterates the following steps:

(1) Momenta p(t) and πππ are sampled from the Gaussian
distributions defined by Eq. (13).
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(2) The system is then allowed to evolve in (q,θθθ ; p,πππ )
phase space for an arbitrary time interval τ according to
a volume-preserving and time-reversible solution of a dis-
cretized set of Hamilton equations.

(3) The discretization error on the energy preservation due
to the previous step is corrected by a Metropolis acceptance or
rejection step.

The last step is the standard Metropolis algorithm, while
the first two steps permit arbitrarily large jumps in phase
space, while maintaining an arbitrarily large acceptance rate.
Each new phase-space configuration is associated with a
combination of model parameters θθθ , which is compatible with
the data in the Bayesian sense. Thus, omitting a possible
burn-in, the parameter marginal of the simulated Markov
chain of configurations represents a sample of the posterior
probability distribution.

In order to simulate the dynamics of the Hamiltonian (12),
we first need to discretize the path integral (14). Let us assume
that the measurement time points {ys}s=1,...,n+1 of the time se-
ries (4) are equidistantly distributed on the time interval [0,T ],
with t1 = 0 and tn+1 = T . Each interval between two consec-
utive data points is further partitioned into j bins, such that
we have a total of nj + 1 = N � 1 discretization points. The
path integral (14) is then approximated by an ordinary integral,
with the approximate path measure DpDq ≈ ∏

i dpidqi . The
discretized versions of K(p,πππ) and V (q,θθθ ) are now given by

K(p,πππ ) ≈
N∑

i=1

p2
i

2mi

�t +
2∑

α=1

π2
α

2mα

, (15)

V (q,θθθ ) ≈ �t

T

N∑
i=2

[
1

2
T 2q̇2

i + 1

2

(
ρi − β

γ
e−βqi

)2

− β2

2γ
e−βqi −T qiρ̇i

]
+ 1

γ
e−βqN + qNρN − 1

γ
e−βq1

−q1ρ2 +
n+1∑
s=1

{ln[ys/r(s−1)j+1] − βq(s−1)j+1}2

2σ 2
,

(16)

with q̇i = (qi − qi−1)/�t , ρi = T ln[r(ti)/r(ti−1)]/(β�t) +
(2 + γ )β/(2γ ), and ρ̇i = (ρi − ρi−1)/�t and where terms
of order O(N−1/2) were neglected. Note that we did not
apply the midpoint discretization that is associated with the
Stratonovich convention. In Eq. (15) this leads to a different
dynamics that does not, however, alter the posterior we are
interested in, and in Eq. (16) we produce errors of the order
O(N−1/2) that we neglect.

Physically, the discretized Hamiltonian can be identified
with a classical polymer chain of N beads with harmonic
bonds between neighboring beads in an external field [13].
The latter consists of two parts, a field that results from the
measurements and is felt by the measurement beads only [last
term on the right-hand side of Eq. (16)] and a field that results
from the dynamics of the original Eq. (1) and is felt by all
the beads. The masses mi and mα are tunable parameters
of the algorithm. Since measurement beads are constrained
more than intermediate beads, we will assign larger masses
to the former. Figure 2 shows a typical realization of the
dynamics of the polymer. Measurement beads only move

t

FIG. 2. Simulated polymer chain dynamics, with n + 1 = 11
data points (large circles) and j − 1 = 9 intermediate beads (small
circles). For other parameters, see Secs. IV and V. Bottom: Initial
state, where intermediate beads are on a linear interpolation between
data points. Top: Polymer after NMC = 1000 iterations of the
propagation algorithm (dotted line: initial configuration). Clearly,
the new configuration is mostly determined by the dynamics of
the light-mass intermediate beads, while the heavy-mass data points
move to a much lesser extent.

within the measurement uncertainty, while the intermediate
beads explore much larger regions of phase space.

We have thus reduced the original Bayesian inference
problem to simulating the dynamics of a linear polymer (cf.
Fig. 2). Each state of this fictitious molecule corresponds
to a well-defined configuration in the original phase space,
characterized by a set of system variables {qi}i=1,...,N and a
parameter vector θθθ . It is now essential to note that potential
(16) contains terms of distinct scaling in the potentially large
numbers N and n, which refer to dynamics on distinct time
scales. In particular, for large N , V (q,θθθ ) is dominated by
its harmonic part, and to resolve its dynamics, brute-force
numerical integration of Hamilton’s equations in step 2 of the
HMC algorithm would require a very small discretization time
step.

B. Time-scale separation

Whereas an interesting approximate approach would be to
employ a partial averaging of the fast Fourier modes [28],
we will use an exact multiple time-scale integration based
on Trotter’s formula [19]. For this, we introduce so-called
staging variables, and diagonalize the harmonic part between
the measurement points. To this end, we rewrite the discretized
harmonic part of the action as

N∑
i=2

T

2�t
(qi − qi−1)2 = T

2

n∑
s=1

{
[q(s−1)j+1 − qsj+1]2

j�t

+
j∑

k=2

k

(k − 1)�t
[q(s−1)j+k − q∗

(s−1)j+k]2

}
, (17)

with q∗
(s−1)j+k = [(k − 1)q(s−1)j+k+1 + q(s−1)j+1]/k. The

boundary beads, corresponding to the original measurement
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points, are not transformed, usj+1 = qsj+1, s = 0, . . . ,n,
while, for the intermediate staging beads, we apply
the coordinate transformations usj+k = qsj+k − q∗

sj+k ,
s = 0, . . . ,n − 1, k = 2, . . . ,j . Their inverse transformations
are given by

qsj+1 = usj+1, (18)

qsj+k =
j+1∑
l=k

k − 1

l − 1
usj+l + j − k + 1

j
usj+1, (19)

which can be captured by the recursive relation

qsj+k = usj+k + k − 1

k
qsj+k+1 + 1

k
usj+1. (20)

The momenta are not transformed, which means we are using
a noncanonical transformation. This alters only the dynamics
of the system, not the posterior we are interested in.

We now split the Hamiltonian HHMC into components
according to their scaling behavior in n and N and write

HHMC = HN + Hn + H1, (21)

where

HN = 1

2

n∑
s=1

j∑
k=2

[
�t

m′ p
2
(s−1)j+k + T k

�t(k − 1)
u2

(s−1)j+k

]
,

(22)

Hn = 1

2

n+1∑
s=1

(
�t

M
p2

(s−1)j+1

+{ln[ys/r(s−1)j+1] − βu(s−1)j+1}2

σ 2

)

+ T

2j�t

n∑
s=1

[u(s−1)j+1 − usj+1]2, (23)

H1 =
2∑

α=1

π2
α

2mα

+ �t

T

N∑
i=2

{
1

2

(
ρi − β

γ
e−βqi

)2

− β2

2γ
e−βqi − T qiρ̇i

}
+ 1

γ
e−βqN + qNρN

− 1

γ
e−βq1 − q1ρ2. (24)

Here we have introduced two masses, M and m′, for
the boundary and staging beads, respectively. The scaling of
these Hamiltonians can be derived from basic properties of
discretized SDEs, from which we conclude that ui ∼ √

�t .
Furthermore, in agreement with the equipartition law, we find
that pi ∼ 1/

√
�t . Accordingly, we find that the harmonic part

(22), for the staging beads, scales linearly with N . The terms
of Eq. (23), including both the harmonic part for the boundary
beads and the measurement term, scale linearly with n. Finally,
Eq. (24) scales with neither n nor N . Thanks to the staging
variables, HN and Hn have become fully decoupled. We use
Trotter’s formula [29] in order to design a reversible molecular
dynamics integrator that takes the presence of the different

time scales into account. For an appropriate partition of the
Hamiltonian, three distinct regimes can be distinguished:

(i) HN ∼ Hn � H1,
(ii) HN � Hn ∼ H1,

(iii) HN � Hn � H1.
In the following, we restrict ourselves to regime (ii), where

the number of measurements n is assumed to be not too
large and/or the measurement error σ to be not too small
(the generalization of the method to the other regimes would,
however, be straightforward). In this regime we may simply
separate the harmonic part of the action for the staging beads
from the rest and write

HHMC = HN + H′. (25)

For obtaining reversible integrators, we define the Liouville
operators iLN = {· ,HN }, iL′ = {· ,H′}, where {· , ·} denote
the Poisson brackets that apply to functions on the phase space.
Trotter’s formula [30] allows us to write the Hamiltonian
propagator as

ei(LN +L′)τ = [eiLN (�τ/2)eiL′�τ eiLN (�τ/2)]P + O(τ 3/P 2) (26)

for τ = P�τ . Here the outer propagator exp[iLN (�τ/2)]
reflects much faster dynamics than the inner one. However,
thanks to our reparametrization, it describes the dynamics of
uncoupled harmonic oscillators, which we can readily solve.
Masses and frequencies of the oscillators are derived from (22)
as

m = m′/�t , ωk =
√

Nk

(k − 1)m
. (27)

The outer propagator becomes

u(s−1)j+k(�τ/2) = u(s−1)j+k(0) cos(ωk�τ/2)

+ p(s−1)j+k(0)

mωk

sin(ωk�τ/2), (28)

p(s−1)j+k(�τ/2) = p(s−1)j+k(0) cos(ωk�τ/2)

−mωku(s−1)j+k(0) sin(ωk�τ/2), (29)

for s = 1, . . . ,n and k = 2, . . . ,j . For the inner propagator, we
employ the time-reversible and volume-preserving velocity
Verlet algorithm [31], which leads for the boundary beads
to

u(s−1)j+1(�τ ) = u(s−1)j+1(0) + �τ

M
p(s−1)j+1(0)

+ �τ 2

2M
F(s−1)j+1[u(0),θθθ (0)], (30)

p(s−1)j+1(�τ ) = p(s−1)j+1(0) + �τ

2
(F(s−1)j+1[u(0),θθθ (0)]

+F(s−1)j+1[u(�τ ),θθθ (�τ )]), (31)

with s = 1, . . . ,n + 1 and where Fi[u,θθθ ] denotes the partial
derivative of H′[u,θθθ ] with respect to ui . Analogous equations
emerge for the model parameters θθθ and their momenta πππ , by
exchanging u by θ and p by π , along with the corresponding
masses, respectively. For the staging beads, only the momenta
need to be updated (because the associated kinetic term is
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t
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0 800
0

FIG. 3. System realization (solid line) with synthetic observations
(filled circles, with error bars indicating the assumed measurement
uncertainty). The system response closely follows the oscillations of
the sinusoidal input (dashed) in a time-delayed manner. Parameters
for this figure and all following figures: Ktrue = 50 and γtrue = 0.2.

not part of H′ but of HN ). Thus, with s = 1, . . . ,n and k =
2, . . . ,j as before,

p(s−1)j+k(�τ ) = p(s−1)j+k(0) + �τ

2
(F(s−1)j+k

× [u(0),θθθ (0)] + F(s−1)j+k[u(�τ ),θθθ (�τ )]).

(32)

The propagators (28) through (32) are applied sequentially
P times to calculate the system evolution over time τ . The pro-
posed configuration, (u′,θθθ ′; p′,πππ ′), is accepted with Metropolis
probability min (1,eHHMC(u,θθθ ;p,πππ )−HHMC(u′,θθθ ′;p′,πππ ′)). The next iter-
ation then starts with sampling a new momentum vector (p,πππ ).

The analytical solution (28) and (29) is one main boosting
part of our algorithm. To find such a solution, it is important to
arrive at model equations of the form (6), where the noise term
depends neither on the state variables nor on the parameters
to be inferred. In a one-dimensional model this can always
be achieved through reparametrization (see, e.g., chapter 5
in Ref. [32]). In higher dimensions, this will not always be
possible. But even in such cases, we will be able to boost our

FIG. 4. Simulated system realizations associated with synthetic
data, based on n + 1 = 11 measurement points and N = 301 dis-
cretization points.

K

200

0
0 50000NMC

FIG. 5. Markov chain evolution of the inferred parameter K .

algorithm through assigning smaller time intervals �τ to the
fast dynamics and larger ones to the slow dynamics.

IV. RESULTS

For our toy system, we have considered a simple sinusoidal
input r(t) = sin2 (0.01t) + 0.1. A system realization was first
obtained from Eq. (1) using K true = 50 (in arbitrary units of
time) and γtrue = 0.2. Such system realization was then used to
generate a synthetic time series of observed data according to
Eq. (4). The error σ was set to 0.1. The input signal, the “true”
system realization, and the corresponding data time series are
shown in Fig. 3.

A set of 200 system realizations sampled from the integrand
of Eq. (9), based on n + 1 = 11 measurement points and N =
301 discretization points, is shown in Fig. 4, together with the
generated synthetic data. These samples were generated with a
HMC algorithm, where the masses were set (in arbitrary units)
to M = 720 for the measurement beads, to m′ = 130 for the
intermediate discretization beads, and to mα = 150 for both
the dimensionless parameters β and γ . The different dynamics
of the heavy measurement beads and the light discretization
beads can be appreciated in Fig. 4.

The Markov chains for parameters K and γ , obtained after
NMC = 50 000 iterations of the HMC algorithm, are shown in
Figs. 5 and 6, respectively.

NMC

FIG. 6. Markov chain evolution of the inferred parameter γ .
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2000
0

1.0

K

FIG. 7. System dynamics in the phase space K − γ . The circle
represents the initial state, while the square corresponds to the true
parameter values used to generate the data.

The efficiency of the algorithm can be appreciated best
by inspecting the system evolution in the phase space K − γ

(Fig. 7). The starting point of the algorithm was set to a linear
interpolation of the data points, together with values for the
model parameters that were deliberately chosen far off the
truth (open circle in Fig. 7). Nevertheless, the very first step
of the algorithm already takes the system to the vicinity of
the true parameter values, where most of its dynamics then
occurs. Few excursions lead far away from the true parameter
values. These explore the heavy tails of the posterior parameter
distribution.

The Markov chains (Figs. 5 and 6) determine the probability
density functions (PDF) for K and γ , respectively. The results
obtained by using the built-in kernel density estimator provided
by MATHEMATICA (version 10) are exhibited in Fig. 8; they are
fully compatible with the true, to-be-inferred, parameter values
Ktrue and γtrue.

V. IMPLEMENTATION

The algorithm was implemented in C++ (version C++11)
using the open-source ADEPT library (version 1.1; [33]), which
provides a powerful tool for fast reverse-mode automated
differentiation (AD). Our algorithm benefits greatly from the
use of AD. This gives us the possibility to modify Eq. (1) and
therefore the action (10), while leaving the implementation of

the algorithm unaltered. This makes our program extremely
flexible and suitable for a much broader range of applications
than the simple exemplary SDE model described here.

The simulations were run on both serial and parallel imple-
mentations of the algorithm on a 64-bit Linux system equipped
with two 12-core 2.7-GHz processors (Intel Xeon E5-2697v2)
and 64 GB of memory clocked at 1866 MHz. We used
n + 1 = 11 measurement points and N = 101,201, . . . ,501
discretization points. In the Hamiltonian propagator (26), we
set �τ = 0.25 and P = 3, with a constant total observation
time T = 833 (arbitrary units of time). The initial values of
the parameters were set to K = 200 and γ = 0.5.

For example, a complete run with NMC = 50 000 iterations
with n = 10 and N = 301 required about 43 s with the serial
implementation of the algorithm. In the case of our toy system
the burn-in phase is extremely short and can be safely ignored.
Under these conditions the algorithm can be parallelized in
a straightforward manner simply by breaking up the Markov
chain into several smaller independent chains. The execution
time with a fixed-size problem scales in a reasonably linear way
with the number of processes (strong scaling). Our example
could be therefore run in only about 3 s using 16 processors.
An alternative strategy, suitable for long time series, would be
to parallelize the updates of the polymer beads in each step of
a single MC chain.

VI. CONCLUSIONS

We presented an extremely efficient and versatile approach
for data-based SDE parameter estimation. Our algorithm
obtains its strength from translating the problem of generating
posterior parameter samples into the problem of simulating
the dynamics of a statistical mechanics system; the main
novelty in our algorithm is the exploitation of the fact that
this dynamics generically happens on very different time
scales. Furthermore, at least for 1D systems, our approach
also allows for an analytical, and therefore computationally
efficient, integration of the fastest part of the dynamics.

In most application cases, our choice of a fixed diagonal
mass matrix, for reasonable choices of masses—heavier for the
measurement beads and lighter for the discretization beads—
can be expected to work well. Nonetheless, if the curvature
of the potential varies strongly, then it might be beneficial to
adapt the mass matrix to the local curvature as suggested in
Ref. [18]. For such cases, a combination of the scale separation

K0 200
0

0.03

PDF

(a) 5

0
0 0.8

PDF

(b)

FIG. 8. Probability density functions for the inferred parameters (a) K and (b) γ . The true values used to generate the data are represented
by the dashed vertical lines.
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method proposed in this paper with the local mass matrix
adaptation of Ref. [18] might be the most efficient solution.
This extension, however, comes at the price of a computational
overhead (second derivatives have to be calculated and implicit
equations have to be solved), and we will no longer be able
to solve part of the dynamics analytically. On a more general
level, given the wide field of very distinct applications, optimal
parameter inference for SDE models will not be provided by
one single approach but will require a set of tools to make the
optimal choice from. We expect statistical physics to continue
making strong contributions toward this aim.

The structure of our algorithm is well suited to paralleliza-
tion, which is important in particular if we deal with a high
number of measurements. The algorithm can easily be adapted
to other inference problems, such as higher-dimensional SDE
and SDE coupled to ordinary differential equations. These
adaptations and extensions will, however, be addressed in
future works.
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