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In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-
dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back
(HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where
three different discrete velocity models are considered. We first present a theoretical analysis on the discrete
effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y

direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary,
which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also
shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter
corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or
the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be
a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical
results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis
can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
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I. INTRODUCTION

Over the past decades, the lattice Boltzmann (LB) method,
as a numerical approach developed from the simplified kinetic
models, has gained great success in the simulation of the
complex flows, and has also been used to solve the diffusion
and convection-diffusion equations (CDEs) for their impor-
tance in the study of heat and mass transfer [1–3]. Although
there are many works on the LB method for CDEs [4–29],
the discrete effect on the boundary condition, as a fundamental
problem in the LB method for CDEs, has not been investigated
comprehensively. To our knowledge, there are some available
works on the discrete effects of the boundary conditions [30–
36]. Ginzburg and Adler first performed a boundary condition
analysis for the face-centered-hypercube LB model, and
demonstrated that for the Poiseuille flow, the commonly used
halfway bounce-back (HBB) boundary condition brings an
error with a second-order accuracy in space, which can be
eliminated through tuning the free eigenvalue of the collision
matrix [30]. He et al. also conducted an analysis on the discrete
effects of boundary conditions for the Bhatnagar-Gross-Krook
(BGK) model, and found that the HBB boundary condition
indeed yields a nonzero slip on a solid wall, which is of
second-order accuracy in space [31]. Following a similar way,
Guo et al. [32,33] further analyzed the discrete effects on
Maxwell’s diffuse reflection [37] and combined HBB and
specular-reflection boundary conditions [38] for microscale
gas flows, and also observed that there is a numerical slip
depending on the grid number. To implement an exact slip
boundary condition in the LB model, they also proposed a
strategy to correct the discrete effect. However, it should be
noted that Maxwell’s diffuse reflection and combined HBB
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and specular-reflection boundary conditions considered in
Refs. [32,33] are nonlocal, and hence they are not suitable for
fluid flow in a complex geometry. To overcome the limitation of
the above nonlocal boundary conditions, Chai et al. developed
a local combined HBB and full diffusive boundary condition
for microscale gas flows in complex geometries [34,35], and
also carried out an analysis on the discrete effect of the com-
bined boundary condition. The results in this work illustrated
that to realize the exact slip boundary condition, the discrete ef-
fect must also be included and corrected. Recently, Prasianakis
et al. [36] also conducted an analysis of the three-dimensional
BGK model with the HBB boundary condition for the
Poiseuille flow, and their results are similar to those of the two-
dimensional BGK model with nine discrete velocities [31].
However, we noted that all of above works are limited to the
HBB boundary conditions of the LB method for fluid flows.

Recently, Zhang et al. presented a general HBB boundary
condition of the BGK model for CDEs, and also performed
an analysis on the discrete effect of the HBB boundary
condition [39]. The results in their work show that for the
diffusion in Poiseuille flow, the numerical slip is zero since
distribution of the concentration is only a linear function of the
y coordinate, while for the diffusion in Couette flow with wall
injection, a nonzero numerical slip related to lattice spacing or
grid number is observed, and cannot be removed in the BGK
model. In this work, we will consider the discrete effect on
the HBB boundary condition of the multiple-relaxation-time
(MRT) model for CDEs, and both theoretical analysis and
numerical results show that for the simple problems with a
parabolic distribution in one (x or y) direction, the discrete
effect on the HBB boundary condition can be eliminated
through tuning the free relaxation parameter. Besides, we
also present a comparison between the BGK model and MRT
model, and the results also show that the MRT model could be
more accurate than the BGK model.
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The rest of paper is organized as follows. In Sec. II, the
MRT model for the CDE with a source term is first introduced;
then a theoretical analysis on the discrete effect of the BB
boundary condition is performed in Sec. III. In Sec. IV, the
numerical results and discussion are presented, and finally,
some conclusions are given in Sec. V.

II. MULTIPLE-RELAXATION-TIME LATTICE
BOLTZMANN MODEL FOR TWO-DIMENSIONAL

CONVECTION-DIFFUSION EQUATIONS

A. Two-dimensional convection-diffusion equation

The convection-diffusion equation is a combination of
convection and diffusion equations, and is usually used to
describe the physical phenomena during the convection and
diffusion process. It has also received a great deal of research
attention for its important role in the study of mass and
heat transfer [40]. The two-dimensional convection-diffusion
equation with a source term can be written as

∂tφ + ∇ · (φu) = ∇ · (D∇φ) + R, (1)

where φ is a scalar variable and is a function of time and space,
∇ is the gradient operator, and D is the diffusion coefficient.
u = (ux,uy)� is the convection velocity with � denoting the
transpose of a vector or matrix, and R(x,t) is the source term.

B. Multiple-relaxation-time lattice Boltzmann model

In the framework of the LB method, the models can be
classified into several kinds, i.e., the BGK model [41], entropic
LB model [42–44], quasiequilibrium LB model [45,46], two-
relaxation-time model [19,29], central moment or cascaded LB
model [47,48], and MRT model [49,50]. In this work, we will
consider the MRT model since it is a generalized LB model,
and has more free relaxation parameters that can be used to
improve the stability and accuracy of the LB method.

The evolution equation of the MRT model for the CDE
[Eq. (1)] can be written as [15]

fi(x + ciδt, t + δt)

= fi(x, t) − (M−1SM)ik
[
fk(x, t) − f

(eq)
k (x, t)

]

+ δt

[
M−1

(
I − S

2

)
M

]
ik

Rk, i = 0, . . . ,q − 1, (2)

where δt is time step, I is the unit matrix, and S is a diagonal
relaxation matrix with non-negative elements. fi(x, t) is the
distribution function associated with the discrete velocity ci

at position x and time t , f
(eq)
i (x, t) is equilibrium distribution

function (EDF), and for simplicity, only the linear EDF is
considered here,

f
(eq)
i (x, t) = ωiφ

(
1 + ci · u

c2
s

)
, (3)

where ωi is the weight coefficient, and cs is the so-called lattice
speed. Ri is the discrete source term, and can be defined as

Ri = ωiR. (4)

M is the transformation matrix, and is used to project the dis-
tribution function fi and EDF f

(eq)
i in the velocity space onto

the macroscopic variables in the moment space [49,51,52],

m := Mf, m(eq) := Mf(eq), (5)

where f = (f0, . . . ,φq−1)�, f(eq) = (f (eq)
0 , . . . ,f

(eq)
q−1)� with q

representing the number of discrete velocity directions.
In different discrete lattice (DdQq: D denotes the dimen-

sional space with the value d = 2, Q represents the discrete
velocity direction with the number q) models, the discrete
velocity ci , the weight coefficient ωi , the speed cs , the
transportation matrix M, and the diagonal relaxation matrix
S can be given by the following equations.

D2Q4 lattice model:

c =
(

1 0 −1 0
0 1 0 −1

)
c, (6a)

ωi = 1/4 (i = 1 to 4), c2
s = 1

2
c2, (6b)

M = CdM0, S = diag(s0,s1,s1,s2), (6c)

Cd = diag(1,c,c,c2), M0 =

⎛
⎜⎝

1 1 1 1
1 0 −1 0
0 1 0 −1
1 −1 1 −1

⎞
⎟⎠. (6d)

D2Q5 lattice model:

c =
(

0 1 0 −1 0
0 0 1 0 −1

)
c, (7a)

ωi = 1/5 (i = 0 to 4), c2
s = 2

5
c2, (7b)

M = CdM0, S = diag(s0,s1,s1,s2,s2), (7c)

Cd = diag(1,c,c,c2,c2),

M0 =

⎛
⎜⎜⎜⎝

1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
0 1 −1 1 −1

−4 1 1 1 1

⎞
⎟⎟⎟⎠. (7d)

D2Q9 lattice model:

c =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c, (8a)

ω0 = 4/9, ωk=1 to 4 = 1/9, ωk=5 to 8 = 1/36, c2
s = 1

3c2,

(8b)

M = CdM0, S = diag(s0,s5,s4,s1,s3,s1,s3,s2,s2), (8c)

Cd = diag(1,c2,c4,c,c3,c,c3,c2,c2),

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8d)
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where c = δx/δt with δx representing the lattice spacing.
Besides, based on Eqs. (6c), (7c), and (8c), one can easily
obtain the relation M−1SM = M−1

0 SM0; then the evolution
equation can be rewritten as

fi(x + ciδt, t + δt)

= fi(x, t) − (
M−1

0 SM0
)
ik

[
fk(x, t) − f

(eq)
k (x, t)

]

+ δt

[
M−1

0

(
I − S

2

)
M0

]
ik

Rk. (9)

It should be noted that in the MRT model, the evolution process
can also be decomposed into two steps, i.e., collision and
propagation, and usually the collision step is implemented
in the moment space [50], while to simplify the following
analysis on the discrete effect of the HBB boundary condition,
here the collision and propagation steps are expressed by the
following equations,

f +
i (x, t) = fi(x, t) − (

M−1
0 SM0

)
ik

× [
fk(x, t) − f

(eq)
k (x, t)

]

+ δt

[
M−1

0

(
I − S

2

)
M0

]
ik

Rk, (10a)

fi(x + ciδt, t + δt) = f +
i (x, t), (10b)

where f +
i (x, t) is postcollision distribution function.

The macroscopic variable φ in the present MRT model
should be computed by

φ(x, t) =
∑

i

fi(x, t) + δt

2
R. (11)

where the source term effect has been included. Through
the Chapman-Enskog analysis [15] or the asymptotic anal-
ysis [21], the CDE with a source term, i.e., Eq. (1), can be
recovered from the MRT model with the following diffusion
coefficient,

D =
(

1

sD

− 1

2

)
c2
s δt, (12)

where sD = s1 is the relaxation parameter related to the
diffusion coefficient. Finally, we would also like to point out
that in the Chapman-Enskog analysis, the relaxation parameter
s0 has no influence on the derivation of the CDE, and also, if
the relaxation parameters si(i = 0 to 8) are equal to each other
and are given by sD , the MRT model will reduce to the BGK
model.

III. DISCRETE EFFECT ON THE HALFWAY
BOUNCE-BACK BOUNDARY CONDITION OF MRT

MODEL FOR CDE

As stated previously, the discrete effects on the boundary
conditions of the BGK or MRT model for the Navier-Stokes
equations have been studied extensively [30–35], while the
discrete effect on the boundary condition of the MRT model
for CDEs is still unclear. To fill the gap, we will present a
detailed analysis on the discrete effect of the HBB boundary
condition in the framework of the MRT model for CDEs.

A. Equivalent finite-difference scheme of the MRT model for
some simple problems

In this section, we only consider the steady or time-
independent problems satisfying

∂φ

∂t
= 0,

∂φ

∂x
= 0,

∂ux

∂x
= ∂uy

∂x
= 0, R = const. (13)

Based on Eq. (13), one can find that the scalar variable
φ, velocity u, and the distribution function should be only
functions of the y coordinate. We note that although the
problems considered above are very simple, they can be served
as an example for us to present theoretical analysis and derive
the equivalent finite-difference scheme of the MRT model.

Without a loss of generality, here we consider the MRT
model with the D2Q4 lattice,

fi(x + ciδt, t + δt)

= fi(x, t) − (
M−1

0 SM0
)
ik

[
fk(x, t) − f

(eq)
k (x, t)

]

+ δt

[
M−1

0

(
I − S

2

)
M0

]
ik

Rk, i = 1 to 4. (14)

Based on this equation and after some algebraic manipulation,
one can obtain the following equivalent finite-difference
scheme of the MRT model (see Appendix A for details),

φk+1uy,k+1 − φk−1uy,k−1

2δx
= D

φk−1 − 2φk + φk+1

δx2
+ R,

(15)
where the diffusion coefficient D is given by Eq. (12) with
c2
s = c2/2.

We now present some remarks on the results shown above.
Remark I. Equation (15) is the equivalent second-order

finite-difference scheme of the MRT model for the simplified
CDE [Eq. (1)] under the assumptions presented in Eq. (13),

∂(φuy)

∂y
= D

∂2φ

∂y2
+ R. (16)

Remark II. When the D2Q5 and D2Q9 lattice models are
used, the same results as Eq. (15) can also be obtained.

Remark III. From the analysis shown in Appendix A, it
is clear that the relaxation parameter s0 corresponding to the
conservative variable φ has no influence on the derivation of
Eq. (15), and can be chosen arbitrarily when it is less than 2.0.
We note that this result is also consistent with that given by the

O x

uy = 0

∂φ
∂x = 0

ux = const,

φL

φ0

y

L

FIG. 1. Schematic of the unidirectional and time-independent
diffusion problem.
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c5
k = 2

k = 1

k = 0

c0

c4 c8

δx

c3

c7

c6

c1

c2

FIG. 2. The boundary arrangement in the D2Qq (q = 4, 5, or
9) lattice model; the bold line denotes the bottom boundary and is
located at k = 1/2.

Chapman-Enskog analysis, and thus, in the following analysis
and numerical simulations, s0 = 0 would be used.

B. Discrete effect of the halfway bounce-back boundary
condition

To simplify the analysis on the discrete effect of the HBB
boundary condition, a unidirectional and time-independent

diffusion problem (see Fig. 1 where ∂xφ = 0, ux = const, and
uy = 0) is adopted, and it can be described by the following
simplified equation and boundary conditions,

D
∂2φ

∂y2
+ R = 0, (17a)

φ(x,y = 0) = φ0, φ(x,y = L) = φL, (17b)

where φ0 and φL are two constants, and L is the width between
the top and bottom boundaries. R is the source term and is
defined by

R = 2D�φ/L2, �φ = φL − φ0. (18)

For this simple problem, we can obtain its exact solution,

φ(y) = φ0 + �φy(2 − y), (19)

while when the LB model is used to study this problem, one
can also derive its analytical solution,

φk = φ0 + �φyk(2 − yk) + φs, (20)

where yk = (k − 0.5)L/N with N representing grid number.
φs is the numerical slip caused by the implementation of
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FIG. 3. Numerical results of the BGK and MRT models (D2Q4 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 1.0, and (d) sD = 1.9.
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the boundary condition or the so-called discrete effect of the
boundary condition, and it is the only term that causes the so-
lution of the LB model [Eq. (20)] to be different from the exact
solution of the problem [Eq. (19)]. To obtain the numerical slip,
some proper boundary conditions of the LB method are also
needed to treat the Dirichlet boundary conditions (17b). Here
we only consider the HBB boundary condition (see Fig. 2)
for its locality and second-order convergence rate in space
[39,53–56]. When the HBB boundary condition is adopted,
the unknown distribution functions at the layer k = 1 can be
determined by the following equations [39].

D2Q4 or D2Q5 lattice model:

f 1
2 = −f

1,+
4 + 2ω4φ0. (21)

D2Q9 lattice model:

f 1
2 = −f

1,+
4 + 2ω4φ0, (22a)

f 1
5 = −f

1,+
7 + 2ω7φ0, (22b)

f 1
6 = −f

1,+
8 + 2ω8φ0. (22c)

Similar to above analysis, here we also take D2Q4 lattice
model as an example, and perform an analysis on the discrete
effect of the HBB boundary condition to derive the numerical
slip φs (see the details in Appendix B),

φs,MRT = 2 − s1 − s2

2s1s2

�φ

N2
. (23)

From above equation, it is clear that the HBB boundary
condition gives a nonzero numerical slip, and has a second-
order convergence rate in space since the numerical slip
φs,MRT has a term of O(1/N2). Actually, in the MRT model,
φs,MRT = 0 can be guaranteed if the free relaxation parameter
s2 satisfies the following relation,

s2 = 2 − s1 = 2 − sD, (24)

which means that the discrete effect of the boundary condition
can be eliminated. Following in the same way, we can also
conduct an analysis on the BGK model with the D2Q4 lattice,
and derive the numerical slip φs,BGK,

φs,BGK = 1 − sD

s2
D

�φ

N2
. (25)
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FIG. 4. Numerical results of the BGK and MRT models (D2Q5 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 2(6 − √

30), and (d) sD = 1.9.
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Based on Eq. (25), one can find that the in the BGK model, the
HBB boundary condition also has a second-order convergence
rate, while usually the numerical slip φs,BGK cannot be
eliminated unless sD = 1 which may be not satisfied for a
given diffusion coefficient.

Similarly, we also carried out some analysis on the
MRT and BGK models with D2Q5 and D2Q9 lattices,
and derived the numerical slip φs by the following equa-
tions: (26a), (26c), (27a), and (27c).

D2Q5 lattice model:

φs,MRT = s2s1 − 12(s1 + s2) + 24

20s1s2

�φ

N2
, (26a)

s2 = 12(sD − 2)

sD − 12
⇒ φs,MRT = 0, (26b)

φs,BGK =
[

6

5

(
1

sD

− 1

2

)2

− 1

4

]
�φ

N2
, (26c)

sD = 2(6 −
√

30) ⇒ φs,BGK = 0. (26d)

D2Q9 lattice model:

φs,MRT = s2s1 − 8(s1 + s2) + 16

12s1s2

�φ

N2
, (27a)

s2 = 8(sD − 2)

sD − 8
⇒ φs,MRT = 0, (27b)

φs,BGK = 1

12

[
4

(
2

sD

− 1

)2

− 3

]
�φ

N2
, (27c)

sD = 4(2 −
√

3) ⇒ φs,BGK = 0. (27d)

From Eqs. (26) and (27), one can find that similar to the
above results of the D2Q4 lattice model, in the MRT model
with the D2Q5 or D2Q9 lattice, the discrete effect of the HBB
boundary condition (φs,MRT) can also be eliminated through
tuning the free relaxation parameter s2, while in the BGK
model, it cannot be overcome unless the relaxation parameter
sD is equal to a special value which is different for different
lattice model. In addition, we would also like to point out that
the results of the MRT model with the D2Q9 lattice [Eqs. (27a)
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FIG. 5. Numerical results of the BGK and MRT models (D2Q9 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 4(2 − √

3), and (d) sD = 1.9.
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φa
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φb

L

FIG. 6. Schematic of the diffusion between two concentric
cylinders.

and (27b)] are similar to those of the MRT model for Poiseuille
flow [30,33,35].

IV. NUMERICAL RESULTS AND DISCUSSION

A. Numerical validation

To confirm our above theoretical analysis, we first per-
formed some simulations of the problem shown in Fig. 1
where L = 1.0, ux = 0.1, the diffusion coefficient D = 0.1,
and δx = L/N with the grid number N varying from 5 to 17.
In our simulations, the periodic boundary condition in the x

direction is adopted, and the relaxation parameter sD is an input
variable, and based on Eq. (12), it can be used to determine
the time step δt and also the parameter c.

We presented some results with different grid numbers and
different values of the relaxation parameter sD in Figs. 3, 4,
and 5. As seen from these figures, it is clear that if the free
relaxation parameter s2 is given by Eq. (24) in the D2Q4 lattice
model, Eq. (26b) in the D2Q5 lattice model, or Eq. (27b) in the
D2Q9 lattice model, the MRT model can give accurate results
even with a very small grid number (e.g., N = 5), which is
consistent with our theoretical analysis. However, the results
of the BGK model cannot match the analytical solutions well
unless sD = 1 in the D2Q4 lattice model, sD = 2(6 − √

30)
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FIG. 7. Numerical results of the BGK and MRT models (D2Q4 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 1.0, and (d) sD = 1.9.
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in the D2Q5 lattice model, or sD = 4(2 − √
3) in the D2Q9

lattice model. Actually, for a specified diffusion coefficient, the
condition of sD = 1, sD = 2(6 − √

30), or sD = 4(2 − √
3)

may be not satisfied (for example, if the diffusion coefficient
in the CDE is very small, the relaxation parameter sD in the
LB model will approach 2.0), and thus, some discrepancy
between the numerical results of the BGK model and the
exact solutions are usually observed, especially for a small
sD or a small grid number N . In addition, it is also interesting
that sD = 2(6 − √

30) ≈ 1.046 in the D2Q5 model and sD =
4(2 − √

3) ≈ 1.072 in the D2Q9 model are very close to 1.0,
which may be the reason why usually sD = 1.0 can give
accurate results.

We then tested the above analysis with a more complicated
problem, i.e., the steady diffusion between two concentric
cylinders. The configuration of the problem can be found in
Fig. 6 where two concentric cylinders are located in the center
of a square region with the length L. For this problem, Eq. (1)
can be written in polar coordinates, and with the help of the
following Direchlet boundary conditions,

φ(Ra) = φa,φ(Rb) = φb, (28)

one can obtain the analytical solution to this problem [57],

φ(r) = φa ln(Rb/r) + φb ln(r/Ra)

ln(Rb/Ra)
, Ra � r � Rb, (29)

where Ra and Rb are radii of two cylinders, and φa and φb are
two constants. In our simulations, the computational region
is [−3,3] × [−3,3] with L = 6.0, Ra = 1.0, Rb = 2.0, φa =
0.0, φb = 1.0, and the diffusion coefficient D is set to be
0.001. We conducted several simulations with different values
of the grid number N , and presented the results in Figs. 7, 8,
and 9 in which the D2Q4, D2Q5, and D2Q9 lattice models
are adopted. As seen from these figures, if the free relaxation
parameter s2 given by Eq. (24) in the D2Q4 lattice model,
Eq. (26b) in the D2Q5 lattice model, or Eq. (27b) in the D2Q9
lattice model is adopted, the results of the MRT model are
more accurate than the BGK model, especially for a small sD

or a small grid number N , which is also consistent with our
analysis.
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FIG. 8. Numerical results of the BGK and MRT models (D2Q5 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 2(6 − √

30), and (d) sD = 1.9.
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FIG. 9. Numerical results of the BGK and MRT models (D2Q9 lattice) under different lattice sizes and relaxation parameters (a) sD = 0.1,
(b) sD = 0.6, (c) sD = 4(2 − √

3), and (d) sD = 1.9.

B. The relaxation parameter s2 effect on intrinsic accuracy of
the MRT model

We note that the numerical slip is caused by the discrete
effect of the HBB boundary condition. Therefore, for a periodic
problem where the discrete effect of the HBB boundary
condition can be excluded, the choice of relaxation time s2

should have no apparent influence on the numerical results.
To confirm this statement, the problem of the Gaussian hill
would be studied by the MRT model with the D2Q4 lattice.
The problem can be described by Eq. (1) without source term
R, and with the proper initial and boundary conditions, one
can obtain its analytical solution,

φ(x,y,t) = φ0

2π
(
σ 2

0 + 2Dt
)

× exp

[
− (x − uxt)2 + (y − uyt)2

2
(
σ 2

0 + 2Dt
)

]
, (30)

where the components of velocity ux and uy are two constants.
Similar to some available works [15,17,21,23], we also
investigated the Gaussian hill problem in a bounded domain
[−1,1] × [−1,1] and adopted the periodic boundary condition
on all boundaries. In our simulations, σ0 = 0.01 which is small

enough to ensure that the periodic boundary condition used is
reasonable and accurate at a finite time T = 10.0, φ0 = 2πσ 2

0 ,
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FIG. 10. The effect of relaxation parameter s2 on the global
relative errors.
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FIG. 11. The global relative errors at different lattice sizes (δx =
1/300, 1/250, 1/200, 1/150, and 1/100); the slope of the inserted
line is 2.0, which indicates the MRT model has a second-order
convergence rate in space.

D = 0.001, and ux = uy = 0.01. To measure the deviation
between the numerical results and analytical solutions, the fol-
lowing global relative error (GRE) defined by Eq. (31) is used,

GRE =
∑

(x, y) |φa(x,y,t) − φn(x,y,t)|∑
(x, y) |φa(x,y,t)| , (31)

where the subscripts a and n denote the analytical and
numerical solutions. We first tested the effect of relaxation
parameter s2 under different values of sD , and the results
are shown in Fig. 10 where the lattice size is 401 × 401. As
seen from this figure, the relaxation parameter s2 has some
influence on the global relative errors, but its effect is not
significant. Based on this result, i.e., the relaxation parameter
s2 has no apparent effect on the numerical results under a
specified sD; we then investigate the influence of relaxation
parameter s2 on the convergence rate of the MRT model with
the relation (24). To this end, we performed some simulations
under different lattice sizes and different values of sD , and
presented the results in Fig. 11 where the lattice spacing is
varied from 1/300 to 1/100. From this figure, one can find
that the MRT model has a second-order convergence rate in
space, and the relaxation parameter s2 determined by Eq. (24)
does not influence the convergence rate of the MRT model.
We would also like to point out that in the D2Q5 and D2Q9
lattice models, some similar results are also obtained.

V. CONCLUSIONS

In this work, the discrete effect on the HBB boundary
condition of the MRT model for the CDE is analyzed
theoretically and numerically. The results clearly show that
compared to the BGK model, the free relaxation parameters
can be used to improve the accuracy of the MRT model.
Particularly, it is also found that the relaxation parameter s0

corresponding to the conserved variable has no influence on
accuracy of the MRT model, and can be chosen arbitrarily,
while the effect of the relaxation parameter s2 corresponding
to the second-order moment is very significant. Actually, if
the relaxation parameter s2 is determined by Eq. (24) in the
D2Q4 lattice model, Eq. (26b) in the D2Q5 lattice model, or
Eq. (27b) in the D2Q9 lattice model, the discrete effect on the
HBB boundary condition of the MRT model can be eliminated
for the simple problems with a parabolic distribution in one
direction, and more accurate results can also be obtained,
while in the BGK model, the discrete effect of the boundary
condition cannot be removed unless the relaxation parameter
sD is equal to a special value, which may be not satisfied
for a given diffusion coefficient. We would also like to point
out that although the present analysis is only limited to
the HBB boundary condition, it can be extended to other
boundary conditions (e.g., the nonequilibrium BB boundary
condition [58–60]) of the LB method without any substantial
difficulties. Considering the advantages in terms of accuracy
and stability, the MRT model would be a better choice in the
study of heat and mass transfer during the convection and
diffusion process.
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APPENDIX A: EQUIVALENT FINITE-DIFFERENCE
SCHEME OF THE MRT MODEL

In this Appendix, we will show how to derive the equivalent
finite-difference scheme of the MRT model with the D2Q4
lattice. To this end, one can substitute Eq. (6) into Eq. (2) to
derive the following equations,

f k
1 = f k

1 − s0 + 2s1 + s2

4

(
f k

1 − f
(eq),k
1

) − s0 − s2

4

(
f k

2 − f
(eq),k
2

) − s0 − 2s1 + s2

4

(
f k

3 − f
(eq),k
3

) − s0 − s2

4

(
f k

4 − f
(eq),k
4

)

+
(

1 − s0 + 2s1 + s2

8

)
δtR1 + s2 − s0

8
δtR2 + 2s1 − s0 − s2

8
δtR3 + s2 − s0

8
δtR4, (A1a)

f k
2 = f k−1

2 − s0 − s2

4

(
f k−1

1 − f
(eq),k−1
1

) − s0 + 2s1 + s2

4

(
f k−1

2 − f
(eq),k−1
2

)
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− s0 − s2

4

(
f k−1

3 − f
(eq),k−1
3

) − s0 − 2s1 + s2

4

(
f k

4 − f
(eq),k−1
4

)

+ s2 − s0

8
δtR1 +

(
1 − s0 + 2s1 + s2

8

)
δtR2 + s2 − s0

8
δtR3 + 2s1 − s0 − s2

8
δtR4, (A1b)

f k
3 = f k

3 − s0 − 2s1 + s2

4

(
f k

1 − f
(eq),k
1

) − s0 − s2

4

(
f k

2 − f
(eq),k
2

) − s0 + 2s1 + s2

4

(
f k

3 − f
(eq),k
3

) − s0 − s2

4

(
f k

4 − f
(eq),k
4

)

+ 2s1 − s0 − s2

8
δtR1 + s2 − s0

8
δtR2 +

(
1 − s0 + 2s1 + s2

8

)
δtR3 + s2 − s0

8
δtR4, (A1c)

f k
4 = f k+1

4 − s0 − s2

4

(
f k+1

1 − f
(eq),k+1
1

) − s0 − 2s1 + s2

4

(
f k+1

2 − f
(eq),k+1
2

) − s0 − s2

4

(
f k+1

3 − f
(eq),k+1
3

)

− s0 + 2s1 + s2

4

(
f k+1

4 − f
(eq),k+1
4

) + s2 − s0

8
δtR1 + 2s1 − s0 − s2

8
δtR2 + s2 − s0

8
δtR3 +

(
1 − s0 + 2s1 + s2

8

)
δtR4,

(A1d)

where f k
i and f

(eq),k
i are the distribution function and its

equilibrium part at y = kδx. It should be noted that Eq. (A1)
is only valid for the nodes in the interior of the computational
domain (2 � k � N − 1), and the nodes k = 1 and k =
N correspond to the first layers near the bottom and top
boundaries. Through a summation of Eqs. (A1a) and (A1c),
we can obtain

f k
1 + f k

3 = 1

2
φk + 2 − s2

4s2
δtR, (A2)

where Eqs. (3), (4), and (11) have been used. Based on
Eqs. (A2) and (11), we can also derive the following
equations,

f k
2 + f k

4 = 1

2
φk − 2 + s2

4s2
δtR, (A3a)

f k−1
2 = 1

2
φk−1 − f k−1

4 − 2 + s2

4s2
δtR, (A3b)

f k+1
4 = 1

2
φk+1 − f k+1

2 − 2 + s2

4s2
δtR. (A3c)

Substituting Eqs. (A2), (A3b), and (A3c) into Eqs. (A1b)
and (A1d), we have

f k
2 =

(
1

2
− s1

4
+ s1

uy,k−1

2c

)
φk−1 + (s1 − 1)f k−1

4

+ s1s2 + 2s1 + 2s2 − 4

8s2
δtR, (A4a)

f k
4 =

(
1

2
− s1

4
− s1

uy,k+1

2c

)
φk+1 + (s1 − 1)f k+1

2

+ s1s2 + 2s1 + 2s2 − 4

8s2
δtR. (A4b)

After a summation of above two equations, one can derive

f k
2 + f k

4 =
(

1

2
− s1

4

)
(φk−1 + φk+1)

+ s1

2c
(φk−1uy,k−1 − φk+1uy,k+1)

+ (s1 − 1)
(
f k+1

2 + f k−1
4

)

+ s1s2 + 2s1 + 2s2 − 4

4s2
δtR. (A5)

Based on Eq. (A4), we can rewrite f k+1
2 and f k−1

4 as

f k+1
2 =

(
1

2
− s1

4
+ s1

uy,k

2c

)
φk + (s1 − 1)f k

4

+ s1s2 + 2s1 + 2s2 − 4

8s2
δtR, (A6a)

f k−1
4 =

(
1

2
− s1

4
− s1

uy,k

2c

)
φk + (s1 − 1)f k

2

+ s1s2 + 2s1 + 2s2 − 4

8s2
δtR; (A6b)

then the following equation can be derived through sum-
ming the above two equations,

f k+1
2 + f k−1

4 =
(

1 − s1

2

)
φk + (s1 − 1)

(
f k

2 + f k
4

)

+ s1s2 + 2s1 + 2s2 − 4

4s2
δtR. (A7)

Substituting Eq. (A7) into Eq. (A5) and with the help of
Eq. (A3a), one can obtain

f k
2 + f k

4 =
(

1

2
− s1

4

)
(φk−1 + φk+1) + s1 − 1

2
φk

+ s1

2c
(φk−1uy,k−1 − φk+1uy,k+1)

+ 4s1s2 − s2 − 2

4s2
δtR. (A8)

From the above equation and Eq. (A3a), we can derive the
equivalent difference equation (15) of the MRT model.
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APPENDIX B: DISCRETE EFFECT OF THE HALFWAY
BOUNCE-BACK BOUNDARY CONDITION

In the D2Q4 lattice model, if we substitute the postcollision
function f +

4 at the layer k = 1 into the Eq. (22a), one can obtain

f 1
2 = 1

2
φ0 − s2

8
φ1 + s2 − 2s1

4
f 1

2 −
(

1 − 2s1 + s2

4

)
f 1

4

− 6 − s2

16
δtR, (B1)

and also

f 1
2 + f 1

4 = 1

2
φ0 − s2

8
φ1 + s2 − 2s1

4

(
f 1

2 + f 1
4

) + s1f
1
4

− 6 − s2

16
δtR. (B2)

With the help of Eq. (A3a), one can rewrite the above equation
as

1

2
φ1 = 1

2
φ0 − s1

4
φ1 + s2f

1
4 + s1s2 + 2s1 − 2s2 + 4

8s2
δtR.

(B3)

Substituting Eq. (A4a) into Eq. (A4b), we can obtain the
following equation,

f 1
4 = 2 − s1

4
φ2 + (2 − s1)(s1 − 1)

4
φ1 + (s1 − 1)2f 1

4

+ s1
s1s2 + 2s1 + 2s2 − 4

8s2
δtR; (B4)

then from the above equation, one can also derive f 1
4 ,

s1f
1
4 = 1

4
φ2 + s1 − 1

4
φ1 + s1

s1s2 + 2s1 + 2s2 − 4

8s2(2 − s1)
δtR.

(B5)
After the substitution of Eq. (B5) into Eq. (B3), we can derive
the relation among φ0, φ1, and φ2,

3

4
φ1 − 1

4
φ2 − 1

2
φ0 = 3s1s2 − 2s1 − 2s2 + 4

4s2(2 − s1)
δtR. (B6)

On the other hand, one can also obtain φ1 and φ2 from the
analytical solution of the LB model [Eq. (20)],

φ1 = φ0 + 0.5

N

(
2 − 0.5

N

)
�φ + φs, (B7a)

φ2 = φ0 + 1.5

N

(
2 − 1.5

N

)
�φ + φs. (B7b)

Substituting the above two equations into Eq. (B6), we can
obtain the numerical slip φs given by Eq. (23).
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