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Diffusion through thin membranes: Modeling across scales
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From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled
using specific boundary conditions across them. The membranes are here considered thin in comparison to
the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary
condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale,
a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and
analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission
boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the
permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic
model, the mean waiting time for a passage of a particle through the membrane is in accordance with this
permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with
analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate
diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model
based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental
one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.
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I. INTRODUCTION

Membranes are selective barriers restricting transport of
material between two regions. They are ubiquitous in living
organisms; the transport of molecules between a cell and
its exterior, and between many cellular compartments, is
regulated by lipid bilayers outlining them. These membranes
are extremely thin in comparison with the size of the whole
cell. For example, the nuclear envelope of a cell is about tens
of nanometers thick [1], while a typical eukaryotic cell is
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around tens of micrometers in diameter. Hence, a detailed
modeling of mass transport in a cell will involve multiple
length and time scales. Besides being important building
blocks in living organisms, membranes are used in many
environmental and industrial applications like food processing
and water purification via osmosis [2,3].

In a macroscopic scale, the rate of transport of solute
molecules across a membrane is quantified by

Jm = −Pδρ, (1)

where Jm is the flux of particles across the membrane and δρ

is the difference between concentrations at the opposite faces
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of the membrane. In other words, the membrane induces a
concentration jump δρ across it. Moreover, the coefficient of
proportionality P is the membrane permeability. In the stan-
dard solubility-diffusion model, for example, P = KDm/w,
where K is a dimensionless partition coefficient, Dm is the
intrinsic diffusion coefficient in the membrane, and w is the
membrane thickness [4,5].

In this article, we examine diffusion through thin mem-
branes. In a macroscopic analysis, we treat the membrane
as a transmission boundary condition between two regions,
and derive solutions for the concentration fields in simple
configurations. However, many applications of great interest
are beyond an analytical treatment due to inherent complexities
involved. Hence it is of practical importance to consider
numerical modeling of membranes as well. A numerical
treatment of continuum-based models requires discretization
of the space. When the membrane is considered as a singularity
also in the scale of discretization, say in the scale of lattice
spacing, it is not immediately clear how the permeability in a
numerical scheme should be implemented to be in accordance
with the permeability of Eq. (1) in the continuum description.
The situation is even more complex in numerical methods
which do not explicitly contain the macroscopic differential
equations they solve, such as the lattice-Boltzmann method
(LBM) [6,7].

In order to focus on this issue, we discretize the macroscopic
transmission conditions so as to derive an expression for the
mass flux between two discretization points separated by a
membrane. The obtained expressions can be readily utilized,
e.g., in finite-difference and finite-volume methods for solving
the diffusion equation. In a mesoscopic scale, we propose an
implementation of LBM, where the membrane is treated as a
partial-bounceback condition between two lattice nodes. After
presenting the discrete scheme, we perform a multiple-scale
analysis and derive an explicit expression for the mass flux
at the membrane. To bridge the gap between microscopic
and mesoscopic descriptions, we show, in a microscopic
description, that the flux coincides with the inverse mean
waiting time of a single molecule in the vicinity of the
membrane.

Finally, we show that the numerical approximations with
LBM agree with analytically derived solutions at a macro-
scopic level, and show the applicability of the LBM scheme
by determining the permeability of the nuclear envelope to
enhanced yellow fluorescent protein (EYFP). In this numerical
determination of permeability, photobleaching experiments
are compared against simulations executed using realistic,
three-dimensional, image-based geometries.

II. CONTINUUM THEORY

To begin with, in a macroscopic scale the diffusion equation
with a constant diffusion coefficient D is given by

∂tρ(x,t) − D ∂2
xρ(x,t) = 0, (2)

and Fick’s law for the mass flux J is given by

J = −D ∂xρ. (3)

Using Eq. (1) and continuity of the mass flux, we find that
the transmission conditions at the membrane (at x = 0) can be

FIG. 1. The top part of the figure, (a) and (b), illustrates an
interpretation of the effective membrane thickness, 2�, using � =
D/2P . Shifting the concentration profile by � will remove the
concentration jump and, hence, remedy the discontinuity [8]. The
bottom part of the figure, (c) and (d), is a schematic description for
the linear interpolation of ρ(0+) and ρ(0−) according to Eq. (11). The
stars indicate the two interpolation points.

expressed in the form,

D ∂xρ(0−,t) = P [ρ(0+,t) − ρ(0−,t)],

∂xρ(0+,t) = ∂xρ(0−,t),
(4)

where ρ(0+) and ρ(0−) now denote concentrations at the
opposite faces of the membrane.

Note that the mass flux across the membrane, Eq. (1), can
also be expressed in the form,

Jm = −D
ρ(0+) − ρ(0−)

2�
= −D ∂xρ + O(�2); (5)

an effective thickness of the membrane, 2�, is defined using
� = D/2P [8]. That is, even though the concentration is
not formally differentiable across the membrane, a diffusive
transport across it can be expressed by the usual Fick’s
law, when the partial derivative is understood in the manner
described above (see the top part of Fig. 1).

A. A steady-state configuration

The steady-state solution for a one-dimensional (1D)
diffusion equation, given by J = −D∂xρ = constant, implies
a linear concentration profile. Let us consider a domain
[−L/2,L/2] with a given reference concentration ρr , and a
fixed concentration difference �ρL between the domain ends,
i.e., the boundary conditions,

ρ(−L/2) = ρr + �ρL

2
and ρ(L/2) = ρr − �ρL

2
,

can support a nonzero, constant mass flux at steady state.
Since the configuration is symmetric,

ρ(0−) = ρr + δρ

2
and ρ(0+) = ρr − δρ

2
. (6)

A transmission boundary condition then enforces a contin-
uous mass flux for a discontinuous concentration, and can be
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expressed in the form,

D(∂xρ)(0−) = Pδρ = D(∂xρ)(0+).

Since the concentration profile in the bulk is linear at steady
state,

(∂xρ)(0−) = ρ(0−) − ρ(−L/2)

L/2
= δρ − �ρL

L
.

Exactly the same expression is obtained for (∂xρ)(0+). Hence,

D

L
[�ρL − δρ] = Pδρ,

which finally leads to

δρ = �ρL

1 + γ
, (7)

where γ = LP/D.

B. A transient configuration

An analytical solution can be derived for the above mem-
brane boundary condition in the case, where x ∈ [−L,0) ∪
(0,L], and concentration is initially uniform on one side of the
membrane and zero on the other. Mathematically, we write a
no-flux boundary condition at ±L,

∂xρ(L,t) = ∂xρ(−L,t) = 0,

and an initial condition at t = 0:

ρ(x,0) =
{

1; −L � x � 0,

0; 0 < x � L.

Note that in the following analysis we will, for simplicity,
use dimensionless densities which can be understood as
normalized quantities of the form ρ̃ = ρ/ρr , where ρr is a
reference density. Defining ξ = x/L and τ̃ = t D/L2, we can
solve the resulting dimensionless problem by separation of
variables (see Appendix A), and find that

ρ(ξ,τ̃ ) = 1

2
−

∞∑
k=0

2γ e−μ2
2k+1 τ̃

μ2
2k+1 + 4γ 2 + 2γ

×
(

sgn(ξ ) cos(μ2k+1ξ ) + 2γ

μ2k+1
sin(μ2k+1ξ )

)
,

(8)

where again γ = LP/D, and the eigenvalues μ satisfy

μ2k = kπ ; k = 0,1,...

tan μ2k+1 = 2γ

μ2k+1
; kπ < μ2k+1 < kπ + π

2
.

(9)

III. DISCRETIZATION OF THE TRANSMISSION
BOUNDARY CONDITIONS

In a fine enough discrete numerical model, the membrane
can be constructed explicitly by assigning a number of
discretization points to it, and setting the membrane diffusion
coefficient Dm in those points such that the desired flux through
the membrane, Eq. (3), will be obtained. Here we continue
instead to treat the membrane as a boundary condition. In a true

multiscale-modeling fashion, we place the membrane between
two discretization points and discretize the transmission
conditions of Eq. (4). We set up our computational grid such
that there is a grid point on each side of the membrane with an
equal distance h to it.

Furthermore, the continuity condition for the flux at the
membrane, approximated to first order in space with backward
and forward differences, is given by

D
ρ(h) − ρ(0+)

h
= D

ρ(0−) − ρ(−h)

h
. (10)

Setting P [ρ(0+) − ρ(0−)] equal to both sides of Eq. (10),
separately, we can express ρ(0+) and ρ(0−) in terms of ρ(h)
and ρ(−h). In this way we find that

{
ρ(0+) = [

1 − h
2(h+�)

]
ρ(+h) + h

2(h+�)ρ(−h),

ρ(0−) = [
1 − h

2(h+�)

]
ρ(−h) + h

2(h+�)ρ(+h).
(11)

That is, Eq. (11) defines a linear interpolation for obtaining
the concentrations at the membrane using the two adjacent
discretization points (see the bottom part of Fig. 1). Note that
this interpolation is consistent, when h → 0.

After substituting these expressions into Eq. (1), we find
further that

Jm = −P

[
�

h + �
�ρ

]
= −P

[
1

λ + 1
�ρ

]
, (12)

where �ρ = ρ(h) − ρ(−h) and the dimensionless coefficient
λ = h/� = 2hP/D. That is, the mass flux across the mem-
brane is now expressed using the concentration difference
between the two adjacent grid points, not between the two
faces of the membrane. Therefore the measured difference
must be adjusted so as to be consistent with the definition of the
permeability coefficient. Thus �ρ/(1 + λ) can be considered
as the concentration jump interpolated at the membrane.

A. Effective diffusion coefficient in the membrane

An alternative interpretation of the mass flux in Eq. (12)
can be adopted. Using the definition of λ, we arrive at

Jm = − λ

1 + λ
D

�ρ

2h
= − λ

1 + λ
D ∂xρ(0) + O(h2). (13)

This same expression, but in a different context, has been
reported, e.g., in Refs. [9,10]. Now the partial derivative at the
membrane is approximated using the discretization points and,
in particular, not across the effective membrane thickness, cf.
Eq. (5). While the coefficients in Eq. (13) originate from the
concentration-jump approximation, this mass-flux expression
is quite elegant: The effect of the membrane is manifested
by a single coefficient λ, having the role of reducing the
corresponding bulk mass flux. Accordingly, the coefficient
λD/(1 + λ) can be considered as the effective diffusion
coefficient for the membrane. The obtained expressions,
Eqs. (11)–(13), can be utilized, e.g., in finite-difference and
finite-volume methods for solving the diffusion equation.
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IV. LATTICE-BOLTZMANN MODELING OF DIFFUSION
ACROSS A MEMBRANE

Numerical modeling on the level of distribution functions
of the solute, i.e., on a mesoscopic scale, is conveniently
implemented using the lattice-Boltzmann method [6,7], which
has emerged as an alternative in a computational treatment
of complex transport phenomena. Diffusion processes, for ex-
ample, can be simulated using the standard lattice-Boltzmann
evolution equation with the BGK collision operator [11],

fi(r + δt ci ,t + δt) = fi(r,t) − fi(r,t) − f
eq
i (ρ)

τ ∗ ,

where i = 0, . . . ,q − 1, where q is the number of discrete
velocities in the model, τ ∗ is a dimensionless relaxation time,
ρ denotes the local concentration at a given instant, and wi

are suitable weight coefficients for the equilibrium function,
f

eq
i = wiρ. The lattice spacing δr , and discrete time step δt ,

define a reference velocity, cr = δr/δt , and ci = cr c∗
i , where

c∗
i are the dimensionless lattice vectors.

The first few moments of the discrete equilibrium distribu-
tion function are given by∑

i

f
eq
i = ρ,

∑
i

ci,αf
eq
i = 0,

∑
i

ci,αci,βf
eq
i = b c2

r ρ δαβ,

where b is a constant fixed by selection of the weight
coefficients wi (see Appendix B). The diffusion coefficient can
be derived, e.g., with the Chapman-Enskog procedure [11]:

D = (τ ∗ − 1/2)b δt c2
r . (14)

As already mentioned, the most elementary way to con-
struct the membrane in a lattice-Boltzmann framework is to
assign a number of lattice nodes to it; the flux is controlled
with the diffusion coefficient Dm, e.g., by setting the relaxation
time appropriately. This is also the approach taken in Ref. [12]
to model the nuclear envelope. However, if the membrane
restricts the transport strongly, relaxation time at the membrane
sites can be inconveniently small (with respect to the numerical
stability [13]), or too large in the surrounding environment
(with respect to the numerical error [11]). A possible way to
circumvent this problem is to use a local grid refinement at the
membrane and its immediate neighborhood. Unfortunately in
a complex geometry, which is the typical case, such refinement
may be cumbersome or not feasible at all.

Instead, we follow Ref. [14], where a mesoscopic boundary
condition corresponding to Eq. (1) was reported, and utilize
this simple boundary condition for the implementation of a
membrane in a lattice-Boltzmann scheme. The condition relies
on a single parameter (we will call it φ in the following)
that controls the proportion of particles which are able to
pass through the membrane. Namely, we introduce a partial
halfway-bounceback rule for the distributions that cross the
membrane,

fi(r + δt ci ,t + δt) = φfi(r,t) + (1 − φ)f−i(r + δt ci ,t),
(15)

where subscript −i denotes the direction which is opposite
to that of i, i.e., c−i = −ci . That is, the location of the

membrane is halfway between two neighboring lattice nodes.
Depending on the application, φ can be associated with, e.g.,
the relative area of the membrane, which allows diffusive
transport. Equation (15) provides a subgrid-scale model for
the membrane diffusion, and it is conveniently implemented
even in arbitrarily complex geometries. Previously partial-
bounceback schemes have been used in the LBM context
for modeling transport in porous media [15–18], thermal
conduction across the boundary between two materials [19],
or slip flows [20,21].

The Chapman-Enskog analysis of the scheme of Eq. (15)
shows (see Appendix B) that it leads to the modified flux as
obtained above at the membrane, Eq. (12), and the restrictive
effect of the membrane is included in the coefficient λ =
P δr/D, h = δr/2, where the permeability is given by

P = φ

(1 − φ)

b

2
cr . (16)

That is, the partial-bounceback scheme is an alternative
discretization of the transmission boundary condition.

It is also evident that this expression for the permeability
implies a reasonable limiting behavior,

Jm −→
{

0, when φ −→ 0,

−D ∂αρ, when φ −→ 1.

Furthermore, when D approaches infinity, i.e., when transport
is limited only by the effect of the membrane, Jm approaches
the value −P δr ∂αρ. This is consistent with Eq. (1), and shows
that P can indeed be thought of as the permeability of the
membrane. This allows us to compare an approximate solution
computed by the lattice-Boltzmann scheme with the analytical
solution derived above.

V. MICROSCOPIC MODELING OF DIFFUSION
THROUGH A MEMBRANE

We interpret the permeability of the Chapman-Enskog
analysis, Eq. (16), in terms of the kinetics of individual solute
molecules by studying a single-particle stochastic diffusion
process, the probability density of which coincides with the
solution of the macroscopic diffusion equation, Eq. (2), with
the flux boundary condition, Eq. (4), at the membrane. In
that sense, it is the exact microscopic counterpart of the
macroscopic description.

The idea of the microscopic process is that a particle must
on average collide with the membrane a sufficient number of
times to find a pore, through which it passes to the other side
of the membrane. Hence there is a pore-density-dependent
probability to go through the membrane given that the particle
is at its immediate vicinity. In a continuum model, the time
spent at the membrane is measured by the local time [22],

Lt = lim
ε→0

1

2ε

∫ t

0
I (−ε < Xs < ε) ds,

where Xt is the position of the particle at time t and I is
an indicator function. The local time is clearly a stochastic
process that can only increase in time. The trajectories of the
process Lt typically consist of long periods with no change
in its value, as the Brownian particle is on an excursion far

043309-4



DIFFUSION THROUGH THIN MEMBRANES: MODELING . . . PHYSICAL REVIEW E 93, 043309 (2016)

away from the membrane, and bursts of rapid increase when
the particle is in its close vicinity.

A continuum stochastic process Xt that passes through the
membrane when its local time at the membrane exceeds an
exponential random variable is an extension of the elastic
Brownian motion [20], called snapping-out Brownian motion
in a recent preprint [23]. In the preprint, the process was also
shown to be the limit of a diffusion through a membrane
of a vanishing diffusion constant D(w) as the membrane
width w → 0. The first passage through the membrane was
further shown to be marked by the local time exceeding an
exponential random variable with a characteristic time scale,
τc = limw→0 w/D(w), which depends on the microscopic
structure of the membrane. However, it can be written down
for the residence times of random walks with an idealized,
infinitely thin membrane (see Appendix C).

Taking the continuum limit results in a snapping-out
Brownian motion, and provides the equivalence of single-
molecule and ensemble-averaged permeabilities,

1

τc

∝ φ

1 − φ
.

In other words, the inverse mean local time at the membrane
before the particle passes through to its other side is propor-
tional to the permeability in an ensemble experiment. This
result is reminiscent of single-molecule reaction kinetics, in
which case the mean waiting time to the next chemical reaction
that involves an individual enzyme molecule equals the
inverse of reaction velocity in a large ensemble of constituent
molecules [24].

VI. VERIFICATION OF THE LB MEMBRANE SCHEME

Here we numerically verify that the above presented LB
membrane scheme indeed is a consistent discretization of
the transmission boundary conditions presented in Sec. II.
To this end, we simulated diffusion across a membrane in
a one-dimensional setting using the standard LB scheme for
diffusion [11] together with the D1Q3 discrete velocity set. We
chose b = 2/3 which implies wi = 1/3 for all i. Furthermore,
we used a constant value for the dimensionless relaxation time,
i.e., τ ∗ = τ/δt = 3/2. The permeability was controlled with
φ according to Eq. (16). The values of D and P used in the
simulations were then substituted into Eqs. (7) and (8) when
evaluating the analytical profile.

A. Steady-state benchmark case

First we considered a steady-state benchmark case. The
main idea is to compare the analytically derived approximation
for the mass flux, Eq. (12), with the mass flux computed
numerically. We also compare the analytical and simulated
concentration profiles.

In a standard LB scheme for diffusion, the local mass flux is
computed as the first moment of nonequilibrium distributions
averaged over pre- and post-collisional states. Let J n denote
the flux across the membrane (where n stands for the numerical
flux). We then measure (when using D1Q3)

J n =
(

1 − δt

2τ

)
cr

[
f

neq
E (δr/2) − f

neq
W (−δr/2)

]
, (17)

FIG. 2. The 1D steady-state benchmark configuration. The LB
scheme is utilized together with the D1Q3 discrete velocity set. The
two nodes adjacent to the membrane are located at −δr/2 and δr/2.

where f
neq
E (δr/2) is the nonequilibrium distribution at the

right-hand side of the membrane and at the pre-collision state;
f

neq
W (−δr/2) is defined accordingly (see Fig. 2).

We carried out the simulations enforcing constant concen-
trations ρ(−L/2) = ρr + �ρL/2 and ρ(L/2) = ρr − �ρL/2
at the boundaries: ρr and L are the reference concentration
and domain length, and �ρL is the given concentration
difference across the domain. These boundary concentrations
were also used as the initial concentrations on the left and right
subdomains.

All tests were made using N = 40 lattice nodes. When
comparing to an analytical solution with given P , D, and
L, the simulation parameters are then the lattice spacing
δr = L/(N − 1), from Eq. (14) the discrete time step δt =
(τ ∗ − 1/2)b δr2/D, and from Eq. (16) the transmission param-
eter φ = 1/(1 + C), where C = b δr/(2P δt). We used ρr =
1 kg/m, L = 1 cm, D = 0.05 cm2/s in all of our comparisons,
and varied the values of P and �ρL as described below.
Note that according to Eq. (7) the shape of the density profile
depends only on the dimensionless ratio γ = LP/D, so the
units of L, P , and D can be adjusted while keeping γ constant,
making the results valid in other scales, too.

FIG. 3. Comparison of numerical and analytical concentration
profiles. The reference values are �ρL = 10−3ρr and P = 0.05 cm/s.

043309-5



VESA AHO et al. PHYSICAL REVIEW E 93, 043309 (2016)

FIG. 4. Comparison of the analytical approximation for the mass
flux, Eq. (12), with the flux obtained from the simulations using
Eq. (17). The reference value for �ρL is 10−3ρr .

We performed two groups of simulations. With the first
group we compared the steady-state concentration profiles
obtained numerically with the analytical solution, Eqs. (6)
and (7), for two different values of P and three different values
of �ρL. With the second group of simulations we compared
the mass fluxes obtained from Eqs. (12) and (17) using three
different values for �ρL and ten values of P for each �ρL.

Figures 3 and 4 show the results of these simulations. From
the figures it is apparent that there is an excellent agreement
between the numerical and analytical solutions. In fact, the
analytical solutions were reproduced with machine precision,
when comparing both the concentration profiles and the mass
fluxes. These results are not too surprising as the presented LB
scheme for modeling diffusion across membranes is second-
order accurate, based on theoretical considerations, and the
benchmark is a linear configuration.

FIG. 5. Comparison of the simulated (ρn) and analytically
determined (ρa) concentration profiles. The reference values are
P = 0.05 cm/s and t = 2 s.

FIG. 6. The result of a convergence test for the lattice-Boltzmann
partial-bounceback scheme, showing second-order convergence with
respect to the lattice spacing δr .

B. Transient benchmark case

Next we considered a transient benchmark case for verify-
ing the LB membrane scheme. When comparing the analytical
solution, Eq. (8), with the simulated solution, we represented
the simulation domain with 100 lattice nodes and the mem-
brane was again located at the center of the domain. The initial
concentration was ρ0 = ρr on the left side of the membrane
and ρ0 = 0 on its right side. At the borders of the simulation do-
main the standard bounceback rule [25] was applied (i.e., a no-
flux condition). The values of D and L were fixed to the values
used in the previous section, and the values of P and the time t

were varied. The number of grid points determines the lattice
spacing (L is fixed) as well as the discrete time step δt due to
fixed D and τ ∗. The permeability parameter φ and the number
of simulation time steps were then adjusted to deliver the
given P and t . The results of these comparisons are presented
in Fig. 5. In each case we observed a very good agreement
between the simulated and analytically determined solutions.

To numerically confirm the second-order accuracy, pre-
dicted analytically by using the Chapman-Enskog analysis, we
measured the convergence rate of error with respect to the grid
spacing δr . We repeated the transient simulation and varied
the number of grid points in the simulations from 10 to 500.
The (absolute) error was measured by comparing the analytical
and simulated density values at the lattice point nearest to the
membrane on the left side of it. From this experiment, we
observed that the convergence rate of error is of second order
in space as expected (see Fig. 6).

VII. APPLICATION OF THE LB MEMBRANE SCHEME

After a successful verification of the LB membrane scheme,
we demonstrate its capability as a computational tool in a
realistic research problem. Namely, we apply the scheme
in a biological context, and utilize it for determining the
permeability of the nuclear envelope of HeLa cells to enhanced
yellow fluorescent protein (EYFP).
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Proteins can travel through the nuclear envelope passively
by diffusion, or they can be actively transported by proteins
called karyopherins. The karyopherin-mediated active trans-
port requires that the transported protein contains peptide
signals called nuclear localization signals or nuclear export
signals in the case of nuclear import or nuclear export,
respectively. The green fluorescent protein (GFP) and GFP-
derived fluorescent proteins, like EYFP used here, do not
contain these signals and are known to be small enough to
travel through the envelope passively.

The irregular shape of the cell and its nucleus, the
nonuniformity of the equilibrium concentration of a molecule
of interest, and movement of particles between cell organelles
and their exterior are some of the problems that need to be
addressed when considering the diffusion of particles within
cells. These complexities usually mean that analytical methods
are very difficult to utilize, and numerical methods become
necessary. Instead of using a microscopic model for diffusion,
like a random walker to model individual particles, it is more
useful to work here on the particle density level instead, since
in our approach we compare our simulations to experimentally
determined densities. The connection between the particle
densities and the lattice-Boltzmann distribution functions is
simple (see Sec. IV) making it easy to interpret our simulations.
Additionally, Eq. (16) gives us access to the permeability value
from the simulation parameters utilized at the location of the
nuclear envelope.

With these considerations in mind, we determine the
permeability of the nuclear envelope to EYFP by comparing
the measured evolution of the EYFP distribution in the cells
to the evolution simulated with the lattice-Boltzmann method
using different values of permeability. That is, we simulate
nuclear transport in a real cellular geometry. The realistic,
image-based simulation geometry is itself obtained by using
fluorescence microscopy. By correlating the experimental
and computational results, it is then possible to determine
a permeability value for the nuclear envelope from the
simulation parameters utilized.

A. Experimental setup

1. Cells and culturing

Human-carcinoma HeLa MZ cells were used in all the ex-
periments. The cells were grown in Dulbecco’s modified Eagle
medium with 10% FBS, while incubated at 37°C temperature
in the presence of 5% CO2. The cells were transfected with
plasmids encoding a freely diffusing yellow fluorescent protein
(EYFP-N3) and a histone-bound cyan fluorescent protein
(H2B-ECFP) using the TransIT-2020 reagent (Mirus Bio LLC,
Madison, WI) in 5-cm glass-bottom dishes (MatTek, Ashland,
MA) 24 hours before the measurements.

2. Microscopy

An Olympus FV1000 confocal microscope was used in
the experiments with a 60× water-immersion objective whose
numerical aperture was 1.2. The stage heater of the microscope
was set to 37°C. The equilibrium distributions of EYFP and
H2B-ECFP were imaged in the whole cell by taking confocal
planes from the top to the bottom of the cell. The dynamics

of EYFP was imaged in one confocal plane only. The voxel
size was set to (150 nm)3 in three-dimensional (3D) imaging
and (150 nm)2 in two-dimensional (2D) imaging. EYFP was
excited using the 514-nm line of an argon laser, and H2B-ECFP
using the 405-nm line of a diode laser.

The equilibrium distributions Ieq of EYFP and H2B-ECFP
were first imaged in the whole cell using an image size of
320 by 240 pixels. The average thickness of the cells was
about 80 pixels. Since the EYFP distribution that is seen with
the microscope is, macroscopically speaking, in equilibrium,
we needed to disturb this equilibrium in order to measure
its dynamics. This was achieved using the photobleaching
technique, where a high-intensity laser pulse is directed to
a region in a cell, destroying the fluorescence in that area.
It was observed that after the photobleaching the diffusion
of EYFP back towards the equilibrium was very fast, so the
process could not be imaged in the entire cell but only in one
confocal plane. To further increase the acquisition speed, a
smaller area of 320 by 90–100 pixels was selected such that
the area contained some of the nucleus, cytoplasm, and nuclear
envelope. The dynamics of EYFP was then observed in this
area by first photobleaching a circular area of 1.5-μm diameter
in the nucleus using the 514-nm laser line with maximum
power, and taking images with 5.2–5.5 frames per second
thereafter. The imaged intensity after the bleaching in this one
layer is called Iexp in the following.

B. Simulation setup

For simulations the nucleus was segmented using fluores-
cence data of H2B-ECFP, and the whole cell was segmented
from the background using the EYFP data [see Figs. 7(a)–
7(d)]. As the initial condition for the simulation we selected
the EYFP distribution after the photobleaching [Figs. 7(e)
and 7(f)]. Even though we imaged the photobleaching process
in one confocal plane, the laser beam causes the bleached
profile to extend also in the direction perpendicular to the
imaged plane. We assumed that the intensity profile of the
laser was constant in the z direction [12] and calculated a
fractional loss of intensity, γ (x,y), such that for the before- and
after-bleach intensities the relation Iafter = γ Ibefore held. The
whole-cell initial concentration distribution for the simulation,
Isim(r,t = 0), was then set by multiplying the intensities of the
imaged equilibrium concentration of EYFP in every layer with
γ (x,y) (extrapolation of the profile in the z direction).

The cell is filled with microscopic structures which prevent
the fluorophores from entering certain regions of the cell, effec-
tively reducing the accessible volume for the fluorophores. As
these structures cannot be resolved by the microscope, the mea-
sured equilibrium distribution appears to be heterogeneous and
nonuniform [see Fig. 7(a)]. Due to this nonuniformity, we had
to solve the diffusion equation for the dimensionless (relative)
intensity, I ∗(r,t = 0) = Isim(r,t = 0)/Ieq(r) [26]. Solving the
equation for Isim, instead of I ∗, would eventually lead to
a uniform equilibrium concentration, which, as mentioned
above, is not correct.

For these simulations we used the standard LB scheme for
diffusion with the D3Q7 discrete velocity set; parameter b was
fixed to 2/7. The grid spacing δr was chosen to be the same
as the voxel size of the imaged cells (150 nm). At the borders
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FIG. 7. (a) A confocal microscopy image showing a top cross section of the equilibrium distribution of EYFP inside a HeLa cell. (b) A
confocal microscopy image of H2B-ECFP distribution in the nucleus. HB2-ECFP distribution was used to segment the nucleus from the rest
of the cell and to determine the location of the nuclear envelope. (c) A cross section of a constructed cell geometry for simulations, showing
the cytoplasm in gray and the nucleus in white. The nuclear envelope was constructed by applying the partial-bounceback rule between the
white and gray pixels. (d) A side cross section of the cell geometry. (e) Imaged EYFP distribution after the photobleaching. The evolution of
the EYFP distribution after the photobleaching was imaged in a smaller region so that the fast dynamics of EYFP could be captured with a
better time resolution. (f) A cross section of the initial concentration of a simulation, constructed using the equilibrium distribution [Fig. 6(a)]
and the photobleached distribution [Fig. 6(e)]. The bleached profile extends through the cell in the direction perpendicular to the image plane.

of the cell a full bounceback rule [25] was applied (i.e., a
no-flux condition), and the flux through the nuclear envelope
was implemented by the membrane model presented in
Sec. IV. This was achieved by applying the partial-bounceback
rule of Eq. (15) to a distribution function fi(r) if r was located
in the segmented nucleus (cytoplasm) and an adjacent point
r + δr êi was located on the other side of the membrane in
the segmented cytoplasm (nucleus). The permeability of the
envelope was assumed to be uniform, since the density of the
nuclear pores is high and they are rather uniformly located over
the nuclear envelope [27,28]. Furthermore, the permeability
was assumed to be constant during the simulation, since the
total simulated time (only a few seconds) was short.

Besides the volume exclusion effect mentioned above, the
cellular structures also reduce the mobility of molecules in
their vicinity [12]. Therefore we had to scale the diffusion
coefficients in the cell based on the amount of volume
exclusion in the imaged equilibrium distribution. Values of
τ (r) were set based on a simple capillary model,

Deff(r) = ε(r)Dmax, (18)

where ε is a porosity parameter that was assumed to be directly
proportional to fluorescence intensity in the equilibrium
fluorophore distribution, that is, ε(r) = Ieq(r)/Imax, where Imax

is the maximum fluorescence intensity of EYFP in the cell. For
τ this means that we had to set them according to the equation,

τ ∗(r) = Ieq

Imax

(
τ ∗

max − 1

2

)
+ 1

2
, (19)

where τ ∗
max is the maximum value of τ ∗ in the cell, since,

according to Eq. (14), D ∝ τ ∗ − 1/2. The value of τ ∗
max can

now be chosen quite freely, e.g., based on accuracy, stability,
or workload considerations for the problem. We found that
τ ∗

max = 2 was a good choice for our problem. Note that in
our analytical considerations, we assumed that the diffusion
coefficients on either side of the membrane are the same. This
is strictly speaking not true in our simulations, but the gradient
∇D(r) is still sufficiently small to justify this assumption.

By varying φ, the transmission parameter for the nuclear
envelope, we obtained several diffusion patterns that were
analyzed and fitted to experimentally measured diffusion to
yield δt as a fitting parameter. In other words, φ was used
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to control the amount of nuclear envelope permeation in the
simulation, while δt was used to connect the whole simulation
to the experiment to which it was compared. This works
because both D and P are inversely proportional to δt . The
fitting procedure is described in the next section.

1. Data analysis

Distributions of I ∗ that were obtained from the simulations
were compared to measured relative fluorescence of the
corresponding experiments, I ∗

exp = Iexp/Ieq, by calculating
cross-correlation functions given by

Cc(exp,sim) =
∑
x,y

[
I ∗

exp(x,y) − I ∗ aver
exp

] + [
I ∗

sim(x,y) − I ∗ aver
sim

]
Nσexp σsim

,

where subscript “exp” refers to experiment and “sim” to
simulation, I (x,y) are fluorescence intensities of the pixels,
I aver average intensities of the images, σ s the standard
deviations of the images, and N is the number of pixels in
the image. Notice that the simulations were conducted in the
whole cell, while the experimental EYFP diffusion was only
imaged in one confocal plane of the cell. For this reason, the
corresponding region had to be extracted from the simulations
for the comparison. For each experimental time point, the
simulation time point that gave the largest cross-correlation
value between the two images was determined. In this way
a curve was obtained, the linearity of which was used as an
indicator of the accuracy of the simulation. For the simulation
that yielded the most linear curve, the value of the simulation
time step δt was extracted from the slope of the curve. The
values of δt and φ were then used in Eq. (16) to determine the
nuclear envelope permeability.

C. Determination of the nuclear permeability of EYFP

We determined the nuclear envelope permeability of EYFP
in HeLa cells by comparing the evolution of EYFP distribution
in the cells, measured by fluorescence microscopy, to evolution
simulated with different values of permeability (see Fig. 8).

Figure 9 shows that when the value of φ in the simulation
was too high, the simulation progressed too fast compared
to the experiment. Similarly, the simulation progressed too
slowly when φ was too low. This allowed us to find an optimal

FIG. 8. A comparison of the experimental (left-hand column)
and simulated (right-hand column) intensities I ∗ at three time points.
Notice that the experimental data contains imaging noise. This is also
true for the initial condition of the simulation, since it is determined
from the experimental data.

FIG. 9. Comparison of three simulations with different perme-
ability parameters φ to an experiment. For every time point of the
experiment a time point from the simulation was searched such that it
yielded the highest cross correlation between the two. The simulation
for φ = 0.004 was the most linear one. The time step of the simulation
can be determined from the slope of the linear fit.

φ, and to determine the nuclear permeability as described
above.

We performed simulations for 12 cells, and the determined
permeabilities varied between 0.16 and 0.98 μm/s. The
average permeability and its standard deviation were P =
0.5 ± 0.3 μm/s. The determined simulation time step, together
with the used simulation parameters, allowed us to calculate
also the diffusion coefficients in the cell. The determined
average diffusion coefficients in the nucleus and cytoplasm
were Daver

nuc = 27 ± 7 μm2/s and Daver
cyt = 15 ± 4 μm2/s.

Using the solubility-diffusion model (see Introduction),
P = KDm/w, together with equation Apore = K/n, where
Apore is the cross-sectional area of one nuclear pore channel and
n is the area density of the nuclear pores, we calculated a rough
estimate for the effective nuclear pore diameter. The value Dm

that we used was the average of the nucleus and cytoplasm
diffusion coefficients that we determined (21 μm2/s) and the
value of n was the average of values from [27,28] (25 μm−2)
and w ∼ 65 nm [29,30]. This way we obtained the effective
nuclear pore area Apore ∼ 62 nm2, or effective pore diameter
dpore ∼ 8.9 nm, which is in good agreement with experimental
data [31,32].

D. Discussion

The average diffusion coefficients that we obtained in the
nucleus and cytoplasm are close to what has been found
in previous studies for EYFP and structurally very similar
GFP [12,33,34]. The average diffusion coefficients are about
3–6 times less in the cellular environment than in water [34].

Previously, nuclear envelope permeabilities have been
determined mostly by fitting an analytical solution to a
measured average fluorescence intensity in the nucleus after
photobleaching [35,36]. The solution assumes that diffusion
in the nucleus and cytoplasm is fast compared to diffusion
through the nuclear envelope, such that the concentrations
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in the nucleus and cytoplasm are approximately uniform. A
previously reported value of the permeability for enhanced
green fluorescent protein EGFP, determined in this manner, is
0.011 μm/s in COS7 cells [36]. We obtained a clearly higher
permeability value and some reasons for the discrepancy are
discussed below.

Besides the fact that the permeability of the nuclear
envelope is probably somewhat different between two cell
lines, an additional explanation might be that the above
approximation used in Refs. [35,36] exaggerates the flux
through the nuclear envelope (since it assumes a higher
concentration difference over the membrane than there actually
is). This leads to an underestimation of the nuclear envelope
permeability that is obtained by fitting the model to an
experiment. Another assumption used in [36] was that the
cytoplasm concentration stayed constant, i.e., the cytoplasm
volume was large compared to that of the nucleus. This
approximation also further underestimates the permeability.

Regions of the cell where these approximations prove
especially problematic (for cells on a hard substrate) are the
bottom and the top of the nucleus. There the nucleus is usually
very close to the plasma membrane of the cell [see Fig. 7(d)]
and, because of the restricted space, it is more difficult for
the cell to replace permeated molecules to retain an efficient
concentration difference between the two compartments.

VIII. CONCLUSION

We reported here an analysis of modeling diffusion through
semipermeable membranes. We intentionally avoided assign-
ing intrinsic properties such as the diffusion coefficient and
particle concentration to the membrane itself, but rather treated
the membrane as a semipermeable boundary between two
regions. In particular, the transmission boundary conditions
were imposed at the membrane. This approach is especially
useful in cases where the membrane is thin compared to the
overall size of the system. To facilitate a numerical modeling of
diffusion through thin membranes, we then presented various
discrete treatments of the transmission boundary conditions.

First we presented a direct discretization of the conditions
at the macroscopic level of description. A mesoscopic dis-
cretization, the partial-bounceback scheme, was then shown
to be a consistent, alternative approach for enforcing the
transmission boundary conditions. Furthermore, an expression
for the permeability derived for a mesoscopic LB scheme, was
shown to be in accordance with a microscopic, single-particle
stochastic diffusion model. Hence, the mesoscopic parameter
φ provided a bridge between the microscopic and macroscopic
descriptions, and could, for example, be used as a coupling
parameter between microscopic and macroscopic solvers
in a multiscale simulation effort. Moreover, the proposed
lattice-Boltzmann scheme for membrane diffusion is directly
applicable to advection-diffusion problems as well as to a
hydrodynamic transport across a membrane.

To demonstrate the applicability of the membrane scheme,
we simulated nuclear transport in a real cellular geometry
imaged by fluorescence microscopy. In this application of
the LB membrane scheme, together with a prescribed com-
putational procedure, we numerically determined a value for
the permeability of the nuclear envelope to EYFP. Since the

number of methods to study nuclear envelope permeability has
been limited, our method has the potential to be an important
addition to the existing tools.
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APPENDIX A: ANALYTICAL SOLUTION TO
THE DIFFUSION PROBLEM

Consider a diffusion equation,

∂ρ

∂t
(x,t) − D

∂2ρ

∂x2
(x,t) = 0,

(A1)
x ∈ [−L,0) ∪ (0,L], t > 0,

with the boundary conditions

∂ρ

∂x
(L,t) = ∂ρ

∂x
(−L,t) = 0, (A2)

and transmission conditions

D
∂ρ

∂x
(0 − ,t) = −P (ρ(0−,t) − ρ(0+,t)),

∂ρ

∂x
(0+,t) = ∂ρ

∂x
(0−,t), (A3)

and initial condition

ρ(x,0) =
{

1, − L � x � 0

0, 0 < x � L.
(A4)

Substitution

ξ = x

L
, τ̃ = t D

L2

gives us a dimensionless form of the problem Eqs. (A1)–(A4),

∂ρ

∂τ̃
(ξ,τ̃ ) − ∂2ρ

∂ξ 2
= 0, ξ ∈ [−1,0) ∪ (0,1],

∂ρ

∂ξ
(±1,τ̃ ) = 0,

∂ρ

∂ξ
(0+,τ̃ ) = ∂ρ

∂ξ
(0−,τ̃ ) = −γ (ρ(0−,τ̃ ) − ρ(0+,τ̃ )),

ρ(ξ,0) =
{

1, −1 � ξ � 0

0, 0 < ξ � 1,

where γ = LP/D. This problem can be solved by separation
of variables, ρ(ξ,τ̃ ) = v(ξ ) w(τ̃ ). For function v we find an
eigenvalue problem,

v′′(ξ ) + μ2v(ξ ) = 0, ξ ∈ [−1,0) ∪ (0,1],

v′(1) = v′(−1) = 0,

v′(0+) = v′(0−) = −γ (v(0−) − v(0+)),

(A5)

and w satisfies the equation,

w′(τ̃ ) = −μ2w(τ̃ ).
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Solution of the first equation in Eq. (A5), which satisfies the
boundary conditions at ξ = ±1, can be expressed in the form,

v(ξ ) =
{
A cos (μ(ξ + 1)), −1 � ξ < 0

B cos (μ(ξ − 1)), 0 < ξ � 1.

The transmission condition in Eq. (A5) leads to an eigenvalue
equation,

μ sin μ (μ sin μ − 2γ cos μ) = 0. (A6)

Eigenvalues μ2k are given by

μ2k = k π, k = 0,1, . . . ,

while μ2k+1 are given by the solutions of the equation,

tan μ2k+1 = 2γ

μ2k+1
, k π < μ2k+1 < k π + π

2
.

The corresponding eigenfunctions are given by

v2k(ξ ) = cos(kπξ ),

v2k+1(ξ ) = sgn(ξ ) cos(μ2k+1ξ ) + 2γ

μ2k+1
sin(μ2k+1ξ ).

From general Sturm-Liouville theory we know that these
eigenfunctions are orthogonal with respect to the L2 inner
product, and they form a complete (orthogonal) basis [37].
The solution of the problem of Eq. (A6) can be expressed in
the form,

ρ(ξ,τ̃ ) = 1

2
−

∞∑
k=0

2γ e−μ2
2k+1 τ̃

μ2
2k+1 + 4γ 2 + 2γ

×
(

sgn(ξ ) cos(μ2k+1ξ ) + 2γ

μ2k+1
sin(μ2k+1ξ )

)
.

APPENDIX B: LATTICE-BOLTZMANN SCHEME OF THE
PARTIAL-BOUNCEBACK METHOD

Pure diffusion processes, involving isotropic diffusion, can
be simulated, e.g., by using the standard lattice-Boltzmann
evolution equation with the BGK-collision operator [11]:

fi(r + δt ci ,t + δt) = fi(r,t) − δt

τ

[
fi(r,t) − f

eq
i (ρ)

]
,

i = 0, . . . ,q − 1,

(B1)
where τ is a relaxation time, ρ denotes the local density
at a given instant, and suitable weight coefficients for the
equilibrium function, f

eq
i = wiρ, are given in Table I. The

lattice spacing δr , and discrete time step δt , define a reference

TABLE I. Lattice-Boltzmann stencils for simulating diffusion.
The second column specifies the dimensionless discrete velocity
vectors (relevant permutations are implied). The weight coefficients
w0 and w1 are associated with the zero and nonzero velocity vectors,
respectively.

Stencil c∗
i w0 w1 Domain

D1Q3 {0,±1} 1 − b b/2 0 < b � 1
D2Q5 {(0,0),(±1,0)} 1 − 2b b/2 0 < b � 1/2
D3Q7 {(0,0,0),(±1,0,0)} 1 − 3b b/2 0 < b � 1/3

velocity, cr = δr/δt , and ci = cr c∗
i . With the stencils of

Table I, the first few moments of the discrete equilibrium
function are given by∑

i

f
eq
i = ρ,

∑
i

ci,αf
eq
i = 0,

∑
i

ci,αci,βf
eq
i = b c2

r ρ δαβ.

The diffusion coefficient can be derived, e.g., by the Chapman-
Enskog procedure:

Dbulk =
(

τ − δt

2

)
b c2

r .

1. Chapman-Enskog analysis of LBGK

First, the left-hand side of Eq. (B1) is expanded as a Taylor
series up to second-order terms:

(∂t + ci,α∂α)fi + δt

2
(∂t + ci,α∂α)2fi = − 1

τ

(
fi − f

eq
i

)
. (B2)

Then, the usual expansions with respect to the small parameter
ε are introduced such that

∂t = ε ∂
(1)
t + ε2∂

(2)
t , ∂α = ε ∂ (1)

α ,

fi = f
(0)
i + ε f

(1)
i + ε2f

(2)
i .

(B3)

In addition, the solubility condition,
∑

i f
(k)
i = 0, k � 1, is

assumed. These expansions are substituted into the Taylor
expansion, Eq. (B2), and terms of equal order in ε are collected:

O(ε0) : 0 = − 1

τ

(
f

(0)
i − f

eq
i

) ⇒ f
(0)
i = f

eq
i ,

(B4)
ρ(0) = ρ, j (0)

α = 0,

O(ε1) :
(
∂

(1)
t + ci,α∂ (1)

α

)
f

(0)
i = − 1

τ
f

(1)
i , (B5)

O(ε2) : ∂
(2)
t f

(0)
i + (

∂
(1)
t + ci,α∂ (1)

α

)
f

(1)
i

+ δt

2

(
∂

(1)
t + ci,α∂ (1)

α

)2
f

(0)
i = − 1

τ
f

(2)
i

⇒ ∂
(2)
t f

(0)
i +

(
1 − δt

2τ

)(
∂

(1)
t + ci,α∂ (1)

α

)
f

(1)
i

= − 1

τ
f

(2)
i . (B6)

The last equation is obtained after utilization of Eq. (B5). By
computing the zeroth moments of Eqs. (B5) and (B6), and
summing up the results, we find that

∂tρ = −
(

1 − δt

2τ

)
∂αj (1)

α .

An expression for j (1)
α is obtained by computing the first

moment of Eq. (B5):

j (1)
α = −τb c2

r ∂αρ. (B7)
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Using these results, we arrive at the diffusion equation,

∂tρ =
(

τ − δt

2

)
b c2

r︸ ︷︷ ︸
Dbulk:=

∂ 2
α ρ.

2. The partial halfway-bounceback scheme

The membrane boundary condition reported in Ref. [14]
can be implemented in a lattice-Boltzmann scheme by intro-
ducing a partial halfway-bounceback rule for the distributions
crossing the membrane,

fi(r + δt ci ,t + δt) = φ fi(r,t) + (1 − φ)f−i(r + δt ci ,t),

(B8)

where subscript −i denotes an opposite direction, i.e., c−i =
−ci . Membrane is located halfway between adjacent lattice
nodes, and, ideally, φ represents the relative area of the
membrane, which allows for diffusive transport. In general,

however, φ is only a simulation parameter, which allows
control of the diffusive transport across the membrane, i.e.,
provides control over the permeability of the membrane
or its effective diffusion coefficient. Using the Chapman-
Enskog analysis, for example, it can be shown that the above
modification of the streaming step gives rise to the following
effective diffusion coefficient for the membrane,

D
pbb

eff = φ

(1 − φ)

b

2
δt c2

r .

Furthermore, membrane permeability can be defined as
P pbb = D

pbb

eff /δr . This relation, where the lattice spacing
δr does not represent the actual membrane thickness h, is
discussed below.

3. Chapman-Enskog analysis of the partial-bounceback scheme

First we shift Eq. (B8) along the characteristics:

fi

(
r + δt

2
ci ,t + δt

2

)
= φ f

post
i

(
r − δt

2
ci ,t − δt

2

)
+ (1 − φ)f post

−i

(
r + δt

2
ci ,t − δt

2

)
,

the right-hand side involving distributions after the latest relaxation process. Next we substitute these post-relaxation variables
with explicit expressions according to the BGK operator:

fi

(
r + δt

2
ci ,t + δt

2

)
= φ

[
fi − δt

τ
f

neq
i

](
r − δt

2
ci ,t − δt

2

)
+ (1 − φ)

[
f−i − δt

τ
f

neq
−i

](
r + δt

2
ci ,t − δt

2

)
.

Then we expand (Taylor series) both sides of the resulting equation around (r,t):[
1 + δt

2
(∂t + ci,α∂α) + δt2

8
(∂t + ci,α∂α)2

]
fi = φ

[
1 − δt

2
(∂t + ci,α∂α) + δt2

8
(∂t + ci,α∂α)2

](
fi − δt

τ
f

neq
i

)

+ (1 − φ)

[
1 − δt

2
(∂t − ci,α∂α) + δt2

8
(∂t − ci,α∂α)2

](
f−i − δt

τ
f

neq
−i

)
. (B9)

The usual expansions, Eq. (B3), with respect to the small parameter ε are introduced together with the solubility condition,∑
i f

(k)
i = 0. After substituting these expansions into Eq. (B9) and collecting terms of equal order in ε, we find that

O(ε0) : f
(0)
i

= φ

[
f

(0)
i − δt

τ

(
f

(0)
i − f

eq
i

)] + (1 − φ)

[
f

(0)
−i − δt

τ

(
f

(0)
−i − f

eq
−i

)]
,

O(ε1) : f
(1)
i + δt

2

(
∂

(1)
t + ci,α∂ (1)

α

)
f

(0)
i

= φ

[(
1 − δt

τ

)
f

(1)
i − δt

2

(
∂

(1)
t + ci,α∂ (1)

α

)
f

(0)
i

]
+ (1 − φ)

[(
1 − δt

τ

)
f

(1)
−i − δt

2

(
∂

(1)
t − ci,α∂ (1)

α

)
f

(0)
−i

]
,

O(ε2) : f
(2)
i + δt

2
∂

(2)
t f

(0)
i + δt

2

(
∂

(1)
t + ci,α∂ (1)

α

)
f

(1)
i + δt2

8

(
∂

(1)
t + ci,α∂ (1)

α

)2
f

(0)
i

= φ

(
1 − δt

τ

)[
f

(2)
i − δt

2

(
∂

(1)
t + ci,α∂ (1)

α

)
f

(1)
i

]
+ φ

[
δt2

8

(
∂

(1)
t + ci,α∂ (1)

α

)2
f

(0)
i − δt

2
∂

(2)
t f

(0)
i

]

+ (1 − φ)

(
1 − δt

τ

)[
f

(2)
−i − δt

2

(
∂

(1)
t − ci,α∂ (1)

α

)
f

(1)
−i

]
+ (1 − φ)

[
δt2

8

(
∂

(1)
t − ci,α∂ (1)

α

)2
f

(0)
−i − δt

2
∂

(2)
t f

(0)
−i

]
.

In the subsequent treatments we will utilize∑
i

c2k
i f−i =

∑
i

c2k
i fi,

∑
i

c2k+1
i f−i = −

∑
i

c2k+1
i fi .

Note also that f
eq
−i = f

eq
i .
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a. Zeroth-order terms

We continue by first considering the ε0 equation. After
simple manipulations we find that

(1 − φ)f (0)
i − δt

τ

(
f

(eq)
i − φf

(0)
i

)
= (1 − φ)f (0)

−i − δt

τ
(1 − φ)f (0)

−i ,

which is identically true whenever f
(0)
i = f

eq
i . This in turn

implies that ∑
i

f
(0)
i = ρ,

∑
i

ci,αf
(0)
i = 0,

∑
i

ci,αci,βf
(0)
i = b c2

r ρ δαβ,

∑
i

ci,αci,βci,γ f
(0)
i = 0.

b. First-order terms

Now, based on the results above, we can compute the zeroth
moment of the ε1 equation:

∂
(1)
t ρ = 0. (B10)

The first moment can be used to give an expression for
the flux:

j (1)
α = −

[
φτ

(2τ − δt)(1 − φ) + φδt

]
δt c2

r b ∂αρ

= −
[

1 − (2τ − δt)(1 − φ)

(2τ − δt)(1 − φ) + φδt

]
τ c2

r b ∂αρ

= −
[

1 − 1

1 + φδt

(2τ−δt)(1−φ)

]
τ c2

r b ∂αρ.

The diffusion coefficient in the bulk was derived above as
D = (2τ − δt)c2

r b/2. Using this result we find further that

j (1)
α = −

⎡
⎣1 − 1

1 + 1
D

φ δt c2
r b

2(1−φ)

⎤
⎦τ c2

r b ∂αρ.

This expression for the flux clearly suggests a new variable:

Deff
memb := φ

2(1 − φ)
δt c2

r b,

which we will refer to in the following as the effective diffusion
coefficient of the membrane. Moreover, this coefficient is
related to its permeability P via

P := Deff
memb

δr
. (B11)

In order to simplify the expressions further, we define λ ≡
Deff

memb/D. Expression for the flux can now be written in the

form,

j (1)
α = −

⎡
⎢⎢⎣1 − 1

1 + λ︸ ︷︷ ︸
resistance

⎤
⎥⎥⎦τ c2

r b ∂αρ. (B12)

It is instructive to compare the flux of Eq. (B12) across the
membrane with the flux in the bulk as given in Eq. (B7). These
expressions are otherwise identical except that the membrane
flux involves a resistance term. For example, when the ratio
of the diffusion coefficients approaches infinity the resistance
vanishes. On the other hand, the flux vanishes when the ratio
approaches zero. In addition, when the diffusion coefficients
are equal, resistance obtains a value that is halfway between
the extremes.

c. Second-order terms

It remains to compute the zeroth moment of the ε2 equation:

∂
(2)
t ρ = − (2τ − δt)

2τ
∂ (1)
α j (1)

α . (B13)

d. Macroscopic equation

By combining Eqs. (B10), (B12), and (B13), diffusive
transport across the membrane can be described with the
following diffusion equation:

∂tρ =
[

1 − 1

1 + λ

]
D ∂2

αρ. (B14)

APPENDIX C: THE SNAPPING-OUT BROWNIAN MOTION
AND MICROSCOPIC PERMEABILITY

Perhaps the simplest model of diffusion through a semiper-
meable membrane is a one-dimensional random walk in
discrete space and time with a special site for the membrane.
Such a walker takes steps to the left and right with equal
probability except at the special site, where it either goes
through the membrane (with probability φ/2,) or is reflected
back with probability 1 − φ/2). Hence the membrane vanishes
in the limit φ → 1 (i.e., fraction of pores → 1). If Nt denotes
the number of collisions with the membrane up to time t , the
first-passage time through the membrane obeys

P (T > t | Nt = n) = (1 − φ/2)n, (C1)

so the number of visits to the membrane site exceeds a
geometric random variable with parameter φ/2 at the time of
first passage through the membrane. In other words, the mean
number of visits NT to the special site up to and including
the first passage equals 2/φ. In particular, two visits on the
average are needed to cross a completely permeable membrane
(limit φ → 1), and the required number of visits diverges
proportional to the first inverse power of φ as φ → 0.

Next we consider a microscopic model continuous in
space and time, the probability density of which satisfies
the macroscopic diffusion equation Eq. (A1) with the flux
boundary condition, Eq. (A3). Following preprint [23], we
define the (one-dimensional) snapping-out Brownian motion
Xt to be a process on the real line that obeys the usual
Brownian dynamics except at the origin where the membrane
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is located. Passing through the membrane consists of a single
rate-limiting step given that the particle is performing a search
at the immediate vicinity of the membrane (this corresponds
to a reaction distance in chemical-reaction applications). The
amount of time spent performing the search is measured by
the local time,

Lt = lim
ε→0

1

2ε

∫ t

0
I (−ε < Xs < ε) ds, (C2)

at the membrane, and hence the probability that the first-
passage time T through the membrane is greater than t (i.e.,
the particle has not passed through the membrane before that)
equals

P (T > t | Lt ) = exp

(
−Lt

τc

)
, (C3)

where τc = limw→0 w/D(w) is the characteristic time scale
that depends on the membrane (w is the membrane width).
We remark that finding τc directly from its definition as a
limit would require a model for the microscopic structure of

the interface. Instead, we now relate time scale τc to the pore
fraction φ by analogy to the random walk. In particular, the
number of visits to the membrane site can be considered as the
local time of the random walk at the membrane (see Ref. [38]
for a convergence proof), and therefore τc should diverge as
∼1/φ in the limit φ → 0. On the other hand, the first passage
can occur immediately upon first contact with the membrane
(the first time that the local time Lt > 0). In particular,
this must hold true in the limit of a completely permeable
membrane, so we can assume that τc → 0 as φ → 1. The
only sensible function of φ satisfying these requirements is
τc = 1/φ − 1. Hence the microscopic permeability, defined as
the inverse of the mean first passage time, coincides with the
macroscopic permeability provided by the Chapman-Enskog
analysis:

Pmicro := 1

τc

∝ φ

1 − φ
∝ Pmacro. (C4)
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