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Optimal bounds with semidefinite programming: An application to stress-driven shear flows
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We introduce an innovative numerical technique based on convex optimization to solve a range of infinite-
dimensional variational problems arising from the application of the background method to fluid flows. In contrast
to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use
series expansions to formulate a finite-dimensional semidefinite program (SDP) whose solution converges to that
of the original variational problem. Our formulation accounts for the influence of all modes in the expansion,
and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover,
SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge
for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the
dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than
10 times and show that the bounds become independent of the domain aspect ratio in the limit of vanishing
viscosity. We also confirm that the dissipation properties of stress-driven flows are similar to those of flows
subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an
efficient method to investigate the energy stability of laminar flows driven by a surface stress.
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I. INTRODUCTION

Turbulent flows typically exhibit enhanced transport, mix-
ing and/or dissipation compared to steady flows, but an
accurate characterization of their properties is challenging
due to their dynamic complexity. Given the computational
cost of full numerical simulations in highly turbulent regimes
and the absence of closed-form solutions to the Navier-Stokes
equations, a common approach is to derive rigorous bounds
for key turbulent properties (e.g., dissipation, transport) as a
function of the forcing parameters (e.g., Reynolds number,
boundary conditions, and body forces).

Among other techniques, the background method [1] has
been applied to derive rigorous scaling laws directly from
the governing equations in a wide range of contexts. Typical
examples include computing bounds for the energy dissipation
in shear flows [2–6] and for the net turbulent heat transport in
Rayleigh-Bénard convection (e.g., Refs. [7,8]). In the context
of shear flows, the method relies on the decomposition of the
flow velocity into a steady background field φ, that absorbs any
inhomogeneous boundary conditions (BCs), plus an arbitrary
perturbation u. The bounds (upper or lower) are then expressed
in terms of a functionalB{φ}, and the optimal ones are obtained
by extremizing this functional subject to the positivity of a
φ-dependent quadratic form Q{u}—a condition known as the
spectral constraint.

This infinite-dimensional variational problem has generally
been studied by considering the Euler-Lagrange equations for
the optimal background field. Solving such equations typically
requires delicate computations in order to avoid spurious
solutions that extremize the bound but do not satisfy the
spectral constraint (see Refs. [9,10] for a detailed discussion).
Recently, a two-step time-marching algorithm has been shown
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to give the correct solution of the Euler-Lagrange equations
for a number of canonical examples [9,10].

A particular challenge in these computations comes from
flows subject to imposed boundary fluxes (Neumann BCs)
or mixed Dirichlet-Neumann BCs. In many such cases the
functional B depends on unknown boundary values of the
background field (e.g., Refs. [11–13]), and the solution of
the Euler-Lagrange equations is further complicated by the
need to enforce so-called natural boundary conditions [14,15].
The technical difficulties posed by these additional conditions
have not yet been addressed, and, to our knowledge, a fully
optimal solution of such bounding problems has never been
obtained.

In this work, we propose an approach to compute near-
optimal bounds that can be easily applied to flows with
fixed boundary fluxes. Our method differs from previous
computational techniques because it does not consider the
Euler-Lagrange equations, so the complications arising from
any natural BCs can be avoided. Instead, we develop the
approach proposed by the authors in Ref. [16] and consider the
quadratic form Q directly to show that the variational problem
can be rigorously formulated as a semidefinite program (SDP).
Our bounds are near optimal, i.e., they are obtained with a mild
restriction on the background fields, but are expected to con-
verge to the fully optimal bounds (although we do not provide a
formal proof). Moreover, our formulation is rigorous, meaning
that the feasible set of the SDP corresponds to a subset of the
set of background fields that satisfy the infinite-dimensional
spectral constraint. This means that mathematically rigorous,
near-optimal bounds could be obtained by controlling the
numerical round-off errors when solving the SDP; however,
this is outside the scope of the present work. Finally, we show
that our techniques can also be applied to compute energy
stability boundaries for laminar flows.

We illustrate our method by computing upper bounds on
the dissipation coefficient Cε for two- and three-dimensional
shear flows driven by a surface stress. Flows of this kind arise,
for example, in physical oceanography, when wind blows over
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a body of water. The three-dimensional flow was first studied
by Tang et al. [17], who used the background method to es-
timate Cε � Gr (7.531Gr0.5 − 20.3)−2 for large Gr, where the
Grashoff number, Gr, represents the nondimensional forcing.
Strictly speaking, however, these bounds apply to a different
flow, where the imposed stress is approximated by a body force
localized near the boundary. A bounding problem that incorpo-
rates the fixed-shear boundary condition was subsequently for-
mulated by Hagstrom and Doering [12], who used a piecewise
linear background field to prove Cε � 1/16 for Gr � 16 in
two dimensions and Cε � 1/(2

√
2) uniformly in Gr for three-

dimensional flows. In this work, we close the circle of ideas
and compute near-optimal bounds by solving the bounding
problem formulated by Hagstrom and Doering over a mildly
restricted (but not piecewise linear) set of background fields.

The rest of this paper is organized as follows. In Sec. II
we describe the flow and summarize the bounding problem
derived in Ref. [12]. Section III gives a brief overview of
semidefinite programming and of our computational strategy.
We formulate and solve an SDP to compute bounds for the
two-dimensional flow in Sec. IV and extend the analysis to
the three-dimensional case in Sec. V. In Sec. VI we illustrate
how SDPs can be used in energy stability theory by computing
the critical Gr for the stability of a stress-driven Couette flow.
Finally, Sec. VII offers concluding remarks.

II. STRESS-DRIVEN SHEAR FLOW: EQUATIONS
AND A BOUNDING PRINCIPLE

We begin by describing the flow and the bounding principle
for the dissipation coefficient derived by Hagstrom and Do-
ering [12]. Dimensional quantities will be denoted by the
suffix �. We will write all equations in three dimensions; the
two-dimensional case is obtained by simply removing any
terms related to the y direction.

A. Fluid equations

We consider an incompressible layer of fluid of constant
depth h, kinematic viscosity ν, and density ρ driven at z� = h

by a shear stress τ in the x� direction. We impose no-slip
conditions at z� = 0 and horizontal periodicity across 0 �
x� � h�x and 0 � y� � h�y , where �x and �y are the domain
aspect ratios.

Following Tang et al. [17], we consider the nondimensional
variables

x = x�

h
, t = t�ν

h2
, u = u�h

ν
, p = p�h

2

ρν2
(1)

and write the Navier-Stokes equations as

∂u
∂t

+ u · ∇u + ∇p = ∇2u, (2a)

∇ · u = 0. (2b)

The nondimensional velocity u ≡ uî + v ĵ + wk̂ has period
�x and �y in the x and y directions, respectively, and satisfies
the additional boundary conditions

u|z=0 = 0,
∂u

∂z

∣∣∣∣
z=1

= Gr,
∂v

∂z

∣∣∣∣
z=1

= 0, w|z=1 = 0 (3)

at the top and bottom surfaces, where the Grashoff number,
Gr, is the characteristic nondimensional control parameter of
the flow and is defined as

Gr := τh2

ρν2
. (4)

The laminar solution to these equations corresponds to the
Couette flow uL = Gr z î . Introducing the horizontal-time and
space-time averages

q(x,t) := lim
T →∞

1

T �x �y

∫ T

0

∫ �y

0

∫ �x

0
q(x,t) dx dy dt,

(5a)

〈q(x,t)〉 :=
∫ 1

0
q(z) dz, (5b)

energy stability analysis shows that uL is stable if

〈‖∇u‖2 + Gr uw〉 � 0 (6)

for all time-independent, incompressible fields u(x,y,z) satis-
fying the homogeneous BCs

u|z=0 = ∂u

∂z

∣∣∣∣
z=1

= ∂v

∂z

∣∣∣∣
z=1

= w|z=1 = 0. (7)

Hagstrom and Doering [12] showed that the Couette profile
is stable for Gr � 139.54 and Gr � 51.73 for the two- and
three-dimensional cases, respectively.

We describe the flow by the bulk energy dissipation rate per
unit mass,

ε := 〈ν‖∇�u�‖2〉 = ν3

h4
〈‖∇u‖2〉, (8)

where ∇� is the dimensional gradient, and the associated
nondimensional dissipation coefficient Cε is defined as

Cε := εh

u�(h)3
= Gr

u(1)2
. (9)

The last equality follows from the identity 〈‖∇u‖2〉 = Gr u(1),
which can be proven by space-time averaging the dot product
of the momentum equation with u [12].

B. A bounding problem for Cε

Tang et al. [17] demonstrated that the laminar dissipation
rate εL = Gr2ν3h−4 provides a rigorous upper bound on ε,
corresponding to the lower bound on the dissipation coefficient
Cε � 1/Gr. Note that this bound is valid for both two- and
three-dimensional flows and is sharp, being saturated by the
Couette profile.

A rigorous upper bound on Cε was derived by
Hagstrom and Doering [12], who applied the background
method to derive a lower bound on u(1). Specifically, they
showed that if a background field φ(z) can be chosen such that

φ(0) = 0,
dφ

dz

∣∣∣∣
1

= Gr, (10)

and such that the spectral constraint

Q{u,φ} :=
〈
‖∇u‖2 + 2

dφ

dz
uw

〉
� 0 (11)
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holds for all time-independent, incompressible fields u(x,y,z)
satisfying the BCs in (7), then

u(1) � 2φ(1) − 1

Gr

∫ 1

0

(
dφ

dz

)2

dz =: −B{φ}. (12)

We say that φ is a feasible background field if (11) holds for
all admissible u and that φ is strictly feasible if (11) holds with
strict inequality for all admissible u 
= 0.

The optimal upper bound on Cε achievable via the back-
ground method then follows from (9) after minimizing B over
all feasible background fields satisfying (10).

C. A rescaled bounding problem in Fourier space

In order to construct a feasible and near-optimal background
field numerically, it is convenient to rescale the vertical domain
to the interval [−1,1] by letting ζ = 2z − 1. Moreover, the
horizontal periodicity allows us to write u as the Fourier
series

u(x,y,ζ ) =
∑

m,n∈Z
Umn(ζ ) ei(αmx+βny), (13)

where

αm = 2πm

�x

, βn = 2πn

�y

.

For all m,n ∈ Z the complex vector-valued functions Umn =
Umn î + Vmn ĵ + Wmn k̂ must satisfy the incompressibility con-
dition

iαmUmn + iβnVmn + 2
dWmn

dζ
= 0 (14)

and the BCs

Umn(−1) = dUmn

dζ

∣∣∣∣
1

= dVmn

dζ

∣∣∣∣
1

= Wmn(1) = 0. (15)

Moreover, the requirements that the Fourier modes combine
into a real-valued field u implies that U−m,−n = U∗

mn, where
∗ denotes complex conjugation.

In addition, we introduce the rescaled and Fourier-
transformed gradient-type operator

D :=
(

iαm, iβn, 2
d

dζ

)
(16)

and define the quadratic forms Qmn{Umn,φ} as

Qmn :=
∫ 1

−1

[
‖DUmn‖2 + 4

dφ

dζ
Re(UmnW

∗
mn)

]
dζ (17)

so we may write

Q{u,φ} =1

2
Q00{U00,φ} +

∑
n�1

Q0n{U0n,φ}

+
∑
m�1

∑
n∈Z

Qmn{Umn,φ}. (18)

Since among the allowed fields u are those defined by a single
pair of wave numbers (αm,βn), the spectral constraint (11)

is equivalent to requiring that each of the Qmn’s be positive
semidefinite. The optimal upper bound on Cε is then achieved
by minimizing the rescaled functional

B{φ} = 2

Gr

∫ 1

−1

(
dφ

dζ

)2

dζ − 2φ(1) (19)

subject to the sequence of constraints Qmn � 0. Moreover,
elementary functional estimates may be used to show that

Qmn �
∫ 1

−1

(
α2

m + β2
n − 2

∥∥∥∥dφ

dζ

∥∥∥∥
∞

)
‖Umn‖2dζ, (20)

where ‖ · ‖∞ denotes the usual L∞ norm. Hence, for a
candidate background field φ, only the finite set of wave
numbers such that

α2
m + β2

n � 2

∥∥∥∥dφ

dζ

∥∥∥∥
∞

(21)

needs to be considered to show that (11) holds.

III. COMPUTATIONAL STRATEGY

The principal difficulty in minimizingB{φ} is to impose the
non-negativity of eachQmn. The main idea behind our strategy
is that the non-negativity of such φ-dependent quadratic
forms is the infinite-dimensional equivalent of a linear matrix
inequality (LMI).

An LMI is a condition in the form

Q(γ ) := Q0 +
q∑

i=1

Qiγ i  0, (22)

where γ ∈ Rq is the variable and Q0, . . . , Qq ∈ Rs×s are
symmetric matrices. The notation “ 0” signifies that Q(γ )
is positive semidefinite, that is, xT Q(γ )x � 0 for all x ∈ Rs

[equivalently, the eigenvalues of Q(γ ) are non-negative]. Note
that any matrix Q(γ ) whose entries are affine with respect to
γ can be written in form (22).

It can be verified that the LMI (22) is a convex constraint on
γ , meaning that the set F := {γ ∈ Rq | Q(γ )  0} is convex:
If two vectors μ,ν ∈ Rq satisfy (22), then so does the vector
λμ + (1 − λ)ν for all 0 � λ � 1. We call F the feasible set
of (22). For more details on LMIs, we refer the reader to
Refs. [18,19].

Example. The condition

Q(γ ) :=
[
γ 1 + γ 2 − 2 γ 2

γ 2 4 + γ 2

]
 0 (23)

is a 2 × 2 LMI for γ ∈ R2 and can be written in form (22)
with

Q0 =
[−2 0

0 4

]
, Q1 =

[
1 0
0 0

]
, Q2 =

[
1 1
1 1

]
.

For this simple example, the feasible set F of (23) can be
determined analytically by requiring that the eigenvalues of
Q(γ ) are non-negative. It may be verified that F is described
by the inequalities

γ 1 + 2γ 2 + 2 � 0,

4γ 1 + 2γ 2 + γ 1γ 2 − 8 � 0.
(24)
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FIG. 1. Feasible set of the LMI (23), given by the points γ =
(γ 1,γ 2) satisfying both inequalities in (24). The thick black line
indicates the boundary of the feasible set, given by the curve γ 2 =
(8 − 4γ 1)/(2 + γ 1).

For example, the vectors γ = (4, − 1)T and γ = (2,0)T satisfy
the LMI, while γ = (0,0)T does not. As illustrated in Fig. 1,
F is convex. �

An optimization problem with a linear objective function
subject to linear equalities and LMIs, i.e., in the form

min
γ

cT γ

s.t. Aγ + b = 0,

Q(γ )  0,

(25)

where c ∈ Rq is the cost vector and A ∈ Rp×q and b ∈ Rp

define p equality constraints and Q(γ ) is as in (22), is
known as a SDP. Note that linear inequalities can be seen
as one-dimensional LMIs and that multiple LMIs can always
be combined into a single LMI [18,19], so the above form is
general.

SDPs can be solved efficiently using well-established
algorithms [18–20]. Consequently, our strategy is to exploit
the close relationship between the spectral constraint (11) and
LMIs and rewrite the variational problem for the minimization
of B{φ} as an SDP. To this end, we will parametrize
the background field φ using a finite set of parameters
(corresponding to the optimization variable γ in the above
generic SDP) and enforce each functional inequality Qmn � 0
using sufficient conditions in the form of LMIs. This follows
and extends the ideas already proposed by the authors in
Ref. [16].

IV. BOUNDS FOR THE TWO DIMENSIONAL FLOW

The bounding problem for the two-dimensional flow is
obtained from Secs. II B–II C by neglecting the y direction. We
will also drop the suffix n from all variables and functionals
for simplicity.

Equations (14)–(15) imply that W0 = 0, so Q0 � 0 for
any choice of φ. When m 
= 0, instead, we can use the
incompressibility condition (14) to rewrite Um in terms of

Wm and hence express each Qm as

Qm =
∫ 1

−1

[
16

α2
m

∣∣∣∣d2Wm

dζ 2

∣∣∣∣
2

+ 8

∣∣∣∣dWm

dζ

∣∣∣∣
2

+ α2
m|Wm|2

− 8

αm

dφ

dζ
Im

(
dWm

dζ
W ∗

m

)]
dζ, (26)

where the complex Fourier amplitudes Wm(ζ ) satisfy the BCs

Wm(−1) = Wm(1) = dWm

dζ

∣∣∣∣
−1

= d2Wm

dζ 2

∣∣∣∣
1

= 0. (27)

The requirement that the Fourier modes combine into a
real-valued velocity perturbation means that Q−m = Qm, so
we can restrict the attention to positive m’s. Moreover, (20)
guarantees that for a given choice of background field it suffices
to consider m up to the critical value

mc(φ) :=
⌊

�x

π

√
1

2

∥∥∥∥dφ

dζ

∥∥∥∥
∞

⌋
, (28)

where �·� denotes the integer part of the argument.
After rescaling the BCs for φ in (10), the optimal bounds on

Cε are determined by the solution of the variational problem

min
φ

B{φ}

s.t. Qm{Wm,φ} � 0, 1 � m � mc(φ),

φ(−1) = 0,

dφ

dζ

∣∣∣
1

= Gr

2
.

(29)

A. Parametrization of the background field

The first step to rewrite (29) as an SDP is to parametrize
the background field in terms of a finite number of decision
variables. While the optimal φ cannot generally be described
exactly with a finite-dimensional parametrization, it can be
approximated arbitrarily accurately by a polynomial of suf-
ficiently high degree. Consequently, we restrict our attention
to the family of background fields which are polynomials of
degree at most P + 1.

Since our analysis of the spectral constraints will be based
on Legendre series expansions, we parametrize the background
field by expressing its first derivative as

dφ

dζ
=

P∑
p=0

φ̂p Lp(ζ ), (30)

where Lp(ζ ) is the Legendre polynomial of degree p.
The vector of Legendre coefficients φ̂ = (φ̂0, . . . ,φ̂P )T

must be chosen to impose the correct BCs on φ. The condition
φ(−1) = 0 can always be enforced by an appropriate choice of
integration constant, while since Lp(1) = 1 [21] the condition
at ζ = 1 becomes

P∑
p=0

φ̂p = 1T φ̂ = Gr

2
, (31)

where 1 ∈ RP+1 is a column vector of ones.
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Finally, since ‖Lp‖∞ = 1 for all p, we have the useful
estimate ∥∥∥∥dφ

dζ

∥∥∥∥
∞

= max
ζ∈[−1,1]

∣∣∣∣∣∣
P∑

p=0

φ̂pLp(ζ )

∣∣∣∣∣∣ � ‖φ̂‖1, (32)

where ‖ · ‖1 denotes the usual l1 norm.

B. Formulation of a linear cost function

In order to formulate (29) as a standard SDP, we need to
replace the quadratic objective functional B by an equivalent
linear cost function. The orthogonality of the Legendre
polynomials allows us to rewrite∫ 1

−1

(
dφ

dζ

)2

dζ = φ̂T Bφ̂, (33)

where B ∈ R(P+1)×(P+1) is defined as

Brs = 2δrs

2r + 1
, 0 � r,s � P (34)

and δrs is the usual Kronecker δ. Moreover, using the results
of Appendix A, we have φ(1) = φ(−1) + 2φ̂0. Applying the
boundary condition φ(−1) = 0, the objective functional B
becomes

B{φ} = 2

Gr
φ̂T Bφ̂ − 4φ̂0. (35)

Using a standard trick of convex optimization, we introduce
an additional decision variable η (called a slack variable) and
minimize

Blin(φ̂,η) := 2

Gr
η − 4φ̂0 (36)

instead of B, subject to the additional constraint that η �
φ̂T Bφ̂. Since B is invertible and its inverse is positive definite,
Schur’s complement condition [19] guarantees that

S(φ̂,η) :=
[

B−1 φ̂

φ̂
T

η

]
 0 ⇐⇒ η � φ̂T Bφ̂. (37)

Hence, the additional inequality constraint can be expressed
as the LMI S(φ̂,η)  0.

C. Rigorous finite-dimensional relaxation of Qm

using Legendre expansions

We now turn to the core problem of deriving a rigorous
matrix representation for each of the constraints Qm � 0,
which will allow us to enforce the spectral constraint using
LMIs. As in Ref. [16], the analysis is based on the application
of orthogonal series expansions. The need to enforce BCs
other than periodicity prevents us from using the conventional
Fourier series. As our analysis relies on L2 orthogonality
of the basis functions, we will use Legendre series expan-
sions [22,23] (note that despite their attractive numerical
properties, the more commonly used Chebyshev polynomials
do not suit our purposes because they are only orthogonal with
respect to the weight

√
1 − ζ 2). Some key results on Legendre

expansions are reported in Appendix A. The details of the
following analysis are quite technical and will be omitted to
keep the focus on our main objective—formulating an SDP

whose solution gives a feasible background field for (29). LMI
relaxations of integral inequalities using Legendre series will
be thoroughly discussed in a future publication. Moreover, for
notational neatness, we will drop the suffix m from Qm, Wm,
and αm; it should be understood that the following analysis
holds for each individual m � 1.

Since the function W represents the amplitude of a Fourier
mode of a velocity perturbation, we assume it has enough
regularity such that W , dW

dζ
, and d2W

dζ 2 can be expanded with the
uniformly convergent Legendre series [22,23]

W =
∞∑

n=0

ŵnLn(ζ ), (38a)

dW

dζ
=

∞∑
n=0

ŵ′
nLn(ζ ), (38b)

d2W

dζ 2
=

∞∑
n=0

ŵ′′
nLn(ζ ). (38c)

Since W is complex valued, so are the Legendre coefficients
ŵn, ŵ′

n, and ŵ′′
n . In addition, the results of Appendix A and the

BCs at ζ = −1 from (27) imply that the Legendre coefficients
are related by the compatibility conditions

ŵ0 = ŵ′
0 − ŵ′

1

3
,

ŵn = ŵ′
n−1

2n − 1
− ŵ′

n+1

2n + 3
, n � 1,

(39a)

and

ŵ′
0 = ŵ′′

0 − ŵ′′
1

3
,

ŵ′
n = ŵ′′

n−1

2n − 1
− ŵ′′

n+1

2n + 3
, n � 1.

(39b)

Rather than truncating the Legendre series of W after N

terms to obtain an approximation of Q, we consider the full
infinite-dimensional quadratic form by defining the remainder
functions

w̃0(ζ ) :=
∞∑

n=N+1

ŵnLn(ζ ), (40a)

w̃1(ζ ) :=
∞∑

n=N+2

ŵ′
nLn(ζ ), (40b)

w̃2(ζ ) :=
∞∑

n=N+P+4

ŵ′′
nLn(ζ ). (40c)

The lower limit in (40b) is motivated by (39a), while the lower
limit N + P + 4 in (40c) is chosen for convenience; this will
become apparent in Appendix B.

In Appendix B, we show that there exist a real, symmet-
ric, positive definite matrix Q1 ∈ R(N+P+4)×(N+P+4) and a
real (but not symmetric) matrix Q2(φ̂) ∈ R(N+P+4)×(N+P+4),
whose entries are linear in φ̂, such that

Q{W,φ} = (ŵ′′)† Q1ŵ
′′ − Im[(ŵ′′)† Q2(φ̂)ŵ′′]

+R{w̃0,w̃1,w̃2,φ}. (41)
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N
(a)

101 102

R
F

10-8

10-7

10-6

10-5

10-4

10-3

N−4

N
(b)

101 102

κ

10-6

10-5

10-4

10-3

10-2

α = π
α = 2π
α = 3π
α = 4π

N−3

FIG. 2. Decay of (a) the Frobenius norm of the matrix R and
(b) the constant κ for selected wave numbers α.

Here (·)† denotes conjugate transposition, ŵ′′ ∈ CN+P+4

is the column vector containing the Legendre coefficients
ŵ′′

0 , . . ., ŵ′′
N+P+3, and

R{w̃0,w̃1,w̃2,φ} :=
∫ 1

−1

[
16

α2
|w̃2|2 + 8|w̃1|2 + α2|w̃0|2

− 8

α

dφ

dζ
Im(w̃1w̃

∗
0)

]
dζ. (42)

We also show in Appendix C that

R{w̃0,w̃1,w̃2,φ} � −‖φ̂‖1(ŵ′′)†Rŵ′′

+ 16

α2
(1 − κ‖φ̂‖1)‖w̃2‖2

2, (43)

where ‖ · ‖2 is the usual L2 norm, R ∈ R(N+P+4)×(N+P+4) is
a positive definite real matrix whose Frobenius norm ‖R‖F

scales as O(N−4), and κ is a positive constant scaling as
O(N−3) (see Fig. 2). A more in-depth discussion of the
properties of Q1, Q2, R, and κ is left for future work.

Considering the real and imaginary parts of ŵ′′ explicitly
and defining

M(φ̂) := sym

([
Q1 − ‖φ̂‖1 R − Q2(φ̂)

Q2(φ̂) Q1 − ‖φ̂‖1 R

])
, (44)

where sym(·) denotes the symmetric part of a matrix, we obtain
the rigorous lower bound

Q{W,φ} � �{ŵ′′,w̃2,φ}, (45)

where

�{ŵ′′,w̃2,φ} :=
[

Re(ŵ′′)
Im(ŵ′′)

]T

M(φ̂)

[
Re(ŵ′′)
Im(ŵ′′)

]

+ 16

α2
(1 − κ ‖φ̂‖1)‖w̃2‖2

2. (46)

Note that this lower bound holds for all functions W that satisfy
the BCs at ζ = −1 in (27). Consequently, the positivity of Q
is proven for any W satisfying the boundary conditions at
ζ = −1 if we enforce

M(φ̂)  0, (47a)

1 − κ‖φ̂‖1 � 0. (47b)

However, Q needs only be positive for any W satisfying
all BCs in (27), which is a weaker statement. Recalling that
Lp(±1) = (±1)p for all p, with the help of (39) and letting
1 ∈ RN+P+4 be a column vector of ones, the BCs at ζ = 1
from (27) can be expressed as

ŵ′′
0 − ŵ′′

1

3
= 0, (48a)

1T ŵ′′ + w̃2(1) = 0. (48b)

The first of these conditions can be imposed by letting

ŵ′′ = Aω̂, (49)

where

ω̂ :=

⎛
⎜⎝

ŵ′′
1

...
ŵ′′

N+P+3

⎞
⎟⎠, A :=

⎡
⎢⎢⎢⎢⎣

1/3 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 0 1

⎤
⎥⎥⎥⎥⎦.

Substituting this representation in (46) and defining

Q(φ̂) :=
[

A 0
0 A

]T

M(φ̂)

[
A 0
0 A

]
(50)

we obtain

�{ŵ′′,w̃2,φ} =
[

Re(ω̂)
Im(ω̂)

]T

Q(φ̂)

[
Re(ω̂)
Im(ω̂)

]

+ 16

α2
(1 − κ ‖φ̂‖1)‖w̃2‖2

2. (51)

Thus, the spectral constraint can be enforced via the
sufficient finite-dimensional conditions

Q(φ̂)  0, (52a)

1 − κ ‖φ̂‖1 � 0, (52b)

which are weaker than (47) and, consequently, allow us to
compute a better bound.

These sufficient conditions could be weakened further
if (48b) could be incorporated. However, this is difficult
to achieve since w̃2(1) does not appear explicitly in (51).
Moreover, we show in Appendix D that (52) must still be
satisfied if � � 0 when (48b) holds. Consequently, we choose
to enforce the spectral constraint via (52).

Remark 1. Since the matrix R of Eq. (43) gives a negative-
definite contribution to Q and κ is positive, it is not obvious
that the conditions in (52) are feasible. However, ‖R‖F and κ

decay to zero as at least as fast as N−3. Under the reasonable
assumption that a strictly feasible polynomial background field
of degree P + 1 exists for (11), we expect that a vector φ̂

satisfying (52) exists when N is sufficiently large. Moreover,
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although the size of Q increases linearly with N , the fast decay
of ‖R‖F and κ means that in practice the required N is small
enough that (52a) is a numerically tractable constraint.

Remark 2. Conditions (52) need to be derived and imposed
for a range of wave numbers αm, m = 1, . . . ,mc. Since
κ increases linearly with αm (equivalently, with m, cf.
Appendix C), we expect that the truncation N required to
make (52b) feasible increases with m. Similarly, although
‖R‖F decreases linearly with m (cf. Appendix C), the dom-
inant positive-definite contribution to Q(φ̂)—which comes
from the the second derivative term in the functional Q—
decays as m−2. Hence, we again expect that a higher truncation
N will be required to make (52a) feasible for large values
of m.

D. An SDP for the optimal bounds

The conditions in (52) are not LMIs due to the appearance
of absolute values in ‖φ̂‖1 but can be recast as LMIs
by introducing a vector t = (t0, . . . ,tP )T of slack variables,
replacing ‖φ̂‖1 with 1T t = ∑P

p=0 tp and introducing 2P + 2
inequality constraints of the form

φ̂j − tj � 0, φ̂j + tj � 0. (53)

As a result, each of the functional inequalities Qm � 0 in (29)
can be replaced by the LMI Qm(φ̂,t)  0 and the linear
inequality 1 − κm1T t � 0 (where Qm and κm are derived as
in Sec. IV C for each m). Together with Eqs. (36)–(37), this
means that bounds on Cε can be computed at each Gr after
solving the SDP

min
η,φ̂,t

2

Gr
η − 4φ̂0

s.t. S(φ̂,η)  0,

Qm(φ̂,t)  0, 1 � m � mc,

1 − κm1T t � 0, 1 � m � mc,

φ̂j − tj � 0, 0 � j � P,

φ̂j + tj � 0, 0 � j � P,

1T φ̂ = Gr

2
.

(54)

Strictly speaking, the bounds computed with the solution
of this SDP are not optimal, but only near-optimal, because
they are obtained using a restricted class of background
fields and imposing a stronger condition than the original
spectral constraint. In practice, however, we can increase
the parameters N and P until the solution of the SDP has
converged to that of (29)—at the expense of increasing the
computational cost of the optimization.

In addition, the analysis of Sec. IV C guarantees that the
background field constructed with the optimal φ̂ is a feasible
choice for (29), so the bounds computed at each Gr would
be rigorous if the numerical roundoff errors in the solution
of (54) were tracked and carefully taken into account. The
implementation of algorithms to solve (54) rigorously is
beyond the scope of this work and the bounds presented in
the following sections cannot be considered analytical results.

However, a fully computer-assisted proof of near-optimal
bounds does not seem beyond the reach of future work.

Finally, we remark that mc depends on φ according to (28),
so the number of inequalities in the SDP is not known a priori.
This means that an iterative procedure is needed: Solve the
optimization using a suitable initial guess m0 for mc, calculate
the correct mc with (28) after the optimization, and check the
full set of LMIs a posteriori; if any constraints are violated,
the optimization is repeated with the updated mc. We also
remark that the role of mc is that of an upper bound on the
largest critical Fourier mode—that is, the largest value of m

for which the constraints in (54) are active. Of course, if one
knew the exact critical modes a priori, one could solve the
SDP by considering only such modes. However, the fact that
the number of inequalities in (54) is unknown is not due to the
lack of knowledge of the exact critical modes but only to the
dependence of mc on φ. In fact, if one could find an explicit
value for mc, say, in terms of the Grashoff number, the number
of LMIs in the SDP would be well defined and no iterative
procedure would be required.

E. Numerical implementation and results

The SDP (54) was solved in MATLAB using the optimization
toolbox YALMIP [24] and the SDP solver SeDuMi [25] for
10 � Gr � 105 and for two values of the domain aspect ratio,
�x = 2 and �x = 3. All computations were carried out on a
desktop computer with an Intel Core i7 3.40-GHz CPU and
16 Gb of RAM. At each Gr, we chose an initial guess m0,
fixed the degree P of the background field and the number
N of Legendre modes of the perturbations, and solved the
SDP. We increased P and N until the optimal bounds on Cε

changed by less than approximately 1%. Finally, given the
optimal background field, we computed mc(φ) with (28) and
verified that φ was feasible for all m � mc. Since in practice
mc � m0 at large Gr, we expect that these checks might fail
for the largest values of m (cf. Remark 2). Before repeating
the optimization with the updated set of LMIs, we therefore
try to validate the background field with an increased value of
N . In the following, we will refer to this value as Nchecks.

Details of the problem specifications, memory require-
ments, computation time, and a posteriori checks for selected
SDP instances are reported in Table I. The reason for the
disparity in the number of Legendre coefficients used for
the background field and the perturbation is that N needs
to be large to make the negative definite terms in the
constraints small enough to obtain a feasible and accurate

TABLE I. Problem data, memory requirements, and CPU time
for selected SDP instances. CPU time and memory include pre- and
postprocessing routines as well as the solution of the SDP.

�x Gr m0 P N RAM (Mb) Time (s) mc Nchecks

2 103 5 19 100 7.4 50 12 100
2 104 8 29 125 25.3 160 38 125
2 105 15 34 150 71.7 1280 116 350

3 103 5 19 100 7.3 59 18 100
3 104 10 29 125 31.6 188 57 125
3 105 25 34 150 119.4 2608 174 350
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FIG. 3. Background fields normalized by their value at ζ = 1 for selected Grashoff numbers and �x = 2.

SDP formulation of (29) (cf. Remark 1). Instead, the optimal
φ is well resolved with modest P .

Figure 3 shows some of the optimal background fields
obtained for �x = 2, normalized by their boundary value φ(1).
Analogous results were obtained for �x = 3 and are not shown
for brevity. As Gr is raised, the background fields evolve from
the linear Couette profile, developing two boundary layers in
a similar way to that observed by Nicodemus et al. [6] for the
classical Couette flow. The asymmetric depth of the boundary
layers reflects the asymmetry of the BCs.

The bounds on Cε corresponding to the optimal background
fields are illustrated in Fig. 4, along with the laminar
dissipation coefficient and the analytical bound Cε � 1/16 =
0.0625, proven in Ref. [12]. Although energy stability analysis
indicates that the laminar Couette flow is stable up to the
critical Grashoff number Grcr = 139.54 for �x = 2 and Grcr =
148.66 for �x = 3 (cf. Sec. VI), our bounds deviate from
the laminar value Cε = Gr−1 when Gr � 0.5Grcr. This was

expected, because the spectral constraint of the bounding
problem differs from that of the energy stability problem
by a factor of 2 when letting φ = uL [cf. Eqs. (6) and (11)
in Sec. II]. While this limitation could be overcome by the
addition of a balance parameter in the spectral constraint (see
e.g., Refs. [4,10,13]), it allows us to check that the solution
of our SDP has converged to that of the original bounding
problem.

As predicted by the analytical bounds of Ref. [12], the
results suggest that Cε approaches a constant when Gr → ∞
independently of �x , meaning that the dissipation coefficient
becomes independent of the flow viscosity and aspect ratio.
The quantitative improvement, however, is evident: Our near-
optimal bound is more than 10 times smaller than the analytical
result at Gr = 105. Unfortunately, the limited range of Gr does
not allow us to confidently estimate an asymptotic value for
Cε (see Sec. IV F for further comments on the computational
issues at large Gr). Moreover, we could not compare our

Gr
101 102 103 104 105

C
ε

10-3

10-2

10-1

Γx = 2
Γx = 3
Cε = 1

16
GrcrGrcr

2

FIG. 4. Optimal upper bounds on Cε for �x = 2 and �x = 3 compared to the analytical bound Cε � 1
16 from Ref. [12]. The laminar

dissipation coefficient is shown as a dashed black line. Detail: As expected, the bounds depart from the laminar Cε at Gr = 0.5Grcr, where
Grcr = 139.54 for �x = 2 and Grcr = 148.66 for �x = 3 (also shown).
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Critical Wavenumbers

FIG. 5. Selected ground-state eigenvalues λ0 of the linear opera-
tors generating the quadratic form Qm at Gr = 104. The values of λ0

correspond to the minimum of Qm subject to the unit-norm constraint
‖Wm‖2

2 = 1.

bounds to values of Cε extracted from experiments or direct
numerical simulations because, to the best of our knowledge,
such data are not available. Although it is unlikely that
there exists a solution to the Navier-Stokes equation whose
associated dissipation coefficient equals our bounds [17],

performing this comparison remains in the interest of future
research.

The slight oscillations in the numerical bounds for 102 �
Gr � 104 are due to the occurrence of bifurcations in the
number of critical Fourier modes, that is, the number of
values m such that the minimum of Qm over nontrivial
functions is zero. This minimum coincides with the ground-
state eigenvalue λ0 of the linear operator associated with Qm

and corresponds to the minimum eigenvalue of the matrix Qm,
rescaled so the respective eigenvector defines an eigenfunction
Wm with unit L2 norm. Some selected values of λ0 computed
for Gr = 104 are plotted in Fig. 5, while the critical ground-
state eigenfunctions are shown in Fig. 6. Note that although
conditions (52) do not enforce (48b) explicitly, the critical
modes satisfy all the correct BCs.

F. Computational issues

As already mentioned, the range of Grashoff numbers we
could study does not stretch into the expected asymptotic
regime. This (current) limitation is a drawback of our method,
as one would hope to be able to extract accurate scaling laws
for large values of Gr.

(a)
-1 0 1

W

-1.5

-0.75

0

0.75

1.5
m = 1

(e)
-1 0 1

d
W d
ζ

-3

-1.5

0

1.5

3

ζ
(i)

-1 0 1

d
2 W d
ζ

2

-20

-10

0

10

20

(b)
-1 0 1

-1.5

-0.75

0

0.75

1.5
m = 2

(f)
-1 0 1

-5

-2.5

0

2.5

5

ζ
(j)

-1 0 1
-50

-25

0

25

50

(c)
-1 0 1

-2

-1

0

1

2
m = 4

(g)
-1 0 1

-15

-7.5

0

7.5

15

ζ
(k)

-1 0 1
-500

-250

0

250

500

(d)
-1 0 1

-2

-1

0

1

2
m = 5

(h)
-1 0 1

-20

-10

0

10

20

ζ
(l)

-1 0 1
-700

-350

0

350

700

FIG. 6. Real part (solid line) and imaginary part (dot-dashed line) of the critical ground-state eigenfunctions and their derivatives at
Gr = 104, normalized so ‖Wm‖2

2 = 1.
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A first limiting factor is that although the memory require-
ments for our largest SDP are modest and the computation
times reasonable, we observed that the solution of the SDP
became less accurate and prone to numerical ill conditioning
as we increased Gr (and, consequently, the values of P , N ,
and m0). We expect that careful rescaling of the SDP data
might help to resolve this issue; yet, a general procedure is
not available, and we leave the development of an appropriate
rescaling strategy to future work.

A second known issue is that the algorithms implemented
in general-purpose SDP solvers such as SeDuMi do not scale
well with increasing problem size (see, e.g., Refs. [26,27]
for more details), and we expect that they will become
unsuitable to solve the large SDPs needed at very large
Grashoff numbers. Addressing the challenges posed by large
SDPs is the subject of a very active field of research (see, e.g.,
Refs. [26–32]). In particular, the used of dedicated algorithms
instead of general-purpose SDP solvers should be considered
in future investigations but is beyond the scope of the present
work.

Finally, the task of validating the solution returned by the
SDP solver might pose a challenge of its own if memory
requirements and computation time are a constraint. This is
due to the cost of performing a large number of eigenvalue
computations to check that the (generally large) matrices
Qm(φ̂,t) are positive semidefinite for all m’s up to the
correct mc. For example, at Gr = 105 and with P = 34,
Nchecks = 350, we had to compute the eigenvalues of a
774 × 774 matrix 116 times for �x = 2 and 174 times for
�x = 3 (cf. Table I); in these cases, validating the solution
was the most time-consuming task of the entire computation.
In this case, a more careful estimate for mc might be
helpful.

V. BOUNDS FOR THE THREE-DIMENSIONAL FLOW

To study the three-dimensional flow, we follow
Refs. [12,17] and make the reasonable (although unproven)
assumption that the critical modes determining the background
field are independent of x and, consequently, of the aspect ratio
in the x direction �x . This assumption is not necessary for our
method, but it simplifies the following analysis. Moreover,
and most importantly, it reduces the size of the SDP we need
to solve, as well as the cost of our a posteriori checks. This
allows us to consider a wider range of Gr at a reasonable
computational cost and therefore to draw relevant conclusions
regarding the flow properties.

After setting αm = 0 in Sec. II C and dropping the suffix
m to simplify the notation, the incompressibility condition
allows us to eliminate Vn and rewrite the quadratic forms Qn

as

Qn =
∫ 1

−1

[
β2

n |Un|2 + 4

∣∣∣∣dUn

dζ

∣∣∣∣
2

+ β2
n

∣∣W 2
n

∣∣ + 8

∣∣∣∣dWn

dζ

∣∣∣∣
2

+ 16

β2
n

∣∣∣∣d2Wn

dζ 2

∣∣∣∣
2

+ 4
dφ

dζ
Re(UnW

∗
n )

]
dζ, (55)

where the complex functions Un and Wn satisfy the homoge-
neous BCs

Un(−1) = dUn

dζ

∣∣∣∣
1

= 0, (56a)

Wn(−1) = Wn(1) = dWn

dζ

∣∣∣∣
−1

= d2Wn

dζ 2

∣∣∣∣
1

= 0. (56b)

Since the real and imaginary parts of Un and Wn give
independent and formally identical contributions to Qn, to
show that Qn � 0, it suffices to assume that Un and Wn are
real functions. Moreover, as in the two-dimensional case, it is
enough to consider strictly positive n’s up to the critical value

nc(φ) :=
⌊

�y

π

√
1

2

∥∥∥∥dφ

dζ

∥∥∥∥
∞

⌋
. (57)

Consequently, the optimal bounds on Cε are determined by the
solution of the variational problem

min
φ

B{φ}

s.t. Qn{Un,Wn,φ} � 0, 1 � n � nc(φ),

φ(−1) = 0,

dφ

dζ

∣∣∣
1

= Gr

2
.

(58)

A. An SDP for the optimal bounds

As for the two-dimensional flow, the variational prob-
lem (58) can be recast as an SDP. In particular, we can use
the parametrization of the background field and the linear
objective function of Secs. IV A–IV B. Following analogous
steps to Sec. IV C, we can expand Un and Wn with appropriate
Legendre series, consider N coefficients explicitly, and show
that

Qn �ω̂T Qn(φ̂)ω̂ + 4(1 − κn‖φ̂‖1)‖ũ1‖2
2

+ 16

β2
n

(1 − ρn‖φ̂‖1)‖w̃2‖2
2. (59)

Here ω̂ is a vector containing the Legendre coefficients of dUn

dζ

and d2Wn

dζ 2 after imposing the BCs, while ũ1 and w̃2 are the
corresponding remainder functions. Moreover, Qn is a real,
symmetric matrix whose entries are affine in φ̂ and ‖φ̂‖1,
while κn and ρn are positive constants that decay with N . The
details are similar to those of Sec. IV C and are omitted for
brevity.

As in Sec. IV D, we can introduce a vector of slack variables
t and add the 2P + 2 constraints φ̂j − tj � 0, φ̂j + tj � 0 to
remove any absolute values from the right-hand side of (59).
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We can then replace each functional inequality Qn � 0 with
the LMI Qn(φ̂,t)  0 and two linear inequalities and compute
near-optimal bounds on Cε at each Gr after solving the SDP

min
η,φ̂,t

2

Gr
η − 4φ̂0

s.t. S(φ̂,η)  0,

Qn(φ̂,t)  0, 1 � n � nc,

1 − κn1T t � 0, 1 � n � nc,

1 − ρn1T t � 0, 1 � n � nc,

φ̂j − tj � 0, 0 � j � P,

φ̂j + tj � 0, 0 � j � P,

1T φ̂ = Gr

2
.

(60)

As for the two-dimensional case, we stress that the solution
to this SDP gives a feasible background field for the infinite-
dimensional variational problem (58) (modulo roundoff errors
due to finite precision arithmetic).

Finally, as in Sec. IV D, the number of inequalities nc is
not known a priori, so we will solve the optimization using
an initial guess n0, verify the full set of LMIs a posteriori
as outlined in Sec. IV E, and repeat the optimization with an
updated nc if such checks fail.

B. Numerical implementation and results

The SDP (60) was solved in MATLAB for 10 � Gr � 104

and domain aspect ratios �y = 2, �y = 3. The problem
specifications, memory requirements, and computational time
for selected values of Gr are shown in Table II. Note that,
compared to the two-dimensional case, higher polynomial
degrees were required at a given Gr to resolve the finer
structures characterizing the optimal background fields. The
details of the numerical implementation are as in Sec. IV E,
and as in Sec. IV F the loss of accuracy in the solution of the
SDP prevented us from reliably increasing Gr to larger values.

A selection of optimal profiles for �y = 3 is shown in Fig. 7
(analogous results were obtained for �y = 2). Interestingly, as
Gr is raised, the boundary layer near the top boundary (ζ = 1)
overshoots the approximately constant value in the bulk of
the domain, resulting in a nonmonotonic layer. The boundary
layer near ζ = −1, instead, develops two regions with different
characteristic slope (steeper near the boundary, flatter towards

TABLE II. Problem data, memory requirements, and CPU time
for selected SDP instances. CPU time and memory include pre- and
postprocessing routines as well as the solution of the SDP.

�y Gr n0 P N RAM (Mb) Time (s) nc Nchecks

2 102 5 34 100 15.1 55 5 100
2 103 10 39 125 46.9 168 14 125
2 104 10 44 150 68.2 245 44 150

3 102 5 34 100 15.1 53 7 100
3 103 10 39 125 46.9 105 21 125
3 104 10 44 150 68.2 269 65 150
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FIG. 7. Background fields normalized by their value at ζ = 1 for
selected Grashoff numbers and �y = 3.

the edge). We observed that the structural change leading to this
“internal layer” near ζ = −1 corresponds to the occurrence of
bifurcations in the number of critical Fourier modes in the
SDP; Fig. 8 shows that three bifurcations have occurred at
Gr = 104. A similar behavior was also observed by Nicodemus
et al. [6], who computed optimal background fields for the
classical Couette flow, suggesting that the qualitative structural
properties of the optimal background field at the bottom
boundary are not affected by a change in the surface forcing.

The optimal bounds are plotted in Fig. 9, along with the
laminar Cε and the asymptotic bounds estimated by Tang
et al.—accurate for Gr � 500 [17, Fig. 3(b)]. As for the
two-dimensional case, the bounds deviate from the laminar
value at the expected value Gr = 0.5Grcr, where Grcr = 57.20
for �y = 2 and Grcr = 51.73 for �y = 3 (cf. Sec. VI). This
confirms that the solution of the SDP has converged to the
optimal solution of (58).

The quantitative improvement compared to the analytical
bound Cε � 1/(2

√
2) ≈ 0.3536 proven in Ref. [12] (not
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FIG. 8. Selected ground-state eigenvalues λ0 of the linear opera-
tors generating the quadratic form Qn at Gr = 104. The values of λ0
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2 = 1.

plotted for clarity) is evident, our bounds being more than
10 times smaller at large Gr. In addition, although the range
of Gr we could study does not reach the asymptotic regime, it
appears that for both values of �y the optimal bounds converge
to the approximate results of Ref. [17], which were computed
by replacing the applied shear with a body force localized in
a narrow region near the boundary. Hagstrom and Doering
demonstrated that this approximation does not change the
energy stability boundaries of the laminar flow [12]. Our
results suggest that flows driven by a shear stress are similar
to those driven by a body force in a narrow region near the
upper surface also in terms of their energy dissipation rate—at
least when described by bounds on the dissipation coefficient.
This is not surprising, since the background method, used
to formulate the bounding problem for Cε, can be seen as a
generalization of energy stability theory.

VI. SEMIDEFINITE PROGRAMMING FOR ENERGY
STABILITY PROBLEMS

The techniques used to compute the optimal background
fields can also be applied directly to determine the energy

stability boundaries of the laminar Couette flow. The critical
Grashoff number Grcr at which the solution is no longer energy
stable is given by the maximization problem [12]

max Gr

s.t. 〈‖∇u‖2 + Gr uw〉 � 0,
(61)

where the spectral constraint is imposed over all horizontally
periodic, time-independent, incompressible velocity fields
u(x,y,z) that satisfy the BCs in (7). The constraint can be
relaxed as a combination of LMIs and linear inequalities
using ideas similar to those in Secs. IV–V, and (61) can be
formulated as an SDP with one decision variable. The critical
Grashoff Grcr can then be computed extremely efficiently,
making semidefinite programming an attractive alternative
to the traditional discretization of the boundary-eigenvalue
problem associated with (61).

Figures 10 and 11 show Grcr for the two- and three-
dimensional flows as a function of the domain aspect ratios
�x and �y . As in Sec. V, we have assumed that the critical
modes for the three-dimensional flow are independent of
the streamwise direction; this assumption is not necessary
but significantly simplifies the formulation of the SDP and
reduces its computational cost. The figures also illustrate the
neutral curves for each individual Fourier mode, which can be
easily computed by considering only a single Fourier mode
in the SDP. Note that, as one would expect, all pairs (m,�x)
achieving the same Grcr correspond to the same wave number
αm = 2πm/�x [respectively, (n,�y) and βn = 2πn/�y for
the three-dimensional flow]. In particular, the local minima
correspond to αm ≈ 3.15 and βn ≈ 2.1 for the two- and
three-dimensional flows, respectively, in excellent agreement
with the results of Ref. [12].

Strictly speaking, our results represent lower bounds on
Grcr that account for the effect of all orthogonal modes of
the velocity field, because the imposed LMIs are stronger
conditions than the spectral constraint in (61). However, the
optimal Gr computed with our SDP formulation converges
(from below) to the exact Grcr as the number of Legendre

Gr
101 102 103 104

C
ε

10-2

10-1

Γy = 2
Γy = 3
Cε = Gr (7.531Gr0.5 − 20.3)−2

Grcr

Grcr
2

FIG. 9. Optimal upper bounds on Cε for �y = 2 and �y = 3, compared to the numerical bounds from Ref. [17] (valid at large Gr). The
laminar dissipation coefficient is shown as a dashed black line, while the analytical bound Cε � 0.3536 proven in Ref. [12] is not plotted for
clarity. Detail: as expected, our near-optimal bounds depart from the laminar value at Gr = 0.5Grcr.
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FIG. 10. Critical Grashoff numbers for energy stability of the
Couette solution for the two-dimensional flow. The neutral curves
for individual Fourier modes and the results from Ref. [12] are also
shown for comparison.

coefficients in the expansions of u is increased. In fact, we
obtained well-converged results considering as few as 15 Leg-
endre coefficients. This is confirmed by the figures: Our results
agree extremely well with those obtained with traditional
methods [12] (these reference results were computed treating
the Fourier wave number as a continuous variable and hence
correspond to the limit of infinite aspect ratio).

VII. CONCLUSIONS

Using a novel numerical technique, we have computed
near-optimal bounds on the dissipation coefficient for two- and
three-dimensional shear flows driven by a surface stress. To
our knowledge, this is the first time that near-optimal bounds
are determined for flows with imposed boundary fluxes;
previous attempts have only considered piecewise linear fields
(e.g., Refs. [12,13]). Our numerical results improve previous
analytical bounds by more than 10 times at large Gr and
agree with the approximate computations carried out by Tang
et al [17]. This confirms that flows driven by a surface stress
are similar to those driven by a localized body force not only
in terms of their energy stability boundaries [12] but also as
far as bounds on the dissipation coefficient are concerned.
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FIG. 11. Critical Grashoff numbers for energy stability of the
Couette solution for the three-dimensional flow, under the assumption
that the critical mode is independent of the streamwise direction. The
neutral curves for individual Fourier modes and the results from
Ref. [12] are also shown for comparison.

While our bounds have been obtained considering a
restricted class of background fields, we expect that no
significant further improvements can be achieved by other
numerical techniques and, in practice, our results can be
considered optimal. Yet, it should be recognized that our
bounds are only optimal within the variational formulation
proposed by Hagstrom and Doering [12]. In fact, as suggested
by Tang et al. [17], it is unlikely that our bounds are achieved
by any real flow. It is therefore of future interest to compare our
bounds to scaling laws estimated via numerical simulations or
experiments of the flow at high Gr (not available at the time of
writing).

Finally, we emphasize the central role played by our
numerical approach, which allowed us to avoid the technical
complications that affect the classical variational framework
when fixed-flux BCs must be imposed. Although the compu-
tational challenges related to the solution of SDPs at large Gr
prevented us from reaching the asymptotic regime and estimat-
ing accurate scaling laws, the formulation of SDPs is generally
attractive for the following two reasons. First, SDP relaxations
can be derived systematically for a wide range of problems not
only for those of the type studied in this work. For instance, we
have demonstrated that SDPs provide an efficient alternative
to traditional methods, based on the solution of boundary-
eigenvalue problems, in the context of energy stability. Second,
the SDP is formulated in a rigorous manner, meaning that its
feasible region corresponds to a set that is contained within
the feasible set of the original infinite-dimensional bounding
problem. While the bounds presented in this work cannot be
considered analytic results due to the numerical roundoff errors
in the solution of the SDPs, the rigorous formulation of a
finite-dimensional problem represents a first step towards the
construction of a fully computer-assisted proof of near-optimal
bounds. For these reasons, we expect that if the technical
difficulties related to solving SDPs in the asymptotic regime
can be overcome by future work, semidefinite programming
will provide a robust framework to solve bounding problems
across a wide range of contexts.
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APPENDIX A: PROPERTIES OF LEGENDRE SERIES

Let W (ζ ) be defined for ζ ∈ [−1,1]. We assume that W has
enough regularity such that dW

dζ
has a uniformly convergent

Legendre expansion; for example, assume that W is twice
continuously differentiable [23]. Under the assumption of
uniform convergence, the Legendre series

W =
∞∑

n=0

ŵnLn(ζ ),
dW

dζ
=

∞∑
n=0

ŵ′
nLn(ζ ), (A1)

can be related using the fundamental theorem of calculus and
the fact that

(2n + 1)Ln(ζ ) = d

dζ
[Ln+1(ζ ) − Ln−1(ζ )] (A2)
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for all n � 1 [21]. In fact, recalling thatL0(ζ ) ≡ 1 andL1(ζ ) ≡
ζ , we have

W (ζ ) = W (−1) +
∫ ζ

−1

dW

dt
dt

= W (−1) +
∞∑

n=0

ŵ′
n

∫ ζ

−1
Ln(t)dt

= W (−1)1 + ŵ′
0(ζ + 1)

+
∞∑

n=1

ŵ′
n

2n + 1

∫ ζ

−1

d

dζ
[Ln+1(t) − Ln−1(t)]dt

= W (−1)L0(ζ ) + ŵ′
0[L1(ζ ) + L0(ζ )]

+
∞∑

n=1

ŵ′
n

2n + 1
[Ln+1(ζ ) − Ln−1(ζ )], (A3)

where the boundary values cancel out since Ln(±1) = (±1)n.
Rearranging the series and comparing coefficients, we obtain
the compatibility conditions

ŵ0 = W (−1) + ŵ′
0 − ŵ′

1

3
,

ŵn = ŵ′
n−1

2n − 1
− ŵ′

n+1

2n + 3
, n � 1.

(A4)

Moreover, it can be verified that

W (1) = W (−1) +
∫ 1

−1

dW

dζ
dζ = W (−1) + 2ŵ′

0. (A5)

It is clear that these expressions can be applied recursively
to relate W (ζ ) and the boundary value W (1) to higher-order
derivatives under suitable regularity assumptions.

APPENDIX B: LEGENDRE EXPANSION
OF THE SPECTRAL CONSTRAINT

Substituting (38) into (26), recalling the definition of the
remainder functions w̃0, w̃1, w̃2, and using the orthogonality
of the Legendre polynomials [22], we obtain

Q{W,φ} = 16

α2

N+P+3∑
n=0

2|ŵ′′
n|2

2n + 1
+ 8

N+1∑
n=0

2|ŵ′
n|2

2n + 1

+ α2
N∑

n=0

2|ŵn|2
2n + 1

− Im(P) + R. (B1)

Here R = R{w̃0,w̃1,w̃2,φ} is as in (42) and

P := 8

α

N+1∑
m=0

∞∑
n=0

P∑
p=0

ŵ′
mŵ∗

nφ̂p�mnp

+ 8

α

∞∑
m=N+2

N∑
n=0

P∑
p=0

ŵ′
mŵ∗

nφ̂p�mnp, (B2)

where

�mnp =
∫ 1

−1
Lm(ζ )Ln(ζ )Lp(ζ )dζ. (B3)

Applying the compatibility conditions (39) to the first three
terms of (B1), we can find a real, symmetric, positive-definite
matrix Q1 such that

(ŵ′′)† Q1ŵ
′′ = 16

α2

N+P+3∑
n=0

2|ŵ′′
n|2

2n + 1

+ 8
N+1∑
n=0

2|ŵ′
n|2

2n + 1
+ α2

N∑
n=0

2|ŵn|2
2n + 1

. (B4)

Moreover, since �mnp = 0 if m − n + p < 0 or n − m + p <

0 [33], the infinite sums over n and m in P can be truncated
to n � N + P + 1 and m � N + P , respectively. Calculating
�mnp as in Ref. [33] and letting

�mn(φ̂) := 8

α

P∑
p=0

φ̂p�mnp (B5)

we can write

P =
N+1∑
m=0

N+P+1∑
n=0

ŵ′
mŵ∗

n�mn(φ̂)

+
N+P∑

m=N+2

N∑
n=0

ŵ′
mŵ∗

n�mn(φ̂). (B6)

It should be understood that the second term is zero if P < 2.
Moreover, note that the �mn’s are linear in φ̂. Using (39) we
can then write P = (ŵ′′)† Q2(φ̂)ŵ′′ for a suitably defined real
matrix Q2(φ̂) whose entries are linear combinations of the
�mn’s (and are therefore linear in φ̂). We remark that, contrary
to Q1, the matrix Q2(φ̂) is not symmetric.

APPENDIX C: A LOWER BOUND ON R

In order to derive the lower bound on R stated in (43), we
start by deriving a relation among ‖w̃0‖2, ‖w̃1‖2, and ‖w̃2‖2.
Using (39) and the elementary inequality (a − b)2 � 2a2 +
2b2, we can write

‖w̃1‖2
2 =

∞∑
n=N+2

2|ŵ′
n|2

2n + 1

�
∞∑

n=N+2

4|ŵ′′
n−1|2

(2n − 1)2(2n + 1)

+
∞∑

n=N+2

4|ŵ′′
n+1|2

(2n + 1)(2n + 3)2
. (C1)

Defining a matrix H1 such that

(ŵ′′)†H1ŵ
′′ =

N+P+4∑
n=N+2

4|ŵ′′
n−1|2

(2n − 1)2(2n + 1)

+
N+P+2∑
n=N+2

4|ŵ′′
n+1|2

(2n + 1)(2n + 3)2
(C2)

and letting

λ1 = 4

[2(N + P + 4) − 1][2(N + P + 4) + 3]
, (C3)
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it can be verified that

‖w̃1‖2
2 � (ŵ′′)†H1ŵ

′′ + λ1‖w̃2‖2
2. (C4)

Note that ‖H1‖F ∼ O(N−3) and λ1 ∼ O(N−2). Using similar
ideas, we can express ‖w̃0‖2

2 in terms of the coefficients ŵ′
n,

n � N + 1, and ‖w̃1‖2
2. We then use (39) and (C4) to construct

a matrix H0 and a constant λ0 such that

‖w̃0‖2
2 � (ŵ′′)†H0ŵ

′′ + λ0‖w̃2‖2
2. (C5)

Given the scaling estimates of H1 and λ1 and the compatibility
conditions (39), it is relatively straightforward to see that
‖H0‖F ∼ O(N−5) and λ0 ∼ O(N−4).

Let us now turn our attention to the functional R defined as
in (42). Clearly, we have the lower bound

R � 16

α2
‖w̃2‖2

2 − 8

α

∥∥∥∥dφ

dζ

∥∥∥∥
∞

∫ 1

−1
|Im(w̃1w̃

∗
0)|dζ. (C6)

Using Young’s inequality, followed by (C4) and (C5), we find
that for any δ > 0∫ 1

−1
|Im(w̃1w̃

∗
0)|dζ �(ŵ′′)†

[
δ

2
H0 + 1

2δ
H1

]
ŵ′′

+
[

δ

2
λ0 + 1

2δ
λ1

]
‖w̃2‖2

2. (C7)

Letting

δ =
√

λ1

λ0
, (C8)

R := 8

α

[
δ

2
H0 + 1

2δ
H1

]
, (C9)

κ = α

2

√
λ0λ1, (C10)

and using (32) finally proves (43).

APPENDIX D: NECESSITY OF CONDITIONS (52)

Let us consider the problem of enforcing the constraint � �
0, where � is as in Eq. (46), subject to (48). Condition (48a)
can be enforced using (49) as explained in Sec. IV C, and the
problem reduces to showing that[

Re(ω̂)
Im(ω̂)

]T

Q(φ̂)

[
Re(ω̂)
Im(ω̂)

]
+ 16

α2
(1 − κ ‖φ̂‖1)‖w̃2‖2

2 � 0

(D1)

for all ω̂ ∈ RN+P+3 and w̃2(1) satisfying (48b). This condition
can be rewritten with the help of (49) as

w̃2(1) = −1T Aω̂, (D2)

where 1 is a column vector of ones of length N + P + 4.
The conditions in (52) are clearly sufficient for (D1),

since they enforce the non-negativity of each of the two
terms separately regardless of whether ω̂ and w̃2 satisfy (D2).
Moreover, it is not difficult to see that (52b) is also necessary.
This follows because ω̂ = 0 is an admissible choice and there
exists w̃2 
= 0 that satisfies w̃2(1) = 0.

To show that (52a) is also necessary, for any fixed ω̂ we
construct a sequence of remainder functions w̃2 satisfying (D2)
showing that when (D1) holds, the term[

Re(ω̂)
Im(ω̂)

]T

Q(φ̂)

[
Re(ω̂)
Im(ω̂)

]

must be non-negative. In fact, given ω̂, consider the admissible
remainder functions

w̃
(m)
2 (ζ ) := (−1T Aω̂)Lm(ζ ) (D3)

for m � N + P + 4. For such a function, we have

‖w̃2‖2
2 = 2|1T Aω̂|2

2m + 1
= 2

2m + 1
ω̂†(AT 11T A)ω̂

� λmax(AT 11T A)‖ω̂‖2, (D4)

where λmax(·) denotes the maximum eigenvalue of a matrix.
Note that λmax(AT 11T A) is a fixed-positive quantity for any
fixed N and P . If (D1) holds, then[

Re(ω̂)
Im(ω̂)

]T

Q(φ̂)

[
Re(ω̂)
Im(ω̂)

]
� −16

α2
(1 − κ ‖φ̂‖1)‖w̃2‖2

2

� − C(φ̂)

2m + 1
‖ω̂‖2, (D5)

where the non-negative term

C(φ̂) := 32

α2
λmax(AT 11T A)(1 − κ ‖φ̂‖1) (D6)

only depends on the choice of φ̂ and can therefore be
considered fixed. Since (D5) holds for any ω̂, we must have

λmin[ Q(φ̂)] � − C(φ̂)

2m + 1
, (D7)

where λmin(·) denotes the minimum eigenvalue of a matrix.
Letting m → ∞ shows that Q(φ̂) must be positive semidefi-
nite, meaning that (52a) is a necessary condition for (D1) to
hold for all ω̂’s and w̃2’s subject to (D2).
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