
PHYSICAL REVIEW E 93, 043304 (2016)

Analytical solutions of nonlocal Poisson dielectric models with multiple
point charges inside a dielectric sphere

Dexuan Xie,* Hans W. Volkmer, and Jinyong Ying
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA

(Received 19 October 2015; published 6 April 2016)

The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins
(or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study,
in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in
the expressions of simple series for a dielectric sphere containing any number of point charges. As a special
case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which
significantly improves the well known Kirkwood’s double series expansion. Furthermore, a convolution of one
nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction
parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they
are programed as a free FORTRAN software package, which can input point charge data directly from a protein
data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test
example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and
nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric
solvers.

DOI: 10.1103/PhysRevE.93.043304

I. INTRODUCTION

The nonlocal dielectric approach has been studied for more
than 30 years for the purpose of improving the quality of
the classic Poisson dielectric approach [1–8]. It features a
position-dependent dielectric permittivity function over the
whole space to reflect either the polarization correlations
of water molecules or the spatial-frequency dependence of
a dielectric medium. However, such a permittivity function
results in a partial derivative-mixed convolution term, making
a nonlocal dielectric model become very difficult to study.

The early study was done mainly on a Lorentz nonlocal
model with a dielectric sphere containing one central point
charge or the charge near a half-space [9,10]. The case of a
dielectric sphere containing multiple charges was studied with
an approximate method [11,12]. To sharply reduce the com-
plexity of solving the Lorentz nonlocal model, Hildebrandt
et al. modified the Lorentz nonlocal model into a system of
coupled partial differential equations (PDEs) [13]. From this
system of coupled PDEs, they obtained an analytical solution
for the case of a dielectric sphere with one central point charge
[13]. Using this PDE system, recently, Bardhan et al. [14]
found the analytical solution for a dielectric sphere containing
multiple point charges as a double series in terms of the surface
spherical harmonics of boundary-integral operators. However,
they did not report any coefficient of the series. Since the PDE
system of Hildebrandt et al. is an approximation to the Lorentz
nonlocal model, the analytical solution of the Lorentz nonlocal
model with Dp containing multiple charges was still unknown
so far.

Motivated by the novel work of Hildebrandt et al., a
fast finite element algorithm for solving a Lorentz nonlocal
model for water was developed in [15]. This Lorentz nonlocal
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model was then extended into a nonlocal Poisson dielectric
model for a protein in an ionic solvent [16]. Recently, a
nonlocal modified Poisson-Boltzmann equation was proposed
as the first nonlinear nonlocal dielectric continuum model
for computing electrostatics of ionic solvated biomolecules
[17]. Meanwhile, to validate our finite element algorithms
and program packages for solving these nonlocal models, the
analytical solutions of three nonlocal Born ball test models
(including the Lorentz nonlocal model) were obtained in [18].

As a continuation of the current studies, in this paper, we
first revisit our nonlocal Poisson model and the traditional
Lorentz nonlocal model. We then construct two nonlocal Pois-
son dielectric test models, called models 1 and 2, and obtain
their analytical solutions on a dielectric sphere containing
multiple point charges. Clearly, with different selections of
point charges, we can construct different tests for extensively
studying and validating a nonlocal dielectric model and its
various numerical solvers.

The techniques that we used to find the analytical solutions
of models 1 and 2 are different from the ones used in
[13,14,19]. Instead of using associated Legendre polynomials
P m

n to construct a traditional double series, we take advantage
of the superposition principle and rotational symmetry to
express the analytical solution as a simple infinite series in
terms of Legendre polynomials Pn and modified spherical
Bessel functions. As a special case of model 1, we also obtain
the simple series solution for the classic Poisson dielectric test
model. Due to our new simple series expressions, the analytical
solutions of models 1 and 2 can be calculated quickly for a
large number of point charges on a large set of mesh points,
making them valuable and practical in the study of local and
nonlocal dielectric models as well as in the validation of related
numerical solvers—a critical step before applying the models
and solvers to applications.

During the search for an analytical solution, we used
convolution techniques to reformulate model 1 or model 2
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from an integro-differential equation problem into a system
of coupled partial differential equations. Thus, it becomes
necessary for us to validate the obtained analytical solutions.
We proved that our obtained series solutions satisfy the
original problems by substituting them to the original integro-
differential equations of models 1 and 2. Moreover, we showed
that our series solutions converge absolutely with a geometric
series rate of convergence. These validation and convergence
analyses are difficult and lengthy in writing. They will be
reported in another paper since they mainly involve the issues
of mathematical analysis.

To simplify the usages and applications, we programed
our new series solutions in FORTRAN 90 as an open software
source. With this software package, we also can calculate
the convolution of solution for model 1 and the reaction
parts of the analytical solutions, which can be applied to
the development of numerical algorithms for solving local
and nonlocal dielectric models [16,17,20]. We further added a
special data input option to input the required atomic charge
numbers and positions directly from a PQR file of protein,
which can be produced from a protein data bank (PDB) file
by using the program tool PDB2PQR [21]. Here a PDB file
can be downloaded for free from the Protein Data Bank
[22]. In this way, we can use different protein molecules to
construct different validation tests easily. Finally, we present
a test example constructed from a protein to demonstrate
the differences between models 1 and 2 and the differences
between local and nonlocal models.

The remaining sections of the paper are outlined as follows.
In Sec. II, we review the derivation of nonlocal models and
define models 1 and 2. In Sec. III, we present the analytical
solution of model 1. In Sec. IV, we present the solution of
model 2. In Sec. V, we report the program package and test
results. In Sec. VI, we make conclusions. Some formulas
and series expressions used in this paper are collected in
Appendices A and B for clarity.

II. TWO NONLOCAL POISSON DIELECTRIC
TEST MODELS

In this section, we review the derivation of local and
nonlocal Poisson dielectric models for a protein immersed
in water. We then present two nonlocal Poisson test models
and a local Poisson test model.

According to Gauss’s law, an electrostatic field, e, induced
by a fixed charge density ρ(r) can be defined by

ε0∇·e(r) = γ (r) + ρ(r) for r = (x,y,z) ∈ R3, (1)

where ε0 is the permittivity of the vacuum, γ is a dielectric
charge density, and ∇ = ( ∂

∂x
, ∂
∂y

, ∂
∂z

) is the gradient operator.
Since e is conservative, there exists an electrostatic potential
function, �, such that

e(r) = −∇�(r). (2)

Applying (2) to (1) yields the Poisson equation:

−��(r) = 1

ε0
[γ (r) + ρ(r)] ∀r ∈ R3,

where �(r) → 0 as |r| → ∞, and � denotes the Laplace
operator. Here |r| =

√
x2 + y2 + z2 for r = (x,y,z)T in the

column vector form.
However, it is difficult to estimate γ . To avoid this

difficulty, the classic linear dielectric theory (see [23,24], for
example) has been developed by assuming that e is split into
displacement field d and polarization field p,

ε0e = d − p,

where d and p are defined by

(a) ∇·d(r) = ρ(r), (b) − ∇·p(r) = γ (r), (3)

and have the linear relationships with the electric field e:

(a) d(r) = ε0ε(r)e(r), (b) p(r) = ε0χ (r)e(r). (4)

Here, ε is the dielectric permittivity function, and χ is the
susceptibility function. Applying 4(a) and (2) to 3(a), we obtain
the local Poisson dielectric model:

−ε0∇·[ε(r)∇�(r)] = ρ(r) ∀r ∈ R3, (5)

where �(r) → 0 as |r| → ∞.
For a protein immersed in water, R3 is decomposed by

R3 = Dp ∪ Ds ∪ 
,

where Dp is the protein region, Ds is the solvent region
surrounding Dp, and 
 is an interface between Dp and Ds .
According to the continuum implicit solvent theory (see [25],
for example), both Dp and Ds can be treated as dielectric
continuum media with two different dielectric permittivity
constants, εp and εs , respectively. In this case, ε becomes
a piecewise constant function. To make sense in strong
derivatives, the Poisson model (5) should be reformulated into
the interface problem:

− εp��(r) = 1

ε0
ρ(r), r ∈ Dp, ��(r) = 0, r ∈ Ds,

�(s−) = �(s+), εp

∂�(s−)

∂n(s)
= εs

∂�(s+)

∂n(s)
, s∈
,

�(r) → 0 as |r| → ∞, (6)

where n(s) is the unit outward normal vector of Dp, ∂�(s)
∂n(s) =

∇�(s) · n(s), �(s±) = limt→0+ �[s±tn(s)], and ∂�(s±)
∂n(s) =

limt→0+ ∂�[s±tn(s)]
∂n(s) . If a molecular structure of the protein is

given, ρ(r) can be estimated by

ρ(r) = ec

np∑
j=1

zj δ(r − rj ), (7)

where ec is the elementary charge, np is the number of atoms
of the protein, rj and zj denote the position and charge number
of atom j , respectively, and δ(r − rj ) denotes the Dirac delta
distribution at rj .

It has been known that the relationship (4) can depend
on a spatial wave number (see [26], for example). To reflect
this feature, the nonlocal dielectric approach was proposed to
imitate the linear relationships of (4) in the Fourier frequency
space as follows:

(a) d̂(ξ ) = ε0̂ε(ξ )̂e(ξ ); (b) p̂(ξ ) = ε0χ̂ (ξ )̂e(ξ ), (8)
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where ε̂(ξ ), χ̂(ξ ), d̂(ξ ), p̂(ξ ), and ê(ξ ) denote the Fourier
transforms of ε(r), χ (r), d(r), p(r), and e(r), respectively.
Applying the inverse Fourier transform to (8) results in the
nonlocal relationships of d and p with e:

d(r) = ε0

∫
R3

ε(r − r′)e(r′) dr′, (9a)

p(r) = ε0

∫
R3

χ (r − r′)e(r′) dr′. (9b)

Substituting (9a) and (2) to 3(a) yields the nonlocal Poisson
equation

−∇·
∫

R3
ε(r − r′)∇�(r′) dr′ = 1

ε0
ρ(r) ∀r ∈ R3, (10)

where �(r) → 0 as |r| → ∞.
To reflect the spatial-frequency dependence of a dielectric

medium [2,27], a new parameter, λ, for characterizing the
polarization correlations of water molecules, and another
dielectric constant, ε∞, for water in the case λ → ∞, are
introduced to result in a commonly used formulation of ε

as

ε(r) = ε∞δ(r) + (εs − ε∞)
e−|r|/λ

4πλ2|r| ∀r ∈ R3, (11)

where εs > ε∞. Actually, the above permittivity function ε(r)
is the inverse Fourier transform of Debye’s temporal frequency
dependent permittivity function

ε̂(ξ ) = ε∞ + εs − ε∞
1 + λ2|ξ |2 , (12)

where ξ reflects a temporal frequency proportional to a spatial
wave number for plane waves (see [[1], p. 100] and [26], for
example).

For the protein case, we have shown in our previous work
[18] that ε can be modified as a function of two variables r and
r′ in the form

ε(r,r′) = ε(r)δ(r − r′) + κ(r)Qλ(r − r′), (13)

where ε(r) = εp and κ(r) = 0 for r ∈ Dp, ε(r) = ε∞ and
κ(r) = εs − ε∞ for r ∈ Ds , and

Qλ(r) = e−|r|/λ

4πλ2|r| . (14)

Applying (13) to (10) gives the nonlocal Poisson model for
protein in water with ρ being given in (7):

− εp��p(r) = 1

ε0
ρ(r), r ∈ Dp, (15a)

ε∞��s(r)+(εs−ε∞)∇ · v(r) = 0, r ∈ Ds, (15b)

�p(s) = �s(s), s∈
, (15c)

εp

∂�p(s)

∂n(s)
= ε∞

∂�s(s)

∂n(s)

+ (εs−ε∞)v(s) · n(s), s∈
,

(15d)

where �s(r) → 0 as |r| → ∞, and v is defined by

v(r) =
∫

R3
Qλ(r − r′)∇�(r′) dr′. (16)

When the integral domain of (16) is changed to Ds (i.e.,
limited to the consideration of the permittivity correlations
among water molecules), the model (15) is modified to another
nonlocal Poisson model for protein in water considered in [28,
Eq. (4.25), p. 68]. We then construct two test models, called
models 1 and 2, for these two nonlocal models using a spherical
solute region, Dp = {r:|r| < a}, from which we have 
 = {r :
|r| = a} and Ds = {r : |r| > a}. Specially, setting ε∞ = εs ,
we reduce model 1 or model 2 to a local Poisson test model—
the Poisson dielectric model (6) using the spherical solute
region Dp.

III. ANALYTICAL SOLUTION OF MODEL 1

Let in(r) and kn(r) denote the modified spherical Bessel
functions of the first and second kind, respectively, and Pn

be a Legendre polynomial of order n. Their definitions and
properties can be found in Appendix A. For the charge density
ρ given in (7), from the superposition principle we can obtain
the analytical solution � of model 1 and its convolution � ∗
Qλ in the expressions

�(r) = ec

ε0

np∑
j=1

zj�j (r), r ∈ R3, (17a)

(� ∗ Qλ)(r) = ec

ε0

np∑
j=1

zj (�j ∗ Qλ)(r), r ∈ R3, (17b)

where �j denotes the solution of (15) using ρ(r) = δ(r − rj ),
and Qλ is given in (14). Thus, the problem is reduced to find
each �j and its convolution �j ∗ Qλ.

Theorem 1. Let κ = 1
λ

√
εs

ε∞
. The solution �j of model 1

using ρ(r) = δ(r − rj ) is given by

�j (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑∞
n=0 A3n|r|nPn

( rj ·r
|rj ||r|

)
+ 1

4πεp |r−rj | , r ∈ Dp,∑∞
n=0

[
ε∞−εs

ε∞
A2nkn(κ|r|)

+ A1n

|r|n+1

]
Pn

( rj ·r
|rj ||r|

)
, r ∈ Ds,

(18)

and its convolution is given by

(�j ∗ Qλ)(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−e

− |r−rj |
λ

4πεp |r−rj | +∑∞
n=0

[
A4nin

( |r|
λ

)
+A3n|r|n

]
Pn

( rj ·r
|rj ||r|

)
, r ∈ Dp,∑∞

n=0

[
A2nkn(κ|r|)

+ A1n

|r|n+1

]
Pn

( rj ·r
|rj ||r|

)
, r ∈ Ds,

(19)

where Ain for i = 1,2,3,4 are given by

A1n = 2n + 1

4πdna

[( |rj |
a

)n

wn

+ nλ(ε∞ − εs)

aε∞
in

( |rj |
λ

)
kn(κa)

]
, (20a)

A2n = (2n + 1)λ

4πεpdnan+3

[
(εs − εp)(n + 1)

|rj |n
an

in

(
a

λ

)
− [n(εp + εs) + εs]in

( |rj |
λ

)]
, (20b)
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A3n = A1n

a2n+1
+ A2n

ε∞ − εs

ε∞an
kn(κa) − |rj |n

4πεpa2n+1
, (20c)

A4n =
2n+1

2π2εpλ
in
( |rj |

λ

)
kn

(
a
λ

)+ A2n
εs

ε∞
kn(κa)

in
(

a
λ

) . (20d)

Here dn and wn are defined by

dn = n(2n + 1)λεp(εs − ε∞)

an+2ε∞
in

(
a

λ

)
kn(κa)

+ nεp + (n + 1)εs

an+1

[
εs

ε∞
in+1

(
a

λ

)
kn(κa)

+ κλin

(
a

λ

)
kn+1(κa)

]
, (21)

wn = nλ

a

εs − ε∞
ε∞

in

(
a

λ

)
kn(κa)

+ εs

ε∞
in+1

(
a

λ

)
kn(κa) + κλin

(
a

λ

)
kn+1(κa). (22)

Proof. From the PDE theory (see [29], for example) it is
known that ∇[�(Or)] = OT (∇�)(Or), ∇ · [F(Or)] = [∇ ·
(OF)](Or), and (��)(Or) = �[�(Or)]. Here, O denotes an
orthogonal 3 × 3 matrix, and F is a vector function on R3.
Thus, the key step to find �j is to look for the solution �

of (15) using ρ(r) = δ(r − r̃j ) with r̃j = (0,0,|rj |)T . We then
can obtain �j by

�j (r) = �(Oj r), r ∈ R3, (23)

where Oj is an orthogonal matrix satisfying Oj rj = r̃j .
Since the charge point r̃j lies on the z axis, � and its

convolution have rotational symmetry about the z axis. That
is, they depend only on r and φ in the spherical coordinate
system (r,θ,φ) defined by

r = (r sin φ cos θ,r sin φ sin θ,r cos φ), (24)

where r > 0 is the radial distance, θ ∈ [0,2π ] is the azimuthal
angle, and φ ∈ [0,π ] is the polar angle.

We set u = � ∗ Qλ, �p = �, and up = u in Dp, and �s =
� and us = u in Ds . As shown in [18], we can reformulate the
model (15) as the PDE system

− εp��p(r) = δ(r − r̃j ), r ∈ Dp, (25a)

−λ2�up(r) + up(r) − �p(r) = 0, r ∈ Dp, (25b)
ε∞��s + (εs − ε∞)�us = 0, r ∈ Ds, (25c)

−λ2�us + us − �s = 0, r ∈ Ds, (25d)

subject to the interface conditions: For s∈
,

up(s) = us(s), �p(s) = �s(s),
∂up(s)

∂n(s)
= ∂us(s)

∂n(s)
,

(26a)

εp

∂�p(s)

∂n(s)
= ε∞

∂�s(s)

∂n(s)
+ (εs − ε∞)

∂us(s)

∂n(s)
, (26b)

and �s(r) → 0 and us(r) → 0 as |r| → ∞.
From (25c) we obtain

�[ε∞�s + (εs − ε∞)us] = 0,

implying that ε∞�s + (εs − ε∞)us is harmonic in Ds and
converges to 0 as |r| → ∞.

By Theorem 3 in Appendix B, we get

ε∞�s(r) + (εs − ε∞)us(r) = εs

∞∑
n=0

A1n

rn+1
Pn(cos φ). (27)

By (25d) and (27), we get an inhomogeneous linear PDE:

−λ2 ε∞
εs

��s(r) + �s(r) =
∞∑

n=0

A1nr
−n−1Pn(cos φ).

The right-hand side is a particular solution, while the general
solution of the homogeneous equation is given by Theorem 4
in Appendix B. Hence, we obtain

�s(r) =
∞∑

n=0

[
ε∞ − εs

ε∞
A2nkn(κr) + A1n

rn+1

]
Pn(cos φ), (28)

where φ ∈ [0,π ]. Together with (27), we have

us(r) =
∞∑

n=0

[
A2nkn(κr) + A1n

rn+1

]
Pn(cos φ). (29)

By Theorem 3, the general solution of (25a) is found as

�p(r) = 1

4πεp

1

|r − r̃j | +
∞∑

n=0

A3nr
nPn(cos φ). (30)

A particular solution to the linear inhomogeneous PDE
defined by (25b) is given by

1

4πεp

1

|r − r̃j | − 1

4πεp

e−|r−r̃j |/λ

|r − r̃j | +
∞∑

n=0

A3nr
nPn(cos φ).

Note that the first two terms have a singularity at r = r̃j but
their difference is smooth at r = r̃j . Thus, by Theorem 4, the
general solution is given by

up = 1−e
−|r−r̃j |/λ

4πεp |r−r̃j | +
∞∑

n=0

[
A4nin

(
r

λ

)
+ A3nr

n

]
Pn(cos φ).

(31)
We next determine the coefficients using the interface

conditions of the PDE system (25). Together with (B1) and
(B2), we can obtain the following system:

A1n

an+1
+ A2n

ε∞ − εs

ε∞
kn(κa) − A3na

n = |rj |n
4πεpan+1

, (32a)

A1n

εs(n + 1)

εpan+2
+ A3nnan−1 = |rj |n(n + 1)

4πεpan+2
, (32b)

A1n

an+1
+ A2nkn(κa) − A3na

n − A4nin

(
a

λ

)
= |rj |n

4πεpan+1
− 2n + 1

2π2εpλ
in

( |rj |
λ

)
kn

(
a

λ

)
, (32c)

A1n

n + 1

an+2
− A2nκk′

n(κa) + A3nnan−1 + A4n

λ
i ′n

(
a

λ

)
= (n + 1)|rj |n

4πεpan+2
+ 2n + 1

2π2εpλ2
in

( |rj |
λ

)
k′
n

(
a

λ

)
. (32d)
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By subtracting (32a) from (32c), and subtracting (32d) from
(32b), we find

εs

ε∞
A2nkn(κa) − A4nin

(
a

λ

)
= − 2n + 1

2π2εpλ
in

( |rj |
λ

)
kn

(
a

λ

)
,

(33)

A1n

εs − εp

εpan+2
(n + 1) + A2nκk′

n(κa) − A4n

λ
i ′n

(
a

λ

)
= − 2n + 1

2π2εpλ2
in

( |rj |
λ

)
k′
n

(
a

λ

)
. (34)

By eliminating A3n from (32a), (32b) and A4n from (33), (34)
using the Wronskian (A9), we obtain(

nεp+(n+1)εs

an+1 nεp
ε∞−εs

ε∞
kn(κa)

εp−εs

εp

n+1
an+2 λin

(
a
λ

)
wn

)(
A1n

A2n

)

=
⎛⎝ |rj |n

4π
2n+1
an+1

− (2n+1)
4πεpa2 λin

( |rj |
λ

)
⎞⎠, (35)

where wn = εs

ε∞
kn(κa)i ′n(

a
λ

) − λκk′
n(κa)in( a

λ
), which can be

written to (22) by (A4) and (A6).
We determine A1n and A2n from the linear system (35).

Using (22), we find its coefficient determinant dn in the
expression (21). Since in(r) > 0 and kn(r) > 0, and εs � ε∞,
we have dn > 0. Thus, the linear system (35) has the unique
solution. Solving it gives A1n and A2n. We then can find A3n

using (32a) and A4n using (32c).
We now derive the solution �j and its convolution using

(23). In fact, for r̃j = (0,0,|rj |)T = Oj rj , it is clear that |r̃| =
|r|, |r̃ − r̃j | = |r − rj |, and 〈r̃j ,r̃〉 = 〈rj ,r〉. Here 〈·,·〉 denotes
the angle between two vectors. Note that φ = 〈r̃j ,r̃〉. Hence,
the series expressions of �j and �j ∗ Qλ can be produced
from (28), (29), (30), and (31) by substituting r and cos φ to |r|
and cos〈rj ,r〉, respectively. Since cos〈rj ,r〉 can be calculated
by

cos〈rj ,r〉 = rj · r
|rj ||r| ,

we obtain the series expressions (18) and (19) of �j and
convolution �j ∗ Qλ. This completes the proof. �

Setting ε∞ = εs , we can derive the analytical solution of
local Poisson test model (6) from the solution of model 1.
After simplifications, the solution � of the local Poisson test
model can be written as

�(r) =

⎧⎪⎪⎨⎪⎪⎩
ec

ε0

∑∞
n=0

∑np

j=1 zjAj,n|r|nPn

( rj ·r
|rj ||r|

)
+ ec

4πε0εp

∑np

j=1
zj

|r−rj | , r ∈ Dp,

ec

ε0

∑∞
n=0

∑np

j=1
zj Bj,n

|r|n+1 Pn

( rj ·r
|rj ||r|

)
, r ∈ Ds,

(36)

where Aj,n and Bj,n are given by

Aj,n = (εp − εs)(n + 1)|rj |n
4πεpa2n+1[nεp + (n + 1)εs]

,

Bj,n = (2n + 1)|rj |n
4π [nεp + (n + 1)εs]

.

The convolution of the local Poisson test model solution can
also be produced from that of model 1’s solution.

Specifically, when np = 1 and r1 is the origin (0,0,0), the
Poisson test model is often referred to as the Born ball model
with a central charge zec, whose analytical solution can be
implied from (36) directly.

IV. ANALYTICAL SOLUTION OF MODEL 2

In this section, we calculate the series solution of model
2—the equations of (15) with the function v being replaced by

v̂(r) =
∫

Ds

Qλ(r − r′)∇�s(r′)dr′. (37)

Similar to the case of model 1, the solution � of model 2
can be written in (17a) so that we only need to calculate the
solution �j of model 2 using ρ(r) = δ(r − rj ).

Theorem 2. The solution �j of model 2 using ρ(r) = δ(r −
rj ) is given by

�j (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑∞
n=0 C3n|r|nPn

( rj ·r
|rj ||r|

)
+ 1

4πεp |r−rj | , r ∈ Dp,∑∞
n=0

[
ε∞−εs

ε∞
C2nkn(κ|r|)

+ C1n

|r|n+1

]
Pn

( rj ·r
|rj ||r|

)
, r ∈ Ds,

(38a)

(38b)

where Cin for i = 1,2,3 are defined by

C1n = 2n + 1

4πen

|rj |nwn, (39a)

C2n = − (2n + 1)(n + 1)

4πan+2en

λ|rj |nin
(

a

λ

)
, (39b)

C3n = |rj |n
4πa2n+1

[
(2n + 1)sn

en

− 1

εp

]
. (39c)

Here en, sn, and wn are given in (58), (59), and (60),
respectively.

Proof. By the same arguments used in the case of model 1, it
is sufficient for us to find the solution of model 2 using ρ(r) =
δ(r − r0) with r0 = (0,0,z0) for 0 < z0 < a in the spherical
coordinate system (r,θ,φ) defined by (24). In order to simplify
calculation, we extend �s continuously to a harmonic function
in Dp by

�s(r) =
∞∑

n=0

C0n

( r

a

)n

Pn(cos φ), r ∈ Dp (40)

when �s has the expression on the interface 
:

�s(s) =
∞∑

n=0

C0nPn(cos φ), s∈
, (41)

where C0n are constants to be determined.
To get the analytical solution, we define w by

w(r) = (Qλ ∗ �s)(r), r ∈ R3,

and reformulate the function v̂ of (37) as

v̂(r) =
∫

R3
Qλ(r − r′)∇′

r�s(r′) dr′ − v̂0(r), (42)

where v̂0(r) = ∫
Dp

Qλ(r − r′)∇r′�s(r′)dr′.
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It is easy to see that w satisfies the equation

−λ2�w(r) + w(r) = �s(r), r ∈ R3.

Let h(r) = ∇ · v̂0(r). It can be shown [see (B4)] that

h(r) = −
∞∑

n=0

C0n

2na

πλ3
in

(
a

λ

)
kn

(
r

λ

)
Pn(cos φ) (43)

for r ∈ Ds . Moreover, for s∈
, by (B5),

v̂0(s) · n(s) =
∞∑

n=0

C0n

2na

πλ2
in

(
a

λ

)
kn−1

(
a

λ

)
Pn(cos φ). (44)

We now reformulate Eq. (15) (with v replaced by v̂) as the
following PDE system:

− εp��p(r) = δ(r − r0), r ∈ Dp,

(45a)

−λ2�wp(r) + wp(r) − �s(r) = 0, r ∈ Dp, (45b)

ε∞��s + (εs − ε∞)[�ws − h] = 0, r ∈ Ds, (45c)

−λ2�ws + ws − �s = 0, r ∈ Ds, (45d)

subject to the interface conditions: For s∈
,

wp(s) = ws(s),
∂wp(s)

∂n(s)
= ∂ws(s)

∂n(s)
, (46)

�p(s) = �s(s), εp

∂�p(s)

∂n(s)
= ε∞

∂�s(s)

∂n(s)

+ (εs − ε∞)

[
∂ws(s)

∂n(s)
− v̂0(s) · n(s)

]
, (47)

and �s(r) → 0, ws(r) → 0 as |r| → ∞.
We note that h satisfies λ2�h = h in Ds . Thus, (45c) can

be written as

�[ε∞�s + (εs − ε∞)ws − λ2(εs − ε∞)h] = 0.

By Theorem 3, there are constants C1n such that

ε∞�s(r) + (εs − ε∞)[ws(r) − λ2h(r)]

= εs

∞∑
n=0

C1nr
−n−1Pn(cos φ) for r ∈ Ds. (48)

From (45c) and (45d) we obtain

ε∞�s + (εs − ε∞)(ws − λ2h) = −λ2ε∞��s + εs�s.

Therefore, using (48), we get

−λ2 ε∞
εs

��s(r) + �s(r) =
∞∑

n=0

C1n

rn+1
Pn(cos φ),

and the right-hand side is a particular solution. Therefore, we
obtain (38b) for r ∈ Ds . From (45a) and (45b), we can obtain
(38a).

With (48) and (38b), we get

ws(r) =
∞∑

n=0

C1nr
−n−1Pn(cos φ)

+
∞∑

n=0

C2nkn(κr)Pn(cos φ) + λ2h(r). (49)

For r ∈ Dp, from (45a) we find

�p(r) = 1

4πεp

1

|r − r0| +
∞∑

n=0

C3nr
nPn(cos φ). (50)

Then, (45b) gives

wp(r) = �s(r) +
∞∑

n=0

C4nin

(
r

λ

)
Pn(cos φ), (51)

where �s(r) is given in (40).
Next, we establish the expressions of coefficients Cin for

i = 0–4. By comparing (41) and (38b), we obtain

C0n = C1n

an+1
+ ε∞ − εs

ε∞
C2nkn(κa). (52)

The first interface condition of (47) gives

zn
0

4πεpan+1
+ C3na

n = C0n. (53)

Together with (43) and (44), the second interface condition
of (47) gives

−(n + 1)
zn

0

4πan+2
+ εpC3nnan−1 = −εsC1n

n + 1

an+2

+ (εs − ε∞)C0n

2n(n + 1)

πλ
in

(
a

λ

)
kn

(
a

λ

)
. (54)

From the interface conditions of (46), we obtain

C0n + C4nin

(
a

λ

)
= C1n

an+1
+ C2nkn(κa)

−C0n

2na

πλ
in

(
a

λ

)
kn

(
a

λ

)
, (55)

and

C0n

n

a
+ C4n

1

λ
i ′n

(
a

λ

)
= −C1n(n + 1)

an+2
+ C2nκk′

n(κa)

−C0n

2na

πλ2
in

(
a

λ

)
k′
n

(
a

λ

)
. (56)

By using (52) and eliminating C3n from (53), (54), and C4n

from (55), (56), we obtain the linear system⎛⎜⎝ −1 1 ε∞−εs

ε∞
kn(κa)

un −εs(n + 1) 0

−i ′n
(

a
λ

)
in−1
(

a
λ

)
vn

⎞⎟⎠
⎛⎝C0n

C̃1n

C2n

⎞⎠

=
⎛⎝ 0

−(2n + 1) zn
0

4πan+1

0

⎞⎠, (57)

where un = −nεp + (εs − ε∞)n(n + 1) 2a
πλ

in( a
λ

)kn( a
λ

), C̃1n =
C1n/a

n+1, and

vn = in+1

(
a

λ

)
kn(κa) + κλin

(
a

λ

)
kn+1(κa).

Then the determinant en of the coefficient matrix in (57) is
given by

en = εs(n + 1)wn − unsn, (58)
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where sn and wn can be found as follows:

sn =
∣∣∣∣ 1 ε∞−εs

ε∞
kn(κa)

in−1
(

a
λ

)
vn

∣∣∣∣
= εs − ε∞

ε∞

(2n + 1)λ

a
in

(
a

λ

)
kn(κa)

+ εs

ε∞
in+1

(
a

λ

)
kn(κa) + κλin

(
a

λ

)
kn+1(κa), (59)

wn =
∣∣∣∣ 1 ε∞−εs

ε∞
kn(κa)

i ′n
(

a
λ

)
vn

∣∣∣∣
= εs − ε∞

ε∞

nλ

a
in

(
a

λ

)
kn(κa)

+ εs

ε∞
in+1

(
a

λ

)
kn(κa) + κλin

(
a

λ

)
kn+1(κa). (60)

It follows from (A7) and (A8) that

2n + 1

r
in(r)kn(r) = π

2r2
− in(r)kn−1(r)

− in+1(r)kn(r) <
π

2r2
.

Therefore, we have

un � εsn(n + 1)
2a

πλ
in

(
a

λ

)
kn

(
a

λ

)
� εs

n(n + 1)

2n + 1
.

Since εs � e∞, we have sn > 0 and the estimate

en � εs

(n + 1)2

2n + 1

[
εs

ε∞
in+1

(
a

λ

)
kn(κa)

+ κλin

(
a

λ

)
kn+1(κa)

]
> 0.

Based on the above derivations, we can obtain the solution of
the system (57) so that the expressions of Cin for i = 0,1,2
are found as follows:

C0n = (2n + 1)
zn

0

4πan+1

sn

en

, C1n = (2n + 1)
zn

0

4π

wn

en

,

C2n = −(2n + 1)(n + 1)
zn

0λ

4πan+2

in
(

a
λ

)
en

.

Then we obtain C3n and C4n from (52), (53), and (55):

C3n = C0n

an
− zn

0

4πεpa2n+1
, (61)

C4n = C2n
εs

ε∞
kn(κa) − C0n

2na
πλ

in
(

a
λ

)
kn

(
a
λ

)
in
(

a
λ

) (62)

from which we can get the expressions of (39). This completes
the proof. �

V. PROGRAM PACKAGE AND TEST RESULTS

We programed the series solutions of models 1 and 2
in FORTRAN 90, along with the series solution of the local
Poisson dielectric model (6). We also included the calculation
of reaction function � as a part of our FORTRAN program

package. Here, � is defined by

� = � − G with G(r) = ec

4πε0εp

np∑
j=1

zj

|r − rj | , (63)

and both � and � are calculated approximately in a partial
sum of N terms for a set of given mesh points and a set of
point charges. The program package can be downloaded for
free from Supplemental Material [30].

To simplify the application of our program package, a
PQR file input option is provided to input the charge numbers
{zj }np

j=1 and positions {rj }np

j=1 automatically from a PQR file
of a protein. In this case, the center of a protein molecular
structure is moved to the origin, and the atomic positions
are rescaled to satisfy the condition |rj | < a. In this way,
we can easily construct different tests using different protein
molecules. In fact, a PQR file is widely used in the numerical
solution of a local or nonlocal dielectric model. It can be
produced from a PDB file by using the program tool PDB2PQR
[21]. A PDB file can be downloaded for free from the Protein
Data Bank [22].

As shown in our previous work [16,20], � can be twice con-
tinuously differentiable within and outside Dp and continuous
across the interface 
 for local and nonlocal Poisson models.
Thus, G contains all the singularity points of �. Hence,
the singularity difficulty of computing � can be completely
avoided through computing �.

With our program package (see Supplemental Material
[30]), we now can easily construct a test case to demonstrate the
importance of developing solution decomposition algorithms
for solving local and nonlocal dielectric models. As an
example, we considered one set of 488 point charges coming
from a protein with 488 atoms (PDB ID: 2LXZ) as illustrated
in Fig. 1. Here, we calculated the values of � and � at
the mesh points of three uniform meshes of a cubic domain
[−2,2]3 with mesh size h = 0.1, 0.05, and 0.01 for models
1 and 2 and the local Poisson model using εp = 2, εs = 80,
ε∞ = 1.8, λ = 10, a = 1, and N = 20, which was found to

FIG. 1. A unit spherical solute region Dp containing 488 point
charges from a protein (2LZX) in a cubic domain [−2,2]3.
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yield a solution with a relative error O(10−5). The three
meshes had 68 921, 531 441, and 4 173 281 mesh points,
respectively. Our FORTRAN program package was found very
efficient in these calculations. For example, it took only about
13 s in the calculation of 68 921 function values for model
1 on one 3.7 GHz Intel Xeon processor of our Mac Pro
workstation.

We also did tests on the simple series solution of the local
Poisson test model (6), which is given in (36). The test with
68 921 mesh points, 488 charges, and a partial sum of 20 terms
(i.e., n = 19) took 12 s while the relative error was found to be
1.99 × 10−5. As a comparison, we programed the double series
solution obtained from the well known Kirkwood’s dielectric
sphere model [19]. Since the partial sum of this double series
consists of (n + 1)2 terms, and each term involves complex
numbers, its calculation can be very costly. For the same test
as done above, the total CPU time was sharply raised to 1021 s
while the relative error was 3.2 × 10−2 only. This test indicated
that Kirkwood’s dielectric sphere model was ineffective for
validation tests.

Using the calculated values of � and �, we constructed the
linear interpolation functions of � and � based on the uniform
meshes. We then plotted them by setting y = 0 to display one
cross section of them in surface graphs on MATLAB as shown in
Figs. 2 and 3. Note that each MATLAB surface plot is essentially
a linear interpolation of a function on a uniform mesh. Hence,
these MATLAB surface plots reflect the convergent behaviors of
these interpolation functions.

Figure 2 displays a comparison of model 1 with model 2
and the local Poisson model in terms of reaction function �.
From these graphs we can see that models 1 and 2 are very
similar while both of them are significantly different from the
local model. They all have continuous surfaces. Moreover,
their function surfaces are smooth in the solute region Dp

and the solvent region Ds , respectively, confirming what was
claimed in [16,20].

Figure 3 shows that the linear interpolation functions of �

became more and more spiky as h was reduced from 0.1 to
0.01, due to the solution singularity caused by the Dirac-delta
distributions. Because of so many strongly singular points, it
seems impossible for us to numerically solve a dielectric model
for � directly on a mesh with a small grid size h. To achieve
a high accuracy, we have to develop solution decomposition
algorithms for computing � indirectly through searching for
reaction function �.

VI. CONCLUSIONS

In this paper, we have presented two nonlocal dielectric
test models, called models 1 and 2, for a spherical solute
region containing multiple point charges. We then obtained
their analytical solutions in simple series, and validated
them analytically. Furthermore, we programed these analytical
solutions in FORTRAN as a software package, along with their
convolution functions and their reaction parts. The usage of
this software package is simple since a set of point charges can
be directly input from a PDB file of a protein. Numerical tests
demonstrated the high performance of our program package
in comparison to the traditional double series approach as
done by Kirkwood for a local dielectric sphere model. This

FIG. 2. A comparison of model 1 with model 2 and the local
Poisson model in their reaction functions of � defined on a uniform
mesh of [−2,2]3 with h = 0.1 for the unit spherical solute region Dp

containing 488 point charges from a protein (2LXZ).

work is expected to be of wide interest to computational
biophysicists and biochemists, applied mathematicians, and
bioengineers. The package will be a valuable tool for them
to study local and nonlocal models and related numerical
solvers.

As applications, numerical test results were used to
illustrate that reducing the mesh size may increase the
difficulty of solving a dielectric model. Hence, the solution
decomposition approach is essential in the development of
numerical algorithms for solving a dielectric continuum model
efficiently and effectively.
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FIG. 3. A comparison of three linear interpolation functions of
the analytical solution � for model 1 defined on three uniform meshes
of [−2,2]3 with h = 0.1, 0.05, and 0.01. Here, DP contains 488 point
charges, and the figures are plotted by setting y coordinates to be
zero.
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APPENDIX A: MODIFIED SPHERICAL
BESSEL FUNCTIONS

We collect some formulas for modified spherical Bessel
functions in(r) and kn(r). If not stated otherwise, these
formulas can be found in [[31], Sec. 10.47ff.].

We define in and kn in terms of modified Bessel functions
Iν and Kν by

in(r) =
√

π

2r
In+1/2(r) = rn

(
1

r

d

dr

)n( sinh r

r

)
, (A1)

kn(r) =
√

π

2r
Kn+1/2(r) = (−1)n

π

2
rn

(
1

r

d

dr

)n(
e−r

r

)
. (A2)

Let y ′ denote the first derivative of function y. We have the
formulas:

i ′n(r) = −n + 1

r
in(r) + in−1(r), (A3)

i ′n(r) = n

r
in(r) + in+1(r), (A4)

k′
n(r) = −n + 1

r
kn(r) − kn−1(r), (A5)

k′
n(r) = n

r
kn(r) − kn+1(r), (A6)

in−1(r) − in+1(r) = 2n + 1

r
in(r), (A7)

kn(r)in+1(r) + kn+1(r)in(r) = π

2r2
. (A8)

The Wronskian of in and kn is

in(r)k′
n(r) − i ′n(r)kn(r) = − π

2r2
. (A9)

APPENDIX B: SERIES EXPRESSIONS OF SOME
FUNCTIONS AND SOLUTIONS

Let Pn denote the Legendre polynomial of degree n, (r,θ,φ)
denote the spherical coordinates, and r0 = (0,0,z0). Here r =
|r|. The functions 1

|r−r0| and e−|r−r0 |/λ
|r−r0| can be expanded to the

following series expressions [[31], 10.60.3]:

1

|r − r0| =
{

1
r

∑∞
n=0

(
z0
r

)n
Pn(cos φ) if r > z0,

1
z0

∑∞
n=0

(
r
z0

)n
Pn(cos φ) if r < z0

(B1)

and

e− |r−r0 |
λ

|r − r0|

= 2

πλ

{∑∞
n=0(2n + 1)in( z0

λ
)kn( r

λ
)Pn(cos φ) if r > z0,∑∞

n=0(2n + 1)in( r
λ

)kn( z0
λ

)Pn(cos φ) if r < z0.
(B2)

The following results are known (see [[32], Sec. 5.53], for
example).

Theorem 3. If u is a rotationally symmetric solution to the
Laplace equation �u = 0 in Dp, then there are constants Cn

such that

u(r) =
∞∑

n=0

Cnr
nPn(cos φ).

If u is a rotationally symmetric solution to the Laplace
equation �u = 0 in Ds with u(r) → 0 as |r| → ∞, then there
are constants Cn such that

u(r) =
∞∑

n=0

Cnr
−n−1Pn(cos φ).
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Theorem 4. If u is a rotationally symmetric solution to
�u − κ2u = 0, κ > 0, in Dp, then there are constants Cn such
that

u(r) =
∞∑

n=0

Cnin(κr)Pn(cos φ).

If u is a rotationally symmetric solution to �u − κ2u =
0, κ > 0, in Ds with u(r) → 0 as |r| → ∞, then there are
constants Cn such that

u(r) =
∞∑

n=0

Cnkn(κr)Pn(cos φ).

Let (r,φ,θ ) and (r ′,φ′,θ ′) be the spherical coordinates for
r and r′, respectively, and P m

n be the associated Legendre
function, which is defined by

P m
n (t) = (−1)m(1 − t2)m/2 dm

dtm
Pn(t)

for m = 0,1, . . . ,n. Here r = |r| and r ′ = |r′|. We set Dp =
{r′ | |r′| < a} and 
 = {r′ | |r′| = a}. Then,∫




Qλ(r − r′)P m
n (cos φ′) cos(mθ ′)dS(r′)

= 2a2

πλ3
P m

n (cos φ) cos(mθ )

{
in
(

r
λ

)
kn

(
a
λ

)
if r � a,

in
(

a
λ

)
kn

(
r
λ

)
if r > a.

(B3)

This follows from (B2), the addition theorem for Legendre
functions and orthogonality of spherical harmonics. A similar
formula holds for P m

n (cos φ) sin(mθ ).
Set v(r) = ∫

Dp
Qλ(r − r′)∇r′[(r ′)nPn(cos φ′)]dr′. Then

(∇ · v)(r) = −
∫

Dp

∇r′Qλ(r − r′) · ∇r′[|r′|nPn(cos φ′)dr′.

By Green’s formula and noting that |r′|nPn(cos φ′) is a
harmonic function

(∇ · v)(r) = −
∫




Qλ(r − r′)n|r′|n−1Pn(cos φ′)dS(r′).

Using (B3), we obtain for r > a,

(∇ · v)(r) = −2nan+1

πλ3
in

(
a

λ

)
kn

(
r

λ

)
Pn(cos φ). (B4)

From [[33], p. 137ff] it is known that

∇′
r(|r′|nPn cos φ′)] = |r′|n−1

〈
P 1

n−1(cos φ) cos θ ′,P 1
n−1(cos φ)

× sin θ ′,nPn−1(cos φ′)
〉
.

Applying (B3) for r � a gives

v(r) = 2

πλ3
kn−1

(
r

λ

)∫ a

0
(r ′)n+1in−1

(
r ′

λ

)
dr ′

×〈P 1
n−1(cos φ) cos θ,P 1

n−1(cos φ) sin θ,nPn−1(cos φ)
〉
.

Evaluating the above integral by using (A3) gives

v(r) = 2an+1

πλ2
in

(
a

λ

)
kn−1

(
r

λ

)
×〈P 1

n−1(cos φ) cos θ,P 1
n−1(cos φ) sin θ,nPn−1(cos φ)

〉
.

Let n(r) be the unit normal. From [[33], p. 33, (31)]
it is known that n cos φPn−1(cos φ) + sin φP 1

n−1(cos φ) =
nPn(cos φ). Then we obtain on the sphere |r| = a

that

v(r) · n(r) = 2nan+1

πλ2
in

(
a

λ

)
kn−1

(
a

λ

)
Pn(cos φ). (B5)
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