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Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension
and wetting with a free-surface lattice Boltzmann method
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The free surface lattice Boltzmann method (FSLBM) is a combination of the hydrodynamic lattice Boltzmann
method with a volume-of-fluid (VOF) interface capturing technique for the simulation of incompressible free
surface flows. Capillary effects are modeled by extracting the curvature of the interface from the VOF indicator
function and imposing a pressure jump at the free boundary. However, obtaining accurate curvature estimates
from a VOF description can introduce significant errors. This article reports numerical results for three different
surface tension models in standard test cases and compares the according errors in the velocity field (spurious
currents). Furthermore, the FSLBM is shown to be suited to simulate wetting effects at solid boundaries. To
this end, a new method is developed to represent wetting boundary conditions in a least-squares curvature
reconstruction technique. The main limitations of the current FSLBM are analyzed and are found to be caused
by its simplified advection scheme. Possible improvements are suggested.
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I. INTRODUCTION

The free surface lattice Boltzmann method (FSLBM) [1]
is a numerical method for the simulation of free surface
flows combining a volume-of-fluid (VOF) approach [2–4] for
interface tracking with the lattice Boltzmann method (LBM)
[5–9] for hydrodynamics. We use the same definition of free
surface flow as described in Refs. [3,10], where it denotes a
single-phase flow problem containing free boundaries instead
of a two-phase flow problem. VOF methods follow the
notion of a sharp interface representation, i.e., assuming
hydrodynamic equations for the bulk of the flow and modeling
the interface by boundary conditions or by a jump of flow
parameters in one-fluid approaches for two-phase flows. This
is in contrast to currently popular lattice Boltzmann multiphase
approaches [6,11,12] (e.g., the color gradient model [13], the
Shan-Chen model [14], and the free-energy model [15]) that
are based on a diffusive interface assumption. In the FSLBM,
the LBM is used only to approximate the incompressible
Navier-Stokes equations for the liquid phase. With sharp
interface simulation techniques, capillary effects need to be
modeled explicitly in addition to the interface tracking. Alto-
gether, there are three components on which the total accuracy
of the method depends: the hydrodynamic solver (LBM), the
interface tracking (advection of indicator function), and the
surface tension model. While the accuracy of the LBM is
well understood [16–18], only very few results have been
reported addressing the accuracy of the FSLBM’s advection
scheme or its validity to simulate surface tension. Nevertheless,
the approach has found numerous applications in surface
tension-driven complex flow scenarios [19–23] and even
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high-Reynolds-number flows [24,25]. Hence, in the present
paper we evaluate the accuracy of the FSLBM in surface
tension driven flows and also discuss existing limitations
due to the original advection scheme. While conventional
VOF implementations rely on geometric reconstruction to
approximate the advection equation of the indicator function
[3,4], the FSLBM instead exploits the specific nature of the
LBM. However, the present results in this work indicate that
though this simplification reduces the algorithmic complexity
significantly, it also comes with a comparably low accuracy.

The simulation of surface tension involves the extraction
of curvature information from the interface defined through
the fill level function [3,26–28]. This VOF indicator function
is nonsmooth by definition, making the estimation of the
interface curvature a nontrivial task. Numerical errors in
the determination of interface stresses lead to the effect of
undesired spurious currents that can invalidate or destabilize
the computed solutions. We remark that if the surface stress
is included as a force term in the momentum equation as in
Ref. [26], then the incompatible discretization of pressure and
indicator function gradients becomes an additional source for
spurious currents [29]. The present model does not have this
problem, because surface tension is imposed as a pressure
jump at the boundary instead. Anyway, errors in the curvature
estimation are reported as problematic—primarily because the
grid convergence is poor unless more sophisticated approaches
are employed. Modern VOF codes therefore rely on higher-
order curvature estimation techniques to suppress this error
[28,30]. However, these techniques require the use of larger
stencils. This may be undesirable or is even impossible if
only next-neighbor information is available, as, e.g., in some
parallel computing environments. Hence, in this paper we
review and present three different techniques to approximate
the interface capillary tension from the fill level function
data of a free surface code that are using local 3 × 3 × 3
neighborhoods only.
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The first method is an adaption of the classic finite-
difference (FD) model by Brackbill et al. [26] that uses finite-
difference computations to obtain the interface curvature.
As reported previously for this method, the magnitude of
the spurious currents makes it impossible to simulate small
capillary number flows correctly. Notice that in Ref. [26],
the surface tension appears as a force term in the momentum
equation and, further, that this force is smoothed out over
several grid cells. Hence this model is also called continuous
surface force model in the literature. In the FSLBM presented
here, surface tension is included in the boundary condition
instead.

The second model locally reconstructs the interface de-
scribed by the VOF function as a continuous surface made
up of triangles. From this triangular reconstruction (TR)
the curvature information can be extracted. This method has
first been presented in Ref. [31], and turns out to effectively
reduce the error due to spurious currents, because the predicted
curvature values are much more accurate.

The third method also involves a local reconstruction of
the interface geometry. Based on a least squares approach
a parabolic approximation to the interface is constructed
in a local neighborhood of cells. From this least-squares
reconstruction (LSQR) one obtains curvature estimates with
a high accuracy. A similar approach has also been described
in Ref. [32] as a fallback solution for a higher-order height-
function technique. For the current paper, we have extended the
approach to problems including adhesive boundary conditions.
It is the only model in this study to achieve a second-order rate
of convergence in the classic spherical bubble benchmark.

We also evaluate the boundary conditions needed to
simulate the wetting behavior of solid surfaces for the FD
and LSQR model. The original work by Brackbill et al. [26]
discusses adhesive boundary conditions, which we adopted to
the FSLBM context for this paper. Since curvature estimation
based on finite differences often introduces larger errors,
smoothing and filtering techniques are typically used and have
been extended to adhesive boundaries in Ref. [33] for the
simulation of low-capillary-number flows. Motivated also by
the limited accuracy of the finite-difference approximation
of curvature by finite differences, the authors of Refs. [10]
and [34] switched to the height function technique [35,36]
for the simulation of surface wetting. Some other approaches
use level sets instead of the VOF method to represent the
interface [37] or directly use non-Eulerian techniques (e.g.,
Ref. [38]). In this paper, we present the results obtained from
the FSLBM in several simulations of wetting surfaces while
studying alternative surface tension models. This allows a
comparison between the FD approach to surface tension and
the newly developed LSQR method.

II. NUMERICAL METHOD

Throughout this paper we assume a three-dimensional
D3Q19 lattice Boltzmann model [8,39] with Q = 19 lattice
velocity vectors cq with q = 0, . . . ,Q − 1. We denote the
LBM data [discrete particle distribution function (PDF)] by
f = (f0,f1, . . . ,fQ−1). The LBM data are defined for every
node within the liquid subdomain �(t), and they follow the

evolution equation

fq(x + cq,t + 1) = f ′
q(x,t), (1a)

f′(x,t) = f(x,t) + C(f(x,t)), (1b)

where C is a collision operator and f′ is the postcollision
distribution function. For the present paper, we have used the
hydrodynamic two-relaxation-time (TRT) collision operator
[40]. The TRT operator has two eigenvalues (λe and λo)
controlling the relaxation of the even and odd parts of the
PDF, respectively. Similarly to the popular LBGK model [39],
the relaxation rate τ = −1/λe controls the kinematic viscosity
ν = c2

s (τ − 1/2), with cs = 1/
√

3 for the present D3Q19
model. The second parameter λo is chosen to minimize the
error at straight axis-aligned walls. The macroscopic variables
of pressure P (x,t) = c2

s ρ(x,t) and velocity u(x,t) are defined
via moments of the distribution function,

ρ =
Q−1∑
q=0

fq, (2a)

ρu =
Q−1∑
q=0

cqfq, (2b)

at the respective node x.
The FSLBM was first described in Ref. [1]. To track the

interface position in simulations, a VOF approach introduces
a fill level function ϕ following an advection equation over
time. The function ϕ is defined for each finite volume (or
cell) as the volume fraction filled with liquid. Only the flow
within the liquid subdomain �(t), consisting of all cells x
with positive fill level ϕ(x) > 0, is simulated by means of the
LBM. The remaining cells, referred to as gas cells, become
temporarily inactive. Within the liquid subdomain �(t), we
distinguish between liquid and interface cells. To count as an
interface, the cell must have both liquid and gas cells in the
direct neighborhood defined by the lattice model. Only the
interface cells are allowed to have a fill level between 0 and
1. The interface cells are also used to compute the advection
of the free surface in terms of the fill level function and to
impose a free surface boundary condition on the LBM. In
comparison to other VOF methods, where the advection of
the fill level function is a nontrivial problem that needs to be
solved in addition to the hydrodynamics, the FSLBM exploits
the nature of the lattice Boltzmann equation, Eq. (1a) and
Eq. (1b), to update the fill levels directly [1] and set

ϕ(x,t + 1)

= ϕ(x,t) +
∑Q−1

q=1 k(x,q) · [f ′
q̄(x + cq,t) − f ′

q(x,t)]

ρ(x,t + 1)
, (3a)

where the coefficient k(x,q) is

k(x,q) :=

⎧⎪⎨
⎪⎩

0 if x + cq is gas,
1
2 [ϕ(x + cq) + ϕ(x)] if x + cq is interface,

1 if x + cq is liquid,

(3b)

which means that there is no mass flux to gas cells.
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The free surface boundary condition for the LBM at the
interface cells is

fq̄(x,t + 1) = f eq
q (ρb,ub) + f

eq
q̄ (ρb,ub) − f ′

q(x,t), (4)

for all directions q pointing towards gas cells x + cq /∈ �(t).
Hereby, f ′

q denotes the postcollision distribution oriented
towards the gas phase and f

eq
q (ρb,ub) is the equilibrium

distribution function [1]. It can be shown that Eq. (4)
approximates a free boundary condition with first-order spatial
accuracy [41]. The two boundary condition parameters ρb and
ub are the macroscopic pressure and velocity at the interface,
respectively. The boundary value ρb is defined as

ρb = 1

c2
s

(pg + ps), (5)

where pg(t) is the static pressure at the free surface and
ps(x,t) is the Laplace pressure. The latter depends on the local
curvature of the interface by

ps(x) = 2σκ(x), (6)

with a constant surface tension σ . We remark that in the
original work of [1], Eq. (4) is applied for all q, oriented
outwards with respect to the interface, i.e., cq · n � 0, where
n = ∇ϕ is a local normal vector to the interface pointing
towards the liquid (cf. Sec. II A). However, we find that this
approach leads to anisotropic artifacts in the free surface
dynamics. Figure 1 documents an example.

Hence, for the present work, we take into account the
interface orientation only at the contact line (corner nodes)
where the boundary becomes inhomogeneous. As shown in
Fig. 2, a contact line cell has links to solid wall (off-boundary,
S) nodes and to gas (off-boundary, G) nodes. Links to solid wall
nodes (off-boundary nodes S) are usually subject to a no-slip

FIG. 1. Simulation of a droplet splashing onto a liquid film
without surface tension. Reynolds number ≈250. (a) Slice through
domain (x = y). Left: Imposing the free boundary condition on all
links cq · n � 0 does not reproduce the rim correctly. Right: Rim
clearly visible with the present implementation. (b) Isocontour of
the tracked interface. Left: Imposing the free boundary condition on
all links cq · n � 0 leads to incorrect crown formation. Right: Same
simulation based on present implementation.

S S S

G I L

G I I

n

Node types:

L: liquid
I: interface
G: gas (off-boundary)
S: solid (off-boundary)

FIG. 2. Inhomogeneous boundary at an interface corner node
with boundary-intersecting lattice directions indicated by arrows.
The free boundary rule is imposed on the bottom-left direction (thick
arrow) due to its orientation with respect to the interface normal n.

condition.1 The present implementation replaces the no-slip
condition with the free surface condition in corner nodes if the
outgoing lattice direction has negative orientation with respect
to the inward-oriented interface normal n projected into the
solid wall.

The remaining part of this section lays out the three
different approaches considered in this study to extract the
local interface curvature κ from the volume fraction ϕ. Notice
that the notion of a lattice cell reflects the represented cubic
volume with the length of one grid spacing and which is used to
define the fill levels. However, the LBM data are more precisely
located at lattice nodes which coincide with the centers of the
cells.

A. Finite-difference approximation

As first proposed in Ref. [26], one way to approximate the
curvature κ of the boundary surface defined through the fill
levels is to compute a finite-difference approximation to

κ = −(∇ · n̂), (7)

where n̂ is the normalized gradient of the indicator function.
To obtain this gradient, we use central finite differences to

approximate

n = ∇ϕ, (8)

which can be interpreted also as a local normal vector to
the free surface. We use the finite-difference approximation
suggested in Ref. [42]. However, the curvature computation
according to Eq. (7) means that second-order derivatives of
the nonsmooth indicator function ϕ are approximated by finite
differences, which inevitably introduces larger errors. Hence,
much work has been published (cf. for instance Ref. [43])
on effective ways to mollify the fill level information and
smooth out surface tension in the “continuum surface tension”
approach. We use the K8 kernel with support radius ε = 2.0
(cf. Ref. [43]), i.e., only the next-neighbor information is
included in the convolution.

1We use the bounce-back rule to realize no-slip boundary condi-
tions, which assumes the wall position halfway between cell centers.
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Wetting properties are included by directly specifying an
ideal equilibrium contact angle θeq for solid boundaries. For
obstacle cells with surface normal n̂w the boundary condition
at the solid wall is

n̂ = n̂w cos θeq + n̂t sin θeq, (9)

where n̂t is a tangent vector to the wall and normal to the
contact line [26]. Since the wall position rarely coincides with
the lattice nodes, the boundary value according to Eq. (9) is
extrapolated to the obstacle node. Hereby, the vector n̂t is
computed by projection of the interface normal at the fluid
boundary cell xb onto the wall. The boundary condition for the
fill level in the obstacle cells (affecting the interface normal
n(xb) in the boundary cells) is a reflection condition for the ϕ

values. Here we generally compute the boundary value for the
obstacle cells xo /∈ � based on the neighboring inner nodes
xo + cq ∈ � using the formula

ϕ(xo) =
∑

|n̂w ·ĉq |>α

xo+cq ∈�

|n̂w · ĉq |ϕ(xo + cq)

/ ∑
|n̂w ·ĉq |>α

xo+cq ∈�

|n̂w · ĉq |, (10)

with an aperture α = √
2/2, to achieve a smoothed reflection

for the boundary values.

B. Triangular reconstruction based on piecewise linear
interface construction

In Ref. [31], a curvature computation is suggested based
on a local triangulation of interface points in a 3 × 3 × 3
neighborhood around each interface cell. The interface points
are determined using a piecewise linear interface construction
(PLIC) approach [3]. For an interface cell centered around xi ,
let P be the half-space P = {x|(x − p) · n(xi) � 0}, where
p = xi + an(xi) is a point within the corresponding unit
volume V (xi). Now the interface point p is defined such that
the cut-off volume V ∩ P satisfies

Vol(V ∩ P ) = ϕ(xi). (11)

We determine a iteratively, similarly to Ref. [44], with an
error bound of ≈4 × 10−13 (40 iterations in a bisection
algorithm) assuming an exact surface normal. The interface
point can be computed in one step together with the estimation
of the surface normals. For the latter we employ again a
finite-difference scheme to Eq. (8), however, without any
convolution step. Alternative, higher-order PLIC algorithms
are discussed in Refs. [38,57].

Once the interface points are determined by the PLIC
scheme, the algorithm described in Ref. [31] is used to con-
struct a local “triangle fan” from the interface points within the
local neighborhood. Then, a variant of the algorithm described
in Ref. [45] determines the curvature of this polygonal surface.
Notice that the described TR scheme as well as the curvature
estimation by LSQR of Sec. II C are based solely on the surface
points and use the gradient information represented by the
interface normals only as far as it is needed to construct these
interface points. The TR method can be extended to support
adhesive boundary conditions. In Ref. [46], a way to extend the
local triangulations at solid boundaries to achieve an “artificial
curvature” matching with a desired equilibrium contact angle
is described. However, the implementation of the geometric

construction is difficult in three dimensions. Also, we found the
results obtained from that method often not convincing, which
motivated the least-squares-based approach of the following
section.

C. Least-squares reconstruction based on piecewise linear
interface construction

The third approach to include surface tension consists in
reconstructing the interface as a quadratic function in each 3 ×
3 × 3 neighborhood around an interface cell. It has previously
been described in Ref. [32], however, without the inclusion of
wall adhesion effects. Like the TR approach, it is based on the
PLIC of interface points described above in Sec. II B. Let t̂u,
t̂v , and n̂ be a local orthonormal basis, i.e., t̂ut̂v tangential to
the interface, and p the local interface point. Now assume that
i is indexing all the remaining interface cells in a 3 × 3 × 3
neighborhood. The interface cell data (n̂i ,pi) is used to fit the
model function

f (u,v) = Au2 + Bv2 + Cuv + Hu + Iv + J (12a)

with parameters (A,B,C,H,I,J ), by minimizing the error

E =
∑

i

|f (ui,vi) − fi |2. (12b)

Here ui = (pi − p) · t̂u, vi = (pi − p) · t̂v , and fi = (pi − p) ·
n̂. This yields a linear least-squares problem that has to be
solved locally. We obtain the best results when fixing the
constant parameter J = 0, i.e., accepting only solutions that
interpolate the surface point p of the respective interface cell.
We use the implementation from the LAPACK library [47]
based on QR decomposition of the corresponding system
matrix. Once f is determined the curvature can be evaluated
analytically, using

κ = A(1 + I 2) + B(1 + H 2) − 2CHI

(
√

1 + H 2 + I 2)3
. (13)

The approach can be seen as a modified version of the
parabolic reconstruction of surface tension (PROST) scheme
from Ref. [48]. Both schemes fit a parabolic function in a
local neighborhood around each interface cell. However, as a
major difference, PROST fits f (x,y,z) directly to the fill levels
minimizing the error

∑
i (Vi(f ) − ϕi)

2 of the cut-off volumes
Vi that the isosurface f (x,y,z) = 0.5 cuts out of the interface
cell i. This makes the least-squares problem nonlinear and
f has to be determined by iteratively computing the error
and updating of coefficients. The scheme described here is
computationally less expensive.

To include the effect of boundary adhesion, we extend
the method in the following way: If the local 3 × 3 × 3
neighborhood contains an obstacle cell, then for each contact-
line cell (i.e., an interface cell that has an obstacle cell as
neighbor) from the same neighborhood, one contact point is
approximated with a contact normal m̂ defined according to
Eq. (9). In the contact point, we require

∇f (uc,vc) = −(mu,mv)/mn, (14)

where mu = m̂ · t̂u, mv = m̂ · t̂v , and mn = m̂ · n̂u, and uc, vc

are the coordinates of the contact point in the locally defined
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pi

ps,i

ni

nw

FIG. 3. Determination of contact point ps,i for a contact line cell.
The PLIC segment (dashed line) defined by interface point pi and
interface normal ni is extended and intersected with the obstacle
wall.

tangential plane. If the neighboring interface cell is the center
of the current 3 × 3 × 3 neighborhood, then we use Eq. (14)
as a constraint to the respective optimization problem given
by Eqs. (12a) and (12b). Otherwise, the condition is simply
included in the optimization of the error, Eq. (12b).

To obtain the contact point, we construct the closest
intersection of the interface segment of the contact line cell
with the solid surface as in Fig. 3.

D. Current limitations

The interface tracking of the present implementation
defines interface cells as active lattice Boltzmann cells that
have a D3Q19 neighborhood containing both gas and liquid
cells. This definition turned out to impose a limitation when
simulating thin liquid films on wetting surfaces and with
contact angles below 45◦. As shown in Fig. 4, the thickness
of a liquid film on solid substrate has to be resolved at least
by one liquid cell in height for the method to work correctly.
A film thickness smaller than 1 lattice unit is not supported.
For strongly wetting surfaces (θeq < 45◦), we often observe
anisotropic errors because it is then problematic to impose

G I L L

G I I L

G G I I

G I I L

G G I I

G G G I

(a) (b)

FIG. 4. The bottom-left interface (I) cell in (a) has several gas
(G) neighbors but no liquid neighbor (L). Hence, the configuration
of (a) is not supported by the present implementation. Shown in (b)
is a valid configuration since all interface cells have both liquid and
gas neighbors. The minimum supported film thickness is therefore at
least one (liquid) lattice cell. (a) Invalid; (b) valid.

the correct contact angles according to the LSQR method
(Sec. II C) and the TR method (Sec. II B): Depending on
the approximated interface position represented by the fill
level information, the computed curvature values then tend
to oscillate and overshoot. In Fig. 4(b), for instance, the
approximation of the interface as a smooth surface through the
two leftmost interface cells can be expected to be erroneous
under the condition of an acute intersection angle (θeq < 45◦)
with the solid surface. It is important to notice that these
restrictions are specific to the presented FSLBM algorithm,
while the presented curvature reconstruction schemes can be
applied in any VOF context.

III. NUMERICAL RESULTS

The numerical results presented in the following have been
obtained with the waLBerla lattice Boltzmann framework [49]
that includes the FSLBM implementation described in [31].

A. Equilibrium spherical bubble

The standard benchmark for surface tension models is a
static equilibrium bubble. If the curvature estimation would
return the exact value κ = 1/R everywhere on the interface,
then the solution to the problem would be a perfectly
vanishing velocity field. Due to the existing errors, however,
spurious currents occur around the interface from regions with
overestimated Laplace pressure to positions underestimating
the value (cf. Fig. 5) [3]. For nonsophisticated methods, the
magnitude of the spurious velocities can be related to the
ratio σ/μ, of surface tension and dynamic viscosity μ = ρν,
with a constant prefactor �1. This means that the error is

FIG. 5. Slice through a domain containing a single gas bubble.
The color indicates the magnitude (lattice units) of the spurious
currents due to errors in the curvature estimation with the FD
approach.
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independent of the spatial resolution, or converging very
slowly, and thus poses a limitation in terms of applicability
to problems involving dominant capillary forces. See Refs.
[28,43,50] for a discussion of the problem in connection with
the VOF method.

Here we adopt the problem stated in Ref. [48] using
nondimensional values with respect to a cubic domain of
unit length, containing a spherical bubble of radius R =
0.125 centered at (0.5,0.5,0.5). We apply no-slip boundary
conditions at the top (z = 1) and bottom z = 0 sides of the
domain and periodicity along all other directions. The viscosity
of the liquid of density ρ = 4 is set to μ = 1, and the surface
tension parameter is σ = 0.357. The dimensionless Ohnesorge
number (Oh = μ/

√
σρR) corresponding to the given problem

is Oh ≈ 2.37. Notice that in Ref. [48] the bubble is actually a
second fluid of the same density and viscosity as the liquid (two
phase), while in our case the flow inside the gas bubble is not
simulated but represented only in terms of a gas pressure value
that is dynamically adjusted according to the changes of the
gas volume upon interface advection (free surface flow with
bubble model [51,52]). We remark that the present test case is
appropriate to evaluate the error in the curvature computation
only. Since there is no flow velocity in this test case aside
from the spurious currents, one expects no significant error
contribution from the advection of the indicator function or
the LBM. We have therefore evaluated the test case first in the
standard case with a static frame of reference (Sec. III A 1)
and second in a moving frame of reference (Sec. III A 2) with
a constant uniform background velocity added to the flow.

1. Static frame of reference

We perform a resolution study varying the grid spac-
ing between the values δx = 1/48,1/96,1/144,1/192 at a
fixed time step of δt = 10−4, which yields the resolution-
dependent lattice relaxation times τ = 0.6728, 1.191, 2.055,
and 3.264. The surface tension parameter in lattice units
varies accordingly and takes the values σL/10−3 = 0.0987,
0.7896, 2.665, and 6.317. For initialization of the fill levels
at t = 0 with the spherical geometry, we employ a spatial
subdivision technique, refining each discrete cell volume by
a factor of 100 along each coordinate. The simulation then
exhibits a series of pressure disturbances until the numerical
equilibrium is reached. Figure 6 shows the development of
the maximal and average flow velocity within the domain
for 500 000 time steps. After a certain number of time steps
the shock wave is sufficiently decayed for both the TR and
the LSQR method, such that both maximal and average flow
velocity within the domain become smaller than �10−10 in
magnitude. The FD approach, however, does not converge and
enters into an oscillating behavior instead. Here the spurious
currents are large enough to trigger changes in the layer
of interface nodes. This also introduces sudden changes in
the curvature computation, thus explaining the oscillations.
Figure 7 shows the maximal and average velocity within the
domain for different spatial resolutions and various methods.
The strength of the spurious currents obtained with the FD
method are in accordance with the values reported in Ref. [48],
where a similar approach (CSF) is used for referencing. The
curvature information obtained by geometric reconstruction

103 104 105
10−12

10−10

10−8

10−6

10−4

10−2

time step t

v
el

o
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m

a
g
n
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u
d
e

FD (max)

FD (avg)

TR (max)

TR (avg)

LSQR (max)

LSQR (avg)

FIG. 6. Temporal evolution of maximal and average (spurious)
velocity for the different surface tension models at a fixed grid spacing
δx = 1/96. After the decay of an initial shock, the magnitude of the
spurious currents in the system can be evaluated. The FD model
shows the largest errors and often leads to oscillative behavior. Similar
behavior is obtained for δx = 1/48, 1/144, and 1/192.

(TR and LSQR methods) is much more accurate than the
FD approximation and reduces the spurious velocities almost
down to the order of machine precision.

We also evaluate the accuracy of the curvature values
obtained for the numerical equilibrium, i.e., the state reached
after 500 000 time steps. Figure 8(a) compares the error in
curvature at various grid spacings for the three different
methods. Only the plot for the LSQR method indicates a
second-order rate of convergence. However, it is clear that the
occurrence of spurious currents is not due to constant over- or
underestimation of curvature but rather because of its variance
with the node position. This becomes obvious when compared
to Fig. 8(b), which shows the standard deviation over all inter-
face nodes in the final state to the resulting spurious currents of
Fig. 7.

2. Moving frame of reference

When dealing with dynamical problems numerical errors
in the advection of the indicator function ϕ are often critical.
This holds in particular for the present test case, since any
errors in the fill levels will introduce an additional error into
the computed curvature values. To study effects of advection,
we add a constant background velocity of u0 = (1,0,0)T to the
test case. This means that there is now a constant advection
involved and the spurious currents appear as a deviation
from the background velocity. For δx = 1/96, δt = 2.5 × 10−5

(lattice relaxation time τ = 0.6728, ux = 0.0024δx/δt ), we
run the simulation for T = L/u0,x time steps, i.e., the bubble
traverses the periodic domain of length L exactly one time.
This can be interpreted as a moving frame of reference while,
physically, the setup is equivalent to the static version of
Sec. III A 1. Measuring the curvature error over time, Fig. 9
exhibits a dramatic increase in error as compared to the
static test case. The errors of the reconstructive methods,
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FIG. 7. Dependency of spurious velocity (maximum and average) on grid spacing δx for the three different models evaluated after 500 000
time steps. The dotted and dashed lines represent first- and second-order slopes, respectively. For the FD scheme, the plot indicates a first-order
convergence for both maximum and average spurious flow speed. The errors of the FD scheme are orders of magnitude above those of the
methods based on surface reconstruction.

LSQR and TR, are now significantly larger than the error
of the FD model. A possible reason is that the FD model
is more diffusive than the reconstruction methods and thus
less sensitive to errors in the indicator function field. A grid
study with spatial steps δx = 1/48,1/96,1/144,1/192 and
corresponding time steps δt = 1 × 10−4,2.5 × 10−5,1.11 ×
10−5,6.25 × 10−6 (diffusive scaling) revealed that these errors
do not converge with the grid spacing. Figure 10 shows that the
shape of the bubble after advection deviates notably from a true
sphere. In accordance with the increased errors in curvature,

the reconstruction based schemes show the most deviation.
Also, in this case the spurious currents no longer converge for
either method. This indicates that there is an additional error
that stems from the advection of the indicator function ϕ.

Since we are not aware of any numerical evaluation of
the FSLBM advection scheme, we supplement the Laplace
test with a convergence check of the indicator function
values. To this end, a gas bubble of diameter d = 10δx is
placed inside a periodic computational domain � with a
prescribed uniform velocity u0 = (0.05,0,0)T δx/δt . The LBM

48−1 96−1 144−1 192−1
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L
2
(κ

)

∼ δ1
x

∼ δ2
x

FD
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48−1 96−1 144−1 192−1
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V
(κ̄

)

FD
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(a) (b)

FIG. 8. Comparison of curvature estimation for a stationary bubble after 500 000 time steps. For the FD model, the included graphs are
somewhat arbitrary, because the values oscillate over time, analogously to the spurious currents in cf. Fig. 6. (a) The L2 norm of the curvature
error. Only the LSQR curvature error does converge in the test, with a rate of convergence in O(δ2

x). (b) Standard deviation of average curvature
values. The FD scheme has the largest standard deviation. Consecutively, the FD scheme generates the largest spurious currents.
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FIG. 9. L2 error in curvature for the three different surface tension
models for a moving frame of reference. Simulation of a spherical
bubble during traversal a periodic domain with uniform velocity. At
t = 0 the bubble is initialized to a nearly ideal (spherical) shape. Due
to errors in the advection operator and the surface tension models the
error increases and after t = 0.4 oscillates around a fixed value. The
FD scheme is less sensitive to errors in the fill levels, presumably
because it is more diffusive and based on the mollified indicator
function.

data are thus constant with f(x,t) = feq(pg/c
2
s ,u0), where pg

is the constant reference pressure. This excludes any error
contribution by the LBM or the surface tension modeling
to the indicator function ϕ. From the prescribed LBM data
we compute the advection of the bubble in terms of the
indicator function according to Eqs. (3a) and (3b). After a
time T = d/u0,x the bubble has moved a distance equal to its
diameter. To evaluate the error, we use the L1 and L2 error
norms by comparing the fill levels at time T to the initial
configuration t = 0, i.e.,

L1(ϕ) =
∑

x∈� |ϕ(x + T u0,T ) − ϕ(x,0)|∑
x∈� |ϕ(x,0)| , (15a)

L2(ϕ) =
√∑

x∈�[ϕ(x + T u0,T ) − ϕ(x,0)]2∑
x∈� ϕ(x,0)2

. (15b)

FIG. 10. Comparison of the shapes of the bubbles after advection
along x axis with surface tension. From left to right: FD, LSQR,
TR. Visualization shows the layer of interface cells in the x-y plane
through the center of the bubbles at time 0.94T (150 000 time steps).
The initial radius of the bubble was 24δx .

TABLE I. L1 and L2 errors in the indicator function ϕ due to
advection. The translation of a spherical bubble of diameter d over a
distance d in uniform velocity field (constant velocity u0 along x axis)
is evaluated for different time and grid spacings δt and δx . The test
case has been performed for both convective and diffusive scaling.

Convective Diffusive

d/δx δx δt u0,xδt /δx L1(ϕ) L2(ϕ) δt u0,xδt /δx L1(ϕ) L2(ϕ)

10 1 1 0.05 3.00% 9.38% 1 0.05 3.00% 9.38%
20 1/2 1/2 0.05 1.63% 7.19% 1/4 0.025 1.38% 6.17%
40 1/4 1/4 0.05 1.25% 7.38% 1/16 0.0125 0.85% 5.39%
80 1/8 1/8 0.05 1.17% 8.44% 1/64 0.00625 0.68% 5.87%

The test case is repeated with successively refined grid
spacing, under convective scaling (δt ∼ δx) and diffusive
scaling (δt ∼ δ2

x). The exact parametrizations and the resulting
errors are collected in Table I. Figure 11 shows dependency
of the respective errors on the lattice resolution. The indicated
convergence rate is below first order, independent of the used
scaling and error norm. This means that one cannot assert
first-order convergence with the present advection scheme in
a simple translation test.

With respect to the moving Laplace bubble test, the
increased error observed in Fig. 9 as compared to the static
one presented in Sec. III A 1, as well as the degenerated
bubble shapes after advection (cf. Fig. 10) suggests the
following explanation. Any errors in the indicator function
affect also the curvature computation, which explains the
temporal oscillation of the error as the bubble moves relative
to the grid (cf. Fig. 9). The reconstruction methods (TR and
LSQR) seem more sensitive to the advective errors than the
simpler FD scheme and hence are less stable in the dynamic
case. Even though the curvature estimates of LSQR and TR
are more accurate and effectively reduce spurious currents in
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FIG. 11. Dependency of L1 and L2 errors in the indicator function
ϕ on lattice resolution under convective and diffusive scaling (cf.
Table I). Test case consisted of a spherical bubble of diameter d is
advected over a distance d . The indicated order of convergence is
below 1.
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FIG. 12. Sessile droplet equilibrium on solid surface for various equilibrium contact angles θeq simulated with grid spacing δx = 1/96.
Deviation of numerical equilibrium from ideal equilibrium for FD and LSQR scheme. (a) The relative deviation of the simulated droplet height
h∗. (b) The relative deviation of contact line radius in the L2 norm and the standard deviation of r∗ computed over all contact line cells as a
measure for anisotropic artifacts.

the static benchmarks, the combination with the low-order
advection scheme is problematic.

B. Droplets on wetting boundaries

1. Equilibrium sessile droplets

Next, we evaluate the error at the contact line with
solid boundaries. We change the setup of Sec. III A to a
spherical cap shaped droplet, such that the initial state of the
droplet is close to the ideal equilibrium. The equilibrium is
a spherical cap resting on the wall, with a sphere radius R

related to the equilibrium contact angle θeq of the wall by
R = h/(1 − cos θeq). Given the volume of the droplet V , the
ideal equilibrium height of the droplet is

h = 3

√
V

π
(

1
1−cos θeq

− 1
3

) , (16)

and the ideal contact line radius r (base radius of the spherical
cap) is

r =
√

1

3

(
6V

πh
− h2

)
. (17)

The simulated height h∗ and contact line radius r∗ have to be
approximated from the indicator function, as

h∗ = max
x∈I

[xz + ϕ(x) − 0.5] (18a)

and

r∗ = 1

|Ic|
∑
x∈Ic

r̃(x), (18b)

where I denotes the set of interface nodes and I ⊃ Ic the set
of contact line nodes. Hereby, r̃ is the local approximation

r̃(x) = ‖x − xo‖ + [ϕ(x) − 0.5], (18c)

where xo is the ideal center of the circular contact line. This
approximation reflects that the nodes x ∈ I are the centers of
the corresponding interface cells. Furthermore, the error in the
contact line is evaluated using the L2 error definition,

L2(r) =
√∑

x∈Ic
[r − r̃(x)]2∑
x∈Ic

r2
. (19)

Error analysis. The error analysis involved the ideal
contact angles θeq = 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, and 150◦
at a constant resolution with δx = 1/96 and δt = 10−4. In all
cases, the droplet volume V was chosen equal to that of a
hemisphere of radius R = 0.125. Figure 12 shows the relative
errors in height of the droplet shape obtained in the simulations,
and the relative L2 error in the simulated contact line radius.
For the most extreme contact angles θeq, the droplet height and
contact line move away significantly from the initial (ideal)
equilibrium position, increasing the respective errors until the
numerical equilibrium is reached. Figure 12(b) also shows
the standard deviation in the measured contact line radius,
computed over all contact line cells. While the errors in the
contact line seem to be comparable in size, the higher values
in STDEV(r∗) obtained with the FD scheme indicate that the
simulated contact lines are more anisotropic than with the
LSQR scheme.

Convergence study. A convergence study was performed
for the selected equilibrium positions of θeq = 60◦, 90◦, and
120◦ by altering the grid spacing to δx = 1/48, 1/96, and
1/144 using diffusive scaling for the time step. Figure 13
compares the L2 errors obtained by the FD and the LSQR
schemes and shows that the LSQR error is generally smaller.
The error behavior in terms of grid dependency is somewhat
irregular for both schemes. However, at least for the LSQR
model, the convergence rate of the error appears to be
approximately first order. Since the construction of the contact
points described in Sec. II C exploits the linear approximation
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SIMON BOGNER, ULRICH RÜDE, AND JENS HARTING PHYSICAL REVIEW E 93, 043302 (2016)

48−1 96−1 144−1

10−2

10−1

grid spacing δx

L
2
(r

)

∼ δ1
x

θeq = 60◦

θeq = 90◦

θeq = 120◦

48−1 96−1 144−1

10−2

10−1

grid spacing δx

L
2
(r

)

θeq = 60◦

θeq = 90◦

θeq = 120◦

(a) (b)

FIG. 13. Grid convergence study of the L2 error in the simulated contact line radius; the FD approach and LSQR approach in comparison.
(a) FD scheme. (b) LSQR scheme.

of the reconstructed interface, the observed first-order error is
in accordance with the expected behavior.

2. Droplet spreading on wetting boundaries

Because of the limitations described in Sec. II D, for
extreme contact angles, θeq < 45◦ or θeq > 135◦, we focus
our study to a few dynamical cases. For the inertial regime
(low Ohnesorge number), a spherical droplet in contact with
an adhesive plane substrate will start to spread according to
the power law

r(t) ∼ t0.5, (20)

300 500 1000 2000 4000
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16
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O(t0.5)

time step t

ra
d
iu

s
r∗

[δ
x
]

FD, ν1

LSQR, ν1

FD, ν2

LSQR, ν2

FIG. 14. Contact line dynamics of the spreading droplet; com-
parison of simulations based on the FD scheme and the LSQR
scheme. The test case is repeated for two different viscosities,
ν1 = 3.322 26 × 10−3 and ν1 < ν2 = 1.661 13 × 10−2 (lattice units).
Both schemes tend to underestimate the ideal spreading law of
r(t) ∼ t0.5.

where r is the radius of the circular contact line [53]. A
numerical simulation of contact line dynamics requires the
accurate modeling of a slip condition to resolve the stress
singularities in the moving contact line. Furthermore, it is in
general not sufficient to work with a static contact angle model
that imposes the equilibrium contact angle θeq everywhere at
the contact line [54]. In the presented FSLBM, the interface
representation by volume fractions introduces a certain amount
of numerical slip that allows the free surface to move in the
contact line [55]. This numerical slip is related to the grid
spacing and does not necessarily recapture the correct physics.
We have not introduced a dynamic contact angle model.

We simulate the spreading of a droplet of radius R = 10
lattice units on a flat plate with ideal equilibrium contact angle
θeq = 85◦. The droplet is initialized as a sphere placed at a
distance of R from the solid boundary. Due to a discretization
effect, the simulated initial contact line has a positive radius
r > 0, such that the adhesive boundary condition can be
imposed in the contact line cells. The surface tension constant
is chosen σ = 4.3189 × 104 for a fluid of lattice reference
density ρ = 1.0 and kinematic viscosity ν of ν1 = 3.322 26 ×
10−3 (first run, τ = 0.509 967) and ν2 = 1.661 13 × 10−2

(second run, τ = 0.549 834). Figure 14 shows the contact
line radius of the simulation over time. Both the FD and
the LSQR model seem to recapture approximately Eq. (20),
however, with a smaller exponent <0.5. This is acceptable,
considering the low grid resolution and the static contact line
model. The power law obtained, r ∼ t0.35, seems similar to the
one reported in [56] for level set-based simulations.

IV. CONCLUSION

Three different ways to compute the interface curvature
from a VOF indicator function have been realized for com-
parison within a free surface LBM. A stationary Laplace
bubble benchmark shows that methods based on geometric
reconstruction (TR and LSQR, in the present study) can reach
a significantly higher accuracy than continuum surface force
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approaches that are based on finite-difference approximations.
In accordance with previous studies, reconstruction-based
methods significantly reduce the magnitude of spurious
currents. The LSQR approach shows a second-order rate of
convergence with respect to grid spacing, which could not be
achieved with the other two approaches.

For the generalized Laplace bubble test in a moving frame
of reference, a previous study [32] reports convergence of
errors, using a combination of higher-order advection scheme
and curvature reconstruction in a Navier-Stokes discretization.
This behavior could not be reproduced with the present
FSLBM. Our results indicate that this lack of convergence
is caused by the simplified advection of the indicator function
that does not take into account any geometry information.
In particular, the advection scheme fails to converge in a
simple uniform advection test, indicating a lower order of
accuracy than previously reported for simple reconstruction-
based schemes (typically first or second order, with SLIC-
or PLIC-based advection in Ref. [57]). Not surprisingly, the
method thus fails to converge in the Laplace benchmark
when conducted in a moving frame of reference including
advection of the interface. This means that a conclusion
drawn in Ref. [58] must be corrected: More accurate curvature
estimation does not necessarily improve the FSLBM in surface
tension-driven flows, since (asymptotically) the dominant error
is caused by the advection scheme. Furthermore, it turned out
that, in the moving case, the curvature estimation by FD is less
sensitive to errors introduced by the advection scheme than
the reconstruction-based approaches (LSQR and TR).

We have successfully extended the LSQR model to adhesive
boundaries and compared it to the FD model in several numeri-
cal test cases. The order of convergence decreases to one in the
presence of adhesive boundaries. However, for the stationary

case, the errors of the new approach are still significantly
smaller then those of obtained with the nonreconstructive FD
approach. In dynamic scenarios, like contact line spreading
on wetting surfaces, both models can recapture the basic
inertial power-law dynamics. However, similarly to the bulk
dynamic case, the error situation changes. Because the LSQR
method is more sensitive to errors stemming from the FSLBM
advection than the FD scheme, simulations do not profit from
the higher-order scheme.

We conclude that a major improvement to the FSLBM
would consist in a replacement of the advection scheme. VOF
advection based on geometric reconstruction is significantly
more complex and was, for this reason, excluded from the
present study. In principle, any known advection scheme for
VOF indicator functions [3,4] could be used to replace the
simplified advection scheme of the FSLBM [59]. Considering
that the simulation of surface tension according to the
presented TR and LSQR schemes is based on a PLIC scheme to
reconstruct the interface geometry, switching to a PLIC-based
VOF advection scheme would be a possible solution. A major
benefit in accuracy can be expected.
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