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Of the two approaches of density-functional theory molecular dynamics, quantum molecular dynamics is
limited at high temperature by computational cost whereas orbital-free molecular dynamics, based on an
approximation of the kinetic electronic free energy, can be implemented in this domain. In the case of deuterium,
it is shown how orbital-free molecular dynamics can be regarded as the limit of quantum molecular dynamics at
high temperature for the calculation of the equation of state. To this end, accurate quantum molecular dynamics
calculations are performed up to 20 eV at mass densities as low as 0.5 g/cm3 and up to 10 eV at mass densities
as low as 0.2 g/cm3. As a result, the limitation in temperature so far attributed to quantum molecular dynamics
is overcome and an approach combining quantum and orbital-free molecular dynamics is used to construct an
equation of state of deuterium. The thermodynamic domain addressed is that of the fluid phase above 1 eV
and 0.2 g/cm3. Both pressure and internal energy are calculated as functions of temperature and mass density,
and various exchange-correlation contributions are compared. The generalized gradient approximation of the
exchange-correlation functional, corrected to approximately include the influence of temperature, is retained
and the results obtained are compared to other approaches and to experimental shock data; in parts of the
thermodynamic domain addressed, these results significantly differ from those obtained in other first-principles
investigations which themselves disagree. The equations of state of hydrogen and tritium above 1 eV and above,
respectively, 0.1 g/cm3 and 0.3 g/cm3, can be simply obtained by mass density scaling from the results found
for deuterium. This ab initio approach allows one to consistently cover a very large domain of temperature on
the domain of mass density outlined above.
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I. INTRODUCTION

Hydrogen, the most abundant element in the universe, has
an obvious interest for models of stellar and planetary interiors.
Its isotopes, deuterium and tritium, play a central role in
inertial confinement fusion where they are used as targets;
in this case, the thermodynamic domain of interest covers
densities ranging from 0.1 to 1000 g/cm3 and from a few
electronvolts to several hundred electronvolts, as noted by Hu
et al. [1]. In the context of these applications, the equation of
state (EOS) that determines pressure and internal energy as a
function of mass density and temperature is an important part
of the modeling. Until recently, the EOSs of hydrogen and of
its isotopes have been based on chemical models [2–5] that
describe the system in terms of well-defined chemical species
interacting through pairwise potentials; the difficulty with such
models is that, in the thermodynamic domain of interest, there
is no clear definition of the chemical species present. Then, in
order to use a reliable approach, it is necessary to implement
ab initio calculations in which a system is regarded as a
mixture of electrons and nuclei interacting through Coulombic
interactions.

Among the ab initio approaches already applied to hy-
drogen, coupled electron-ion Monte Carlo (CEIMC), which
assumes electrons to be in their ground state, has been used
below 1 eV at densities of the order of 1 g/cm3 [6]. In
another ab initio approach applied to hydrogen and deuterium,
path integral Monte Carlo (PIMC), electrons and ions are
treated on the same footing and the quantum effects of
both species are taken into account [1,7–9]. PIMC loses
its efficiency at low temperature, typically below one-tenth
of the Fermi temperature [1]. A third ab initio approach,

quantum molecular dynamics (QMD), has also been applied
to hydrogen and deuterium [10–15]. This approach combines
classical molecular dynamics for nuclei [16] and density-
functional theory for electrons [17–20]. It is the version of
density-functional theory molecular dynamics (DFT-MD) that
implements a quantum treatment of electrons; as a result, apart
from general hypotheses, the only approximation involved in
QMD lies in the choice of the exchange-correlation functional.

Because of the Fermi-Dirac distribution of the electronic
quantum states involved in QMD, its application has been
restricted to low temperatures. As PIMC simulations become
increasingly accurate as temperature increases, Caillabet
et al. [15] have supplemented QMD results, obtained by
themselves below 0.9 eV, with PIMC results in order to
construct an EOS of the fluid phase of hydrogen up to
10 eV in the density range 0.2–5 g/cm3. In the same spirit,
QMD and PIMC are combined in Refs. [21] and [22] to
provide a first-principles investigation of warm dense plasmas
of carbon and neon.

It is possible to avoid the QMD limitation in the high-
temperature regime by approximating the kinetic electronic
free energy per unit volume by a function of the local
electronic density and possibly of its gradient [20,23]. As
electronic orbitals are no longer involved, the approach is
called orbital-free molecular dynamics; it is another version
of DFT-MD that is less computationally expensive than QMD.
The approach without gradient correction is hereafter denoted
OFMD, and the approach with the gradient correction is
hereafter denoted OFWMD (with W standing for Weizsäcker).
For the EOS of a boron plasma at densities of the order
of the normal density, we have recently shown [24] that,
as temperature increases at given density, OFWMD is the
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limit of QMD apart from shell effects that can be taken into
account with a fcc lattice of nuclei or with an average-atom
model [25–28]. As a result, we have obtained a method
reproducing QMD results up to high temperatures where QMD
cannot be directly implemented [24]. The approach has been
successfully extended to an element with a high atomic number
such as lutetium [29].

The approach of Refs. [24] and [29] allows one to produce
results at temperatures that are not accessible with CEIMC,
because these temperatures are too high, or with PIMC,
because they are too low. The purpose of the present paper is to
include this approach in the construction of an EOS of warm
dense deuterium and its isotopes in a large thermodynamic
domain. This domain is that of the fluid phase above 1 eV
and above 0.1 g/cm3 for hydrogen, 0.2 g/cm3 for deuterium,
and 0.3 g/cm3 for tritium. It can be noted that the DFT-MD
results for EOSs of isotopes are connected through a mass
density scaling described by Caillabet et al. [15]; as a result,
it is sufficient for our purpose to construct a table for only
one of the isotopes of H. We choose to focus on deuterium
because of the abundance of PIMC data [1,7] that can be used
for comparison.

The paper is organized as follows. Section II describes
the QMD and orbital-free molecular dynamics formalisms.
In Sec. III, the approach of Refs. [24] and [29] is applied
to warm dense deuterium, discussed, and its sensitivity
to exchange correlation is tested. The results obtained are
compared to other EOSs of the literature and to shock
experiments in Sec. IV. Section V presents our conclusions.
Atomic units are used unless otherwise stated. The quantum
average-atom calculations are performed with the VAAQP code
that implements several average-atom modeling options [27].
All molecular dynamics simulations are performed with the
electronic structure package ABINIT [30–32]. The calculations
presented include QMD simulations at low mass density
and high temperature that have been made possible by the
parallelization efforts devoted to ABINIT [33].

II. FORMALISM AND COMPUTATIONAL DETAILS

The system is constructed by replication of a finite sample
of N atoms in a basic cubic reference cell [16]. The nuclei are
assumed to obey Boltzmann statistics [34]. In a given arrange-
ment, they are subject to forces computed from the electronic
density n(r) by the Hellmann-Feynman theorem [20]. The
electronic density is assumed to instantaneously adjust to the
displacement of nuclei (Born-Oppenheimer approximation)
and, according to density-functional theory [20], n(r) at
thermodynamic equilibrium is obtained by minimizing the
electronic free energy Fe under the constraint of charge
neutrality. At given volume V and temperature T , Fe is a
functional of n(r) equal to

Fe[n(r)] = F0[n(r)] + Fxc[n(r)] + 1

2

∫
V

∫
V

n(r)n(r′)
|r − r′| dr dr′

+
∫

V

n(r)v(r) dr, (1)

where F0[n(r)] is the free energy of a gas of noninteracting
electrons with electronic density n(r) in V at T , Fxc[n(r)] is

the exchange-correlation contribution to the free energy in V

at T , and v(r) is the external potential acting on electrons (in
the present case, it is due to nuclei).

At each time step, for a given arrangement of nuclei, n(r)
and the forces acting on them are computed and they are moved
in the isokinetic ensemble [35,36] so that temperature can be
regarded as exactly known. The statistical error is evaluated as
indicated in Refs. [16] and [37].

A. Orbital-free molecular dynamics

In orbital-free molecular dynamics F0[n(r)] is assumed to
be expressed by

F0[n(r)] =
∫

V

F0(n) dr +
∫

V

h(n)
|∇n|2

n
dr, (2)

where n in the integrals stands for n(r) and F0(n) is the
free energy per unit volume of a homogeneous gas of
noninteracting electrons of density n at temperature T [23].
h(n) is a function of n implicitly depending on T in the
OFWMD method [23] or is equal to 0 in the OFMD method.

The divergence of the electronic density in the vicinity
of nuclei is suppressed by replacing the Coulombic electron-
nucleus interaction by a regularized potential constructed,
in the framework of the average-atom model, as explained
in Refs. [38] and [39]. All parameters are determined by a
systematic search of numerical convergence, within statistical
error, of pressure and internal energy. The rules of thumb
given in Ref. [40] have been used to choose the time
step and the cutoff energy. All computations have been
performed with N = 32 nuclei and nstep = 2000 time steps
(after thermal equilibration) that we have found sufficient
to ensure convergence for deuterium in the thermodynamic
domain considered. In the calculation of the stress tensor [41],
the kinetic term is simplified in the Thomas-Fermi framework,
and the contribution of the gradient correction is treated as
indicated by Dal Corso and Resta [42].

B. Quantum molecular dynamics

In QMD, the only difference with orbital-free molecular
dynamics lies in the fully quantum approach of F0[n(r)]; this
approach allows an exact treatment of the inhomogeneity of
n(r). The free energy F0[n(r)] of a gas of noninteracting
electrons is obtained by using finite-temperature density-
functional theory [17–19]; at each time step, for a given
arrangement of nuclei, the electronic density is searched as
a decomposition in terms of one-electron orbitals [17–20]

n(r) =
∑
i,k

fi,k|�i,k(r)|2, (3)

where i is an integer index designating a band, k designates
a k point [43], fi,k is an occupation number determined
by a Fermi-Dirac distribution, and the �i,k are one-electron
orbitals.

The electron-ion interaction is represented by a pseudopo-
tential in the PAW formalism [44,45]. A pseudopotential is
characterized by numerical parameters that must be included
in the tests of numerical convergence. The augmentation radius
r

PAW
in particular must be chosen sufficiently small that the
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spheres of radius r
PAW

centered on nuclei do not overlap sig-
nificantly during a simulation. Pseudopotentials are generated
with the code ATOMPAW [46]. A norm-conserving Troullier-
Martins scheme is used to construct a local pseudopotential
from the all-electron effective potential and Blöchl’s scheme
is used to generate pseudo partial waves and associated
projectors [46]. For a given arrangement of nuclei, the stress
tensor is obtained as the derivative of the total free energy with
respect to strain, as explained in Ref. [45].

All numerical parameters are determined by a systematic
search of numerical convergence, within statistical error, of
pressure and internal energy. In view of the relative smallness
of the statistical error, this criterion of numerical convergence
is demanding on the parameters to be used. For deuterium in
the thermodynamic domain considered, the time step found for
orbital-free molecular dynamics, as well as N = 32, nstep =
2000, and r

PAW
= 0.35 a.u. (atomic units), has been found

sufficient to ensure convergence.

III. CALCULATION OF THE EOS OF DEUTERIUM
UP TO HIGH TEMPERATURE

We first compare the electronic pressures, defined as those
calculated for a fcc lattice of nuclei in the quantum approach
and as those calculated in the average-atom (AA) model [23]
in the orbital-free approach. Then we show how the QMD
EOS tends to the orbital-free EOS at high temperature along
isochores, and we test the sensitivity of the EOS constructed
to exchange correlation. For the calculations presented in
Secs. III A and III B, the exchange-correlation contribution,
denoted LDA (standing for local-density approximation), is
taken equal to the sum of the exchange energy per unit volume
of a gas of electrons at T = 0 K [20] and of the correlation
energy per unit volume of an unpolarized gas of electrons
proposed by Perdew and Wang [47].

A. Comparison of quantum and orbital-free
electronic pressures

We define the electronic pressure in the orbital-free ap-
proach as the average-atom pressure [23]. In the thermo-
dynamic domain considered, for the orbital-free approach,
the relative difference between the AA and fcc pressures
of deuterium is about 1% at the lowest temperature and
mass density, and decreases as temperature and mass density
increase, to less than 0.2% above 5 eV; incidentally, it
can be noted that the Thomas-Fermi ion-in-cell model was
proposed as an approximate treatment of electrons in a periodic
lattice [48] before being applied to the nonperiodic plasma
case [49]. In view of our definition of the electronic pressure
in the orbital-free approach, the above result leads us to
define the electronic pressure in the quantum approach as
the fcc pressure. Then comparing the electronic pressures
amounts to comparing the quantum and orbital-free pressures
obtained with a given arrangement of nuclei, namely, a
fcc lattice; the present section aims at this comparison.
Apart from involving a single time step, the fcc lattice
has the advantage of having symmetry properties and of
being characterized by only N = 4 atoms; the resulting gain
in computation time allows one to carry out the quantum
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FIG. 1. Relative differences between the pressures PQFCC , PVAAQP ,
PINFERNO , POFAA , and POFWAA , with the latter taken as the reference,
at (a) 0.2 g/cm3, (b) 2.5 g/cm3, and (c) 20 g/cm3 for deuterium.
The results have been obtained with the LDA exchange-correlation
functional.

approach and the comparison of electronic pressures at higher
temperature.

In the following, electronic pressures are denoted OFAA for
the orbital-free approach without gradient correction, OFWAA
for the orbital-free approach with the gradient correction,
and QFCC for the fcc pressure obtained with the quantum
approach. The electronic pressures POFAA , POFWAA , and PQFCC

of deuterium are compared along the isochores 0.2, 2.5, and
20 g/cm3 in Fig. 1. The domain of temperature where PQFCC can
be calculated increases when mass density increases, as fewer
bands are then necessary; here, PQFCC is calculated up to 70 eV
at 0.2 g/cm3, up to 100 eV at 2.5 g/cm3, and up to 200 eV at
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20 g/cm3. As a result of extensive tests of numerical
convergence, the electronic pressures are obtained with an
accuracy better than 0.1%.

As already found for boron [24] and lutetium [29], POFWAA

is overall in better agreement with PQFCC than POFAA because it
includes the gradient correction to the local-density approxi-
mation of F0. As temperature increases at given mass density,
kinetic energy tends to prevail over potential energy so that the
electronic density tends to get more homogeneous, thereby
decreasing the impact of the local-density approximation of
F0. As a result, PQFCC converges to POFWAA which, in its turn,
converges to POFAA . As observed in Ref. [24], the convergence
of PQFCC to POFWAA is not monotonic but oscillatory due to shell
effects. However, contrary to the case of boron, there is only
one oscillation for deuterium. As mass density increases, the
relative magnitude of this oscillation decreases from 7.3%
at 0.2 g/cm3 to 1.2% at 20 g/cm3. This observation stems
again from the fact that, as mass density increases, kinetic
energy tends to prevail over potential energy. For the same
reason, POFAA and POFWAA get closer overall when mass density
increases. The temperature of convergence of the various
electronic pressures to one another increases when mass
density increases; for instance, the convergence of PQFCC to
POFWAA is obtained at about 50 eV at 0.2 g/cm3, 100 eV at
2.5 g/cm3, and 200 eV at 20 g/cm3. As already found for
boron [24] and lutetium [29], the proximity of POFAA and POFWAA

is a good indicator of the proximity of POFWAA and PQFCC at given
mass density.

We now consider the domain ρ � 20 g/cm3. At 20 g/cm3,
the maximal relative difference between POFWAA and PQFCC in
the domain T � 1 eV is only 1.2%. As observed in Fig. 1,
this maximal relative difference decreases when mass density
increases. Therefore, above 20 g/cm3, it is possible to replace
PQFCC with POFWAA if one accepts a relative error less than 1.2%.
Finally, in the domain 0.2–20 g/cm3, it is possible to use POFWAA

to extend PQFCC at high temperature and, above 20 g/cm3, it is
possible to use POFWAA to reproduce PQFCC on the whole domain
T � 1 eV.

In Refs. [24] and [29], the nonrelativistic quantum versions
of the all-electron average-atom models VAAQP [25–27] and
INFERNO T [28] have been found useful to extend PQFCC

at high temperature in the cases of boron and lutetium.
The subscripts VAAQP and INFERNO are used hereafter to
designate the pressures of deuterium obtained with these two
models and presented in Fig. 1. PINFERNO is greater than PVAAQP

and PQFCC . As temperature increases at given mass density,
PVAAQP and PINFERNO converge to PQFCC and to POFWAA ; PVAAQP

converges to PQFCC much faster than PINFERNO . The temperature
of convergence increases when mass density increases. As
observed for PQFCC , the convergence to POFWAA is oscillatory
with only one oscillation whose relative magnitude decreases
when mass density increases. PVAAQP converges to PQFCC before
PQFCC converges to POFWAA ; it can therefore also be used to extend
PQFCC at high temperature below 20 g/cm3. At 20 g/cm3, the
maximal relative difference between PQFCC and PVAAQP is 0.6%
in the domain T � 1 eV; as this maximal relative difference
decreases when mass density increases, it is possible to replace
PQFCC with PVAAQP above 20 g/cm3 if one accepts a relative error
less than 0.6%.

The difference between the VAAQP, QFCC, and INFERNO
models lies in the boundary conditions they use. QFCC
is a rigorous periodic Wigner-Seitz (WS) cell model; it
corresponds to the physical picture of an atom that is part
of a fcc crystal. INFERNO is a spherical ion-in-cell plasma
model in which an atom is viewed as a neutral WS sphere
surrounded by a homogeneous electron gas neutralized by a
uniform ion background. The idea of the spherical ion-in-cell
model first appeared in the framework of the quasiclassical
Thomas-Fermi model [48] as an approximation to the poly-
hedral WS cell of solid-state physics. In the framework of
quantum mechanics, such a model includes an approximation
on the equations of density-functional theory, which results
in thermodynamic inconsistency. In the VAAQP model, the
plasma free energy is approximated by using a first-order
cluster expansion [50], which leads to the notion of an
atom-in-plasma. The self-consistent field equations stem from
a rigorous minimization of this plasma free energy under
the constraint of overall charge neutrality. The model allows
one to use rigorous thermodynamic definitions to calculate
thermodynamic quantities, including pressure, and fulfills the
virial theorem. A naive point of view would be that the
INFERNO model is closer to a periodic cell model than
VAAQP because it sticks in some way with the neutral WS
cell hypothesis. The fact that PVAAQP is generally closer to PQFCC

than PINFERNO suggests, however, that the effect on pressure of
the lack of thermodynamic consistency is larger than the effect
of considering such different physical pictures as an atom in a
crystal and an atom in a plasma.

In the rest of this work, the numerical results presented
are obtained in the domain 0.2–20 g/cm3. When necessary,
the QFCC results are extended at high temperature with the
OFWAA results; the notation QAA is henceforth used to
designate QFCC extended with OFWAA.

B. Calculation of pressure and internal energy of deuterium

1. Ionic excess pressure

The two approaches OFMD and OFWMD do not imple-
ment a quantum treatment of F0[n(r)] contrary to QMD,
which is thereby the reference to be reproduced. Comparing
the electronic pressures PQFCC , POFAA , and POFWAA amounts
to comparing QMD, OFMD, and OFWMD applied to the
calculation of the pressure obtained, in a single time step, with
a fcc lattice of nuclei. As POFWAA is overall in better agreement
with PQFCC than POFAA , we now focus on the comparison of the
total pressures PQMD and POFWMD , respectively, obtained with
QMD and OFWMD. As above, the LDA exchange-correlation
functional is used.

In the limit of high temperature, the total pressure is
expected to be the sum of the electronic pressure and of the
kinetic pressure due to classical nuclei. The gap to this situation
is measured by the ionic excess pressure that we define as

δP
i,αMD

(ρ,T ) = P
αMD

(ρ,T ) − P
αAA

(ρ,T ) − P
iK

(ρ,T ), (4)

where α = Q or OFW, and where P
iK

is the kinetic pressure
due to classical nuclei, that is P

iK
= ρkT /m, where k is the

Boltzmann constant and m is the mass of an atom.
By construction, the ionic excess pressure characterizes the

possibility of calculating an EOS with P
αAA

and P
iK

only, that is,
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FIG. 2. Ionic excess pressure of deuterium, calculated with QMD or OFWMD, at the mass densities (a) 0.2 g/cm3, (b) 0.5 g/cm3, (c)
1 g/cm3, (d) 2.5 g/cm3, (e) 8 g/cm3, and (f) 20 g/cm3. The simulations have been performed with the LDA exchange-correlation functional.

without having to perform a molecular dynamics simulation.
Another interest of this quantity is that the equality of δP

i,QMD

and δP
i,OFWMD indicates that the difference PQMD − POFWMD is

equal to the difference PQAA − POFWAA ; then, as POFWMD , POFWAA ,
and PQAA can be calculated at high temperature, PQMD can
also be calculated at high temperature without proceeding to
a direct QMD simulation. In this section we show that for
deuterium above 0.2 g/cm3, it is possible to carry out QMD
calculations at sufficiently high temperature to observe the
convergence of δP

i,QMD to δP
i,OFWMD so that, as explained above,

the QMD results can be reproduced at high temperature.
The variation of δP

i,QMD and δP
i,OFWMD with temperature

along various isochores in the domain 0.2–20 g/cm3 is
presented in Fig. 2. Below 1 g/cm3, the change of curvature
of δP

i,QMD (T ) is connected to PQFCC getting negative at 1 eV.

In the domain 0.5–20 g/cm3, as temperature increases, the
convergence of δP

i,QMD to δP
i,OFWMD occurs within statistical

error at T = 20 eV or less. That this expected convergence
can be observed within a statistical error that is small in
relative terms (typically a few tenths of a percent of the
total pressure) is an indication that, for both QMD and
OFWMD, numerical convergence has been obtained properly.
The variation of δP

i,QMD/PQMD with mass density along the
isotherms 1, 5, 10, and 20 eV is presented in Fig. 3. It
appears that at the thermodynamic conditions where δP

i,QMD

gets close to δP
i,OFWMD , the ionic excess pressure is at least an

order of magnitude smaller than the total pressure; therefore
comparing the ionic excess pressures δP

i,QMD and δP
i,OFWMD

allows one to finely observe the convergence of PQMD to
(POFWMD − POFWAA + PQAA ) as T increases at given ρ. Figure 3
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FIG. 3. Ratio of ionic excess pressure to total pressure of
deuterium at T = 1, 5, 10, and 20 eV in the domain 0.2–20 g/cm3.
The simulations have been performed with QMD and the LDA
exchange-correlation functional. The error bars are not displayed
when they are smaller than the character size.

also shows that as mass density increases along an isotherm,
δP

i,QMD/PQMD first increases then decreases; the maximum is
obtained at a mass density that increases with temperature.
Moreover, there are thermodynamic conditions in which the
ionic excess pressure is small so that molecular dynamics is
not necessary; this is the case above 10 eV at 0.2 g/cm3, for
instance, if one accepts to evaluate the total pressure with an
accuracy of 1%.

At 0.2 g/cm3, the highest temperature at which PQMD has
been calculated is 10 eV. Figure 2 shows that at this mass
density and at T = 10 eV, δP

i,QMD and δP
i,OFWMD differ by a

few standard deviations so that the convergence of δP
i,QMD

to δP
i,OFWMD is not strictly obtained. At 20 eV, however, it

can be considered as obtained, because as shown in Fig. 3
by extrapolation, above 10 eV at this mass density, the ionic
excess pressure has a small relative contribution that decreases
as temperature increases; as a result, replacing δP

i,QMD by
δP

i,OFWMD has little influence on the result. Thus we will see
later on that at 10 eV and 0.2 g/cm3, replacing δP

i,QMD by
δP

i,OFWMD in the calculation of PQMD by Eq. (4) induces a
relative difference of 0.5%; as the relative contribution of the
ionic excess pressure decreases when temperature increases at
0.2 g/cm3, this substitution will induce a still smaller relative
difference at 20 eV. Finally, in the whole domain 0.2–20 g/cm3,
δP

i,QMD converges to δP
i,OFWMD at 20 eV or less.

We now consider the domain ρ � 20 g/cm3. At 20 g/cm3,
the equality of δP

i,QMD and δP
i,OFWMD is verified within statistical

error at 5, 10, and 20 eV. At 20 g/cm3 and 1 eV, it appears
in Fig. 3 that δP

i,QMD is less than 3% of PQMD so that, again,
replacing δP

i,QMD by δP
i,OFWMD has little influence on the value

of PQMD . We will see later on that at 20 g/cm3 and 1 eV,
the difference between δP

i,QMD and δP
i,OFWMD induces a relative

difference of only 0.2% in the calculation of PQMD by Eq. (4);
as a result, we can regard δP

i,QMD and δP
i,OFWMD as equal in the

whole range 1–20 eV. Since Fig. 2 shows that δP
i,QMD tends

to δP
i,OFWMD as ρ increases at given T and as T increases at

given ρ, the equality of δP
i,QMD and δP

i,OFWMD at 20 g/cm3 in the
domain 1–20 eV implies their equality in the domain ρ � 20

g/cm3 and T � 1 eV. Finally, the convergence of δP
i,QMD to

δP
i,OFWMD as temperature increases is observed in the whole

domain ρ � 0.2 g/cm3 and T � 1 eV.

2. Ionic internal energy

In order to obtain a complete EOS, one must also calculate
the internal energy at given ρ and T . In this section, we show
that as in the case of pressure, it is possible to reproduce the
internal energy calculated by QMD at high temperature. The
internal energies per atom are hereafter designated by the letter
E, and the notations used are similar to those used for pressure.
In order to compare internal energies regardless of the origin
of energies, we consider a difference of energies and therefore
define the ionic internal energy per atom E

i,αMD
by

E
i,αMD

(ρ,T ) = E
αMD

(ρ,T ) − E
αAA

(ρ,T ), (5)

where α = Q, or OFW .
In this section, we show that as in the case of pressure,

E
i,QMD converges to E

i,OFWMD as temperature increases at given
mass density. This convergence is indeed observed in Fig. 4 at
or below 20 eV in the domain 0.2–20 g/cm3. As a result, as
EOFWMD , EOFWAA , and EQAA can be calculated at high temperature,
EQMD can be reproduced at high temperature in the domain 0.2–
20 g/cm3 by replacing E

i,QMD with E
i,OFWMD in Eq. (5). Figure 4

also shows that E
i,QMD/kT converges to E

i,OFWMD/kT as mass
density increases at given temperature. With the axes chosen
in Fig. 4, the curvature of the curves representing E

i,QMD/kT as
a function of T changes below 1 g/cm3. Note that a change of
curvature of δP

i,QMD (T ) has also been observed below 1 g/cm3

in Fig. 2; again, this corresponds to PQFCC getting negative at
1 eV. As expected, in the limit of high temperature, E

i,OFWMD

tends to the internal energy per atom of a monatomic classical
perfect gas, that is, E

iK
= 1.5kT .

We now consider the domain ρ � 20 g/cm3. E
i,QMD and

E
i,OFWMD can be regarded as equal at 20 g/cm3 in the range

1–20 eV; indeed, the variations of internal energy between
consecutive states obtained in this domain with QMD and with
OFWMD are equal within statistical error. Moreover, again in
terms of variation with respect to T , E

i,QMD tends to E
i,OFWMD

as ρ increases at given T and as T increases at given ρ; one
interest of representing E

i,αMD
/kT instead of E

i,αMD
in Fig. 4 is

to better illustrate this result. Consequently, as in the case of
pressure, the equality of E

i,QMD and E
i,OFWMD at 20 g/cm3 in the

domain 1–20 eV implies their equality in the domain T � 1
eV and ρ � 20 g/cm3. Finally, as in the case of pressure, the
convergence of E

i,QMD to E
i,OFWMD as temperature increases is

observed in the domain ρ � 0.2 g/cm3 and T � 1 eV.

3. An extension of QMD at high temperature: OFWHMD

The convergence of δP
i,QMD to δP

i,OFWMD as T increases at
given ρ is equivalent to the convergence of PQMD to POFWHMD ,
defined by

POFWHMD (ρ,T ) = POFWMD (ρ,T ) − δP
e
(ρ,T ), (6)

δP
e
(ρ,T ) = POFWAA (ρ,T ) − PQAA (ρ,T ), (7)

where the letter H in OFWHMD stands for hybrid as both
the orbital-free and quantum approaches are involved in the
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FIG. 4. Ratio of the ionic internal energy per atom of deuterium, calculated with QMD or OFWMD, to E
iK

= 1.5kT at the mass densities
(a) 0.2 g/cm3, (b) 0.5 g/cm3, (c) 1 g/cm3, (d) 2.5 g/cm3, (e) 8 g/cm3, and (f) 20 g/cm3. k designates the Boltzmann constant. The simulations
have been performed with the LDA exchange-correlation functional.

definition. Like POFWMD , POFWAA , and PQAA , POFWHMD can be
calculated at high temperature. The convergence of E

i,QMD to
E

i,OFWMD discussed above is equivalent to the convergence of
EQMD to EOFWHMD , with EOFWHMD defined similarly to POFWHMD .
In view of their definitions, POFWHMD and EOFWHMD verify
thermodynamic self-consistence.

In Refs. [24] and [29], defining POFWHMD has allowed us
to observe a monotonic convergence of PQMD to POFWHMD for
boron and lutetium as T increases at given ρ. We show that
this is also the case here for deuterium, as illustrated in Table I
and in Fig. 5; no orbital-free simulation has been performed
below 3 eV and 0.8 g/cm3 because the gradient correction
gets so large that the orbital-free approach, that treats the
inhomogeneity of the electronic density approximately, is no

longer meaningful. As a result of the monotonic convergence,
PQMD converges faster to POFWHMD than to POFWMD (to which the
convergence of PQMD is oscillatory); this result appears more
clearly at low density, for instance in Table I at 0.5 g/cm3. As
noted in Sec. B 1, Table I indicates that PQMD and POFWHMD differ
by 0.5% at 0.2 g/cm3 and 10 eV and by 0.2% at 20 g/cm3 and
1 eV.

4. A reproduction of QMD at any temperature: QOFWH

We have defined the OFWHMD pressure and internal
energy that reproduce the QMD results at any tempera-
ture greater than 20 eV in the domain ρ � 0.2 g/cm3

for deuterium. Below 20 eV, QMD simulations are avail-
able. It is therefore possible to reproduce the QMD
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TABLE I. Total pressure of deuterium calculated with OFWMD, OFWHMD, and QMD. The standard deviations are indicated in
parentheses. The simulations have been performed with the LDA exchange correlation. No OFWMD simulation has been performed at
1 eV below 0.8 g/cm3 because the gradient correction gets so large that orbital-free simulations, that treat the inhomogeneity of the electronic
density approximately, are no longer meaningful.

Total pressure (Mbar)

ρ (g/cm3) T (eV) OFWMD OFWHMD QMD

0.2 1 0.0676 (6.8[–4])
5 0.6671 (5.6[–4]) 0.6609 (5.6[–4]) 0.6468 (5.9[–4])
10 1.5153 (7.3[–4]) 1.5540 (7.3[–4]) 1.5460 (5.0[–4])
20 3.405 (1.0[–3]) 3.460 (1.0[–3])
30 5.375 (1.3[–3]) 5.393 (1.3[–3])
40 7.322 (1.4[–3]) 7.331 (1.4[–3])
50 9.251 (2.6[–3]) 9.256 (2.6[–3])
100 18.879 (5.3[–3]) 18.879 (5.3[–3])

0.3 1 0.1094 (9.7[–4])
5 1.006 (1.2[–3]) 0.990 (1.2[–3]) 0.975 (1.2[–3])
10 2.261 (1.2[–3]) 2.311 (1.2[–3]) 2.297 (1.1[–3])
20 5.050 (1.3[–3]) 5.140 (1.3[–3])
30 7.987 (2.0[–3]) 8.026 (2.0[–3])
40 10.907 (2.4[–3]) 10.926 (2.4[–3])
50 13.812 (3.7[–3]) 13.824 (3.7[–3])
100 28.256 (4.1[–3]) 28.256 (4.1[-3])

0.5 1 0.238 (2.4[–3])
5 1.736 (2.0[–3]) 1.692 (2.0[–3]) 1.666 (2.4[–3])
10 3.785 (2.2[–3]) 3.851 (2.2[–3]) 3.818 (2.8[–3])
20 8.333 (2.8[–3]) 8.492 (2.8[–3]) 8.487 (3.9[–3])
30 13.151 (3.2[–3]) 13.251 (3.2[–3])
40 18.023 (5.1[–3]) 18.071 (5.1[–3])
50 22.868 (4.7[–3]) 22.898 (4.7[–3])
100 46.924 (7.2[-3]) 46.934 (7.2[–3])

0.8 1 0.540 (3.4[–3])
5 2.949 (4.8[–3]) 2.848 (4.8[–3]) 2.816 (5.1[–3])
10 6.160 (5.6[–3]) 6.234 (5.6[–3]) 6.181 (5.8[–3])
20 13.281 (5.2[–3]) 13.534 (5.2[–3]) 13.521 (7.9[–3])
30 20.862 (6.8[–3]) 21.074 (6.8[–3])
40 28.620 (8.4[–3]) 28.731 (8.4[–3])
50 36.365 (8.4[–3]) 36.436 (8.4[–3])
100 74.84 (1.1[–2]) 74.86 (1.1[–2])

1 1 1.090 (2.4[–3]) 0.679 (2.4[–3]) 0.830 (3.9[–3])
5 3.858 (7.6[–3]) 3.711 (7.6[–3]) 3.673 (7.2[–3])
10 7.805 (6.8[–3]) 7.877 (6.8[–3]) 7.816 (9.3[–3])
20 16.611 (8.5[–3]) 16.923 (8.5[–3]) 16.92 (9.9[–3])
30 26.031 (7.6[–3]) 26.323 (7.6[–3])
40 35.661 (8.8[–3]) 35.832 (8.8[–3])
50 45.31 (1.3[–2]) 45.42 (1.3[–2])
100 93.49 (2.5[–2]) 93.52 (2.5[–2])

1.6 1 2.573 (4.5[–3]) 1.931 (4.5[–3]) 2.167 (5.9[–3])
5 6.97 (1.4[–2]) 6.66 (1.4[–2]) 6.66 (1.7[-2])
10 13.10 (1.3[–2]) 13.14 (1.3[–2]) 13.09 (1.6[–2])
20 26.87 (1.7[–2]) 27.33 (1.7[–2]) 27.27 (1.4[–2])
30 41.60 (1.7[–2]) 42.13 (1.7[–2])
40 56.85 (1.7[–2]) 57.24 (1.7[–2])
50 72.20 (2.0[–2]) 72.45 (2.0[–2])
100 149.12 (3.6[–2]) 149.20 (3.6[–2])

2.5 1 5.974 (7.4[–3]) 5.046 (7.4[–3]) 5.354 (9.4[–3])
5 12.79 (2.2[–2]) 12.23 (2.2[–2]) 12.30 (2.5[–2])
10 22.19 (3.2[–2]) 22.12 (3.2[–2]) 22.03 (5.5[–2])
20 43.08 (3.9[–2]) 43.71 (3.9[–2]) 43.56 (3.1[–2])
30 65.53 (3.2[–2]) 66.40 (3.2[–2])
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TABLE I. (Continued.)

Total pressure (Mbar)

ρ (g/cm3) T (eV) OFWMD OFWHMD QMD

40 88.96 (4.1[–2]) 89.71 (4.1[–2])
50 112.69 (4.5[−2]) 113.24 (4.5[−2])

100 232.38 (4.8[−2]) 232.55 (4.8[−2])

5 1 22.45 (1.7[−2]) 20.93 (1.7[−2]) 21.40 (1.8[−2])
5 35.80 (5.1[−2]) 34.62 (5.1[−2]) 34.94 (5.1[−2])

10 53.64 (8.3[−2]) 53.15 (8.3[−2]) 53.10 (8.1[−2])
20 93.21 (7.8[−2]) 94.04 (7.8[−2]) 93.69 (7.8[−2])
30 136.28 (8.2[−2]) 137.87 (8.2[−2])
40 181.60 (8.4[−2]) 183.38 (8.4[−2])
50 227.7 (1.1[−1]) 229.3 (1.1[−1])
100 464.5 (1.2[−1]) 465.2 (1.2[−1])

8 1 54.61 (2.0[−2]) 52.57 (2.0[−2]) 53.06 (2.3[−2])
5 75.55 (7.1[−2]) 73.84 (7.1[−2]) 74.38 (9.1[−2])

10 103.3 (1.2[−1]) 102.3 (1.2[−1]) 102.5 (1.3[−1])
20 164.1 (1.9[−1]) 164.8 (1.9[−1]) 164.6 (2.1[−1])
30 230.7 (1.9[−1]) 232.8 (1.9[−1])
40 300.4 (2.0[−1]) 303.2 (2.0[−1])
50 372.4 (1.8[−1]) 375.3 (1.8[−1])
100 746.7 (2.1[−1]) 748.1 (2.1[−1])

10 1 82.85 (2.9[−2]) 80.55 (2.9[−2]) 81.05 (2.7[−2])
5 108.7 (1.2[−1]) 106.7 (1.2[−1]) 107.6 (1.0[−1])

10 142.6 (1.7[−1]) 141.4 (1.7[−1]) 141.7 (1.8[−1])
20 217.1 (2.2[−1]) 217.7 (2.2[−1]) 217.4 (2.4[−1])
30 298.0 (2.2[−1]) 300.4 (2.2[−1])
40 384.5 (2.6[−1]) 387.8 (2.6[−1])
50 473.7 (2.6[−1]) 477.3 (2.6[−1])

100 936.8 (2.4[−1]) 938.9 (2.4[−1])

14 1 154.34 (4.3[−2]) 151.63 (4.3[−2]) 152.27 (5.5[−2])
5 191.3 (1.2[−1]) 188.8 (1.2[−1]) 190.1 (1.5[−1])

10 237.1 (2.3[−1]) 235.3 (2.3[−1]) 236.1 (2.3[−1])
20 338.0 (3.2[−1]) 338.3 (3.2[−1]) 337.5 (3.0[−1])
30 449.1 (4.0[−1]) 451.6 (4.0[−1])
40 564.8 (5.0[−1]) 568.9 (5.0[−1])
50 686.2 (3.7[−1]) 691.2 (3.7[−1])

100 1325.2 (5.0[−1]) 1328.9 (5.0[−1])

20 1 296.87 (5.5[−2]) 293.72 (5.5[−2]) 294.35 (6.7[−2])
5 349.3 (1.8[−1]) 346.4 (1.8[−1]) 347.5 (2.0[−1])

10 413.8 (3.1[−1]) 411.6 (3.1[−1]) 413.4 (3.7[−1])
20 554.2 (5.7[−1]) 554.0 (5.7[−1]) 551.7 (5.1[−1])
30 703.8 (6.4[−1]) 706.2 (6.4[−1])
40 864.3 (5.8[−1]) 869.0 (5.8[−1])
50 1031.1 (6.6[−1]) 1037.6 (6.6[−1])

100 1927.9 (6.6[−1]) 1934.4 (6.6[−1])

EOS of deuterium at any temperature in the domain
0.2–20 g/cm3 with OFWHMD results above 20 eV and QMD
results below 20 eV.

We now define the QOFWH EOS as that constructed with
QMD at low temperature (when necessary) and OFWHMD be-
yond the temperature of convergence of QMD to OFWHMD.
In other words,

XQOFWH (ρ,T ) =
{
XQMD (ρ,T ); T � T

H
(ρ)

XOFWHMD (ρ,T ); T � T
H

(ρ), (8)

where X = P or E, depending on whether it represents pres-
sure or internal energy per atom, and T

H
(ρ) is a temperature

where QMD has converged to OFWHMD at mass density ρ.
In the present case, as discussed above, it is possible to take
T

H
(ρ) = 20 eV in the domain 0.2–20 g/cm3 and T

H
(ρ) = 1 eV

in the domain ρ � 20 g/cm3. When T
H

(ρ) = 1 eV, no QMD
results are necessary for the domain T � 1 eV considered in
the present work, of course.

QOFWH reproduces the EOS of deuterium obtained with
QMD in the domain T � 1 eV and ρ � 0.2 g/cm3 (with the
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FIG. 5. Total pressure of deuterium calculated with OFWMD,
OFWHMD, and QMD at (a) 1 g/cm3, (b) 5 g/cm3, and (c)
20 g/cm3. The simulations have been performed with the LDA
exchange-correlation functional.

exception of the subdomain where the system is in a solid phase
not addressed in the present work). The results obtained for
deuterium can be used for hydrogen and tritium by applying the
mass density scaling described in Ref. [15]. We emphasize that
QOFWH is not an ad hoc construction smoothly connecting
two approaches and that it reproduces the QMD results within
statistical error in the thermodynamic domain considered.
Indeed, we know that δP

i,QMD has to eventually converge
to δP

i,OFWMD as temperature increases at given mass density
and that, in the thermodynamic domain addressed, we can
calculate δP

i,QMD at sufficiently high temperature to observe
this convergence. As a result, beyond the temperature of
convergence T

H
(ρ), δP

i,QMD is known as equal to δP
i,OFWMD ,

which can be calculated at any high temperature; since,
as discussed in Sec. III A, PQAA can be calculated at any
temperature, PQMD can be calculated above T

H
(ρ) through

Eq. (4). Below T
H

(ρ), PQMD can be calculated directly.

C. Sensitivity of QOFWH to electron exchange correlation

The choice of an approximation for the electron exchange-
correlation functional Fxc is the only degree of freedom
in QOFWH calculations. In this section, we investigate the
sensitivity of QOFWH to this functional in the domain 0.2–20
g/cm3 and T � 1 eV. The LDA exchange correlation has
been used so far. Another kind of widely used functional is
the generalized gradient approximation (GGA) [51] that has
been found to give a better description of the EOS of solid
hydrogen than LDA [15]. GGA corrects LDA with a function
of both n(r) and ∇n(r); in the limit of a homogeneous gas of
electrons, GGA and LDA are identical. GGA and LDA have
been constructed for ground-state calculations and therefore
do not depend on temperature. Ichimaru et al. have proposed
an electron exchange-correlation functional depending on
temperature in Eq. (3.83) of Ref. [52]; as it is based on a local-
density approximation, we designate it by the subscript LDAT.

As noted in Ref. [24], the ionic excess pressure is little
sensitive to the choice of the exchange-correlation functional.
Writing the invariance of the ionic excess pressure by inter-
change of GGA and LDA amounts to writing

PQOFWH−GGA (ρ,T ) = PQOFWH−LDA (ρ,T ) + PQAA−GGA (ρ,T )

−PQAA−LDA (ρ,T ), (9)

where the subscripts GGA and LDA, respectively, designate
the pressures obtained with GGA and LDA. As the
computations with GGA are significantly more costly than
those with LDA, we have calculated PQOFWH−GGA with Eq. (9)
after verifying it in conditions where LDA and GGA differ
most. A similar equation applies to the internal energy per
atom obtained with GGA.

LDAT has not been implemented with QMD in ABINIT.
Incidentally, the use of LDAT with QMD would considerably
increase computation times. As in the case of GGA, the
invariance of the ionic excess pressure allows one to write
Eq. (9) with GGA replaced by LDAT. As LDAT gives only a
small perturbation of LDA for the EOS [40], we have chosen to
approximate PQAA−LDAT − PQAA−LDA by POFWAA−LDAT − POFWAA−LDA .
Finally, we approximate the QOFWH pressure obtained with
LDAT by

PQOFWH−LDAT (ρ,T ) = PQOFWH−LDA (ρ,T ) + POFWAA−LDAT (ρ,T )

−POFWAA−LDA (ρ,T ), (10)

with a similar equation applying to the internal energy per
atom.

LDAT corrects LDA in order to take into account the
influence of temperature in Fxc, and GGA corrects LDA in
order to take into account the influence of the nonhomogeneity
of n(r) in Fxc. In an attempt to take into account both
temperature and the nonhomogeneity of n(r), we now define
the pressure designated by the subscript GGAT by

PQOFWH−GGAT (ρ,T ) = PQOFWH−GGA (ρ,T ) + POFWAA−LDAT (ρ,T )

−POFWAA−LDA (ρ,T ), (11)
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FIG. 6. Sensitivity of the pressure of deuterium calculated with
QOFWH to exchange correlation at (a) 0.2 g/cm3, (b) 1 g/cm3,
and (c) 20 g/cm3. The pressure calculated with the LDA exchange-
correlation functional is chosen as the reference. In (c), the curves
GGAT and LDAT are superimposed.

with a similar equation applying to the internal energy per
atom. This definition of GGAT amounts to assuming that the
small influence of T in Fxc is the same on total pressure and
internal energy whether or not the nonhomogeneity of n(r) is
taken into account in Fxc.

The sensitivity of the QOFWH pressure of deuterium to
exchange correlation is presented in Fig. 6, where the pressure
calculated with LDA is taken as the reference, at ρ = 0.2,
1, and 20 g/cm3. It appears that using GGA instead of LDA
increases pressure, up to 21% at 1 eV and 0.2 g/cm3. Moreover,
the relative difference between GGA and LDA decreases when
T increases at given ρ, and when ρ increases at given T ; as

T or ρ increases, kinetic energy tends to prevail over potential
energy so that electronic density tends to get homogeneous and
GGA tends to LDA. Above 10 eV, GGA does not differ from
LDA (within statistical error) in the domain ρ � 0.2 g/cm3.
We have also found that, above 2.5 g/cm3, GGA does not
differ from LDA in the domain T � 1 eV.

Using LDAT instead of LDA mainly decreases pressure.
The pressures obtained with LDAT and LDA are equal within
statistical error at low temperature, where they are close by
construction, and are close at high temperature where kinetic
energy prevails over exchange correlation. At 100 eV, the
pressures obtained with LDA and LDAT differ by less than
0.5%. The largest relative difference between LDA and LDAT
along an isochore is 2% at 0.2 g/cm3 and 3 eV. It decreases
when mass density increases because kinetic energy tends
to further prevail over exchange correlation; it is 0.7% at
20 g/cm3 and 30 eV. The temperature at which the largest
relative difference between LDA and LDAT is obtained along
an isochore increases when mass density increases because
T intervenes in the LDAT exchange-correlation functional
through its ratio to the Fermi temperature [52].

The GGAT results include the influence of temperature,
which decreases pressure, and of the gradient correction that
increases pressure. As temperature increases at given mass
density, the relative difference between the GGAT and LDA
pressures decreases in algebraic value, reaches a minimum,
then increases to tend to 0. Above a temperature depending
on mass density, the gradient correction is negligible so
that the GGAT pressures are equal to the LDAT pressures.
At 0.2 g/cm3 and 1 g/cm3, the influence of the gradient
correction prevails up to 2 eV; at 20 g/cm3, there is no
more influence of the gradient correction so that the GGAT
pressures are equal to the LDAT pressures on the whole
domain of temperature considered.

IV. COMPARISON TO OTHER APPROACHES

In this section, we compare QOFWH to various approaches
in the literature. The EOS of deuterium or hydrogen has
been addressed in particular with PIMC [1], QMD [10,14],
an association of QMD and PIMC [15], and a chemical
model proposed by Kerley [53] and designated by Kerley03
in Ref. [1]. Hu et al. [1] have applied PIMC to deuterium and
have produced many data in the domain 0.002–1596 g/cm3

and 1.35–5500 eV. QOFWH and QMD assume a classical
ionic behavior, whereas PIMC takes the quantum effects
into account for both electrons and ions; as a result, PIMC
needs no approximation of exchange correlation. However,
PIMC cannot be applied at low temperature, typically below
one-tenth of the Fermi temperature [1]. QMD, implemented
with GGA, has been applied to hydrogen in the domain
(0.043–1.7 eV, 0.5–5 g/cm3) by Holst et al. [14] and to
deuterium in the domain (0.17–2.7 eV, 0.506–0.851 g/cm3)
by Lenosky et al. [10]. The difficulty of addressing high
temperatures with QMD and low temperatures with PIMC
has led Caillabet et al. [15] to combine data obtained with
both methods to construct a fit giving the EOS of a fluid phase
of hydrogen in the domain 0.2–5 g/cm 3 and T � 10 eV.

In this section, we implement QOFWH with GGAT; the
GGAT subscript is omitted in the rest of this work. The
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QMD data of Refs. [10] and [14] are obtained with GGA.
As GGAT coincides with GGA within statistical error at the
low temperatures at which the QMD data of Refs. [10] and [14]
are produced, the choice of GGAT in the implementation of
QOFWH allows a comparison with these QMD results. The fit
of the QMD results obtained for hydrogen by Holst et al. [14]
is used to get QMD data for deuterium through the mass
density scaling described in Ref. [15]. Moreover, by using
the evaluation of Caillabet et al. [15], we have verified that the
quantum correction to classical ionic behavior for the pressure
of hydrogen is less than 0.1% in the domain T � 1 eV and
0.2–5 g/cm3. As a result, we can also apply the mass density
scaling to the fit of Caillabet et al., proposed for hydrogen, to
get EOS data for deuterium [15].

A. Isochores

We compare QOFWH to the results of Refs. [1,14,15,53]
along some isochores calculated in Ref. [1] in the domain
0.2–15.7 g/cm3. The results of Lenosky et al. [10] are
not considered here because they are obtained in a limited
range of mass density. The QOFWH pressures are obtained
by interpolating from a table calculated at thermodynamic
conditions that do not coincide in general with those of Ref. [1].
At given ρ and T , a first quadratic interpolation is used to
calculate pressure at ρ at the tabulated temperatures, then a
second quadratic interpolation is used to calculate pressure at
ρ and T . The interpolation error is evaluated by comparing the
pressures obtained to those given by linear interpolations; the
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FIG. 7. Comparison of the pressure of deuterium calculated with various approaches along the isochores (a) 0.199 561 g/cm3,
(b) 0.389 768 g/cm3, (c) 1.156 88 g/cm3, (d) 1.963 61 g/cm3, (e) 4.048 19 g/cm3, and (f) 15.708 9 g/cm3. The approaches considered are
designated as follows: PIMC [1], Caillabet [15], Kerley03 [53], and Holst [14]. QOFWH implemented with the GGAT exchange-correlation
functional is taken as the reference.
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relative difference between them, that we regard as an upper
bound of the interpolation error, is less than 1% at all the
conditions considered.

The results are presented in Fig. 7. At 1.35 eV
(15 625 K) and at the mass densities considered, QOFWH
is based on direct QMD calculations. Figures 7(c)–7(e) show
that our QMD results agree with the fit of Holst et al. [14] that
reproduces their own QMD results within 5%. For the most
part, the Caillabet pressures differ from the QOFWH pressures
by 5%–11% at the mass densities considered; this is so even at
4.048 19 g/cm3 [Fig. 7(e)] where all the other approaches are
in good agreement. The relative difference between Caillabet
and PIMC reaches up to 24% (6 standard deviations) at
1.963 61 g/cm3 [Fig. 7(d)] and 2.69 eV (31 250 K); this result
is surprising in view of the fact that the fit of Caillabet et al.
is constructed, above 1 eV, from PIMC results [15]. At and
above 4.048 19 g/cm3 [Figs. 7(e) and 7(f)], Kerley03 remains
within 2% of QOFWH in the temperature range considered;
at and below 1.963 61 g/cm3 [Figs. 7(a)–7(d)], the relative
difference between Kerley03 and QOFWH can reach 16% at
1.35 eV (15 625 K), mainly decreases as temperature increases,
and is 1% or less at 86.2 eV (106 K).

We now compare QOFWH and PIMC. In the PIMC
approach, the statistical error increases as mass density
increases at a given temperature [1]; when unusually large
(say, more than 2%) statistical errors occur in Fig. 7, they
come mainly from PIMC. As already noted by Driver and
Militzer [22], a difference between QMD, or equivalently
QOFWH, and PIMC comes from a numerical problem in the
implementation of PIMC or from the choice of the exchange-
correlation functional used with QMD. In the case of neon,
Driver and Militzer [22] also evoke a possible insufficiency
of the pseudopotential; we rule out this problem here because
all numerical parameters, including those connected to the
pseudopotential, have been chosen to ensure numerical conver-
gence of pressure and internal energy within statistical error.

Above 10 eV, QOFWH and PIMC agree within 2.5% or
within statistical error at all mass densities [except 3.5% for the
result at 21.5 eV and 4.048 19 g/cm3, which appears atypical
in Fig. 7(e)]; this induces us to think that, in this domain
of temperature, GGAT, or equivalently in practice LDAT, is
a good approximation of exchange correlation and that both
QOFWH and PIMC give reliable results. It can be noted that
the use of GGAT instead of GGA in the domain T � 10 eV
generally reduces the relative difference between PIMC and
QOFWH; however, the relative difference between GGA and
GGAT is less than 1.5% in this domain.

Between 5 and 10 eV, the relative difference between
PIMC and QOFWH is less than 5%. Below 5 eV, as mass
density increases at a given temperature, the relative difference
between PIMC and QOFWH increases (in algebraic value)
until the temperature can no longer be calculated in PIMC;
this relative difference is 20% at 1.35 eV (15 625 K) and
1.156 88 g/cm3 [Fig. 7(c)] and 17% at 2.69 eV (31 250 K) and
1.963 61 g/cm3 [Fig. 7(d)]. At the same time, the statistical
error on the relative difference increases to unusually large
values because of PIMC. As already indicated, a difference
between PIMC and QOFWH comes from a numerical problem
in PIMC or from the choice of Fxc. There is no method to test
the exactness of Fxc. It can nevertheless be observed that,
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FIG. 8. Hugoniot of deuterium, calculated with the initial condi-
tions ρ0 = 0.171 g/cm3 and E0 = −15.886 eV/at, in the domain T �
1 eV and P � 60 Mbar. The approaches considered are designated
as follows: PIMC2011 [1], PIMC2000 [7], Caillabet [15], and
Kerley03 [53]. Our approach, QOFWH, is implemented with the
GGAT exchange-correlation functional.

below 3 eV at 1.156 88 g/cm3 or 1.963 61 g/cm3 [Figs. 7(c)
or 7(d)] where the largest relative differences occur, the
QOFWH pressures are not very sensitive to the interchange of
the exchange-correlation functionals; indeed, as illustrated in
Fig. 6, the effect of interchanging LDA and GGA (or LDAT and
GGAT) is 3% at 1 g/cm3 and 1 eV and decreases when mass
density or temperature increases. The fact that large relative
differences between PIMC and QOFWH occur in conditions
where PIMC has large statistical errors and where QOFWH
is not very sensitive to the interchange of LDA and GGA
suggests that it might be useful to revisit PIMC calculations at
these conditions.

B. Hugoniot

We now compare the Hugoniot of deuterium calculated with
QOFWH implemented with GGAT to the Hugoniot curves
calculated with PIMC [1,7], the fit of Caillabet et al. [15], the
fit of Lenosky et al. [10], and Kerley03 [53]. All Hugoniot
curves are obtained with an initial state characterized by a
mass density ρ0 = 0.171 g/cm3, zero pressure, and an internal
energy E0 = −15.886 eV/at [7]. (In the case of Lenosky
et al., E0 is not necessary as the fit is constructed to reproduce
E − E0 [10].) They are presented in Figs. 8 and 9. As the fit of
Lenosky et al. is applicable on a limited domain of temperature
(T � 2.7 eV) [10], it is represented only in Fig. 9 that shows
a smaller domain of the Hugoniot. For PIMC2000, we have
reported the Hugoniot calculations of Ref. [7]. For PIMC2011,
the Hugoniot equation has been solved by interpolation of
the results of Ref. [1] obtained along isochores. The same
interpolation method as that described in Sec. IV A has been
used to obtain the curves PIMC2011 and QOFWH. The
Caillabet results slightly differ from the Hugoniot of Ref. [15];
we attribute this to a different choice for the internal energy
of the initial state. The Hugoniot curves of deuterium usually
presented have a maximum compression ratio; here, except
for Kerley03, no maximum compression ratio appears because
only the domain T � 1 eV is presented.
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FIG. 9. Hugoniot of deuterium, calculated with the initial condi-
tions ρ0 = 0.171 g/cm3 and E0 = −15.886 eV/at, in the domain T �
1 eV and P � 6 Mbar. The approaches considered are designated as
follows: PIMC2011 [1], PIMC2000 [7], Caillabet [15], Lenosky [10],
and Kerley03 [53]. Our approach, QOFWH, is implemented with
the GGAT exchange-correlation functional. The experimental results
found in Refs. [54] and [55] are respectively designated Knudson and
Hicks.

It appears in Fig. 8 that Kerley03 tends to PIMC and
QOFWH at high pressure. In the domain of low pressure
considered in Fig. 9, the two curves obtained with PIMC
are very different according to whether they are based on the
results of Ref. [7] or on the results of Ref. [1]. Figures 8
and 9 show that, as pressure (or temperature) increases,
the two PIMC curves tend to each other and to QOFWH;
indeed, we have seen in Sec. IV A that, along isochores,
PIMC is close to QOFWH at high temperature. Figure 9 also
presents experimental results [54,55] above 0.5 Mbar (so that
T � 1 eV). QOFWH and the other approaches considered in
Fig. 9 give Hugoniot curves that agree with the experimental
results within the very large experimental error bars.

V. CONCLUSION

We have constructed a first-principles EOS of deuterium,
based on DFT-MD, reproducing the QMD results in the
domain T � 1 eV and ρ � 0.2 g/cm3 (calculations performed
in practice up to 25 000 eV and 20 000 g/cm3). Apart from
shell effects that can be accounted for by using a fcc lattice
of ions, orbital-free molecular dynamics simulations are a
natural limit of QMD simulations as temperature and/or
mass density increase. The QMD simulations have been
performed at sufficiently high temperature and with a careful
study of numerical convergence to observe that this limit
is indeed obtained within statistical error. As a result, by
using orbital-free simulations, the EOS constructed smoothly
and consistently reproduces the QMD results up to any high
temperature. Contrary to PIMC at temperatures of the order
of 0.1 Fermi temperature, this EOS is not affected by large

statistical errors in the thermodynamic domain considered.
This ab initio approach allows one to consistently cover a
large range of temperature on the domain of mass density
considered. The EOSs of hydrogen and tritium above 1 eV and
above, respectively, 0.1 g/cm3 and 0.3 g/cm3, can be obtained
from the EOS of deuterium above 1 eV and 0.2 g/cm3 by the
scaling law described in Ref. [15].

In the thermodynamic domain considered, the assumptions
underlying our approach (nonrelativistic electrons, classical
nuclei, Born-Oppenheimer hypothesis) seem relevant so that
the only approximation lies in the choice of the electron
exchange-correlation functional Fxc. The GGA functional [51]
is widely used to calculate the EOS of dense plasmas with
QMD. In order to compare our EOS of deuterium, denoted
QOFWH, with other works, we have implemented it with
GGA corrected to approximately include the influence of
temperature. The influence of T in Fxc turns out to be small, 2%
at most for pressure in the thermodynamic domain considered.

The pressures obtained with QOFWH have been compared
to those obtained with Kerley03, with PIMC, and with the
fit of Caillabet et al. Kerley03 is a chemical model [53],
PIMC is an ab initio approach that needs no approximation for
Fxc but that cannot be applied below one-tenth of the Fermi
temperature [1], and the fit of Caillabet et al. is constructed with
QMD results obtained below 0.9 eV and with PIMC results
obtained above 1 eV [15]. For the most part, Kerley03 [53] is
in good agreement with QOFWH except at low temperature
and low or intermediate mass density. The fit of Caillabet
et al. differs by up to 11% from QOFWH. It also differs by
up to 24% from PIMC; this result is surprising as the fit is
constructed, above 1 eV, from PIMC data. The comparison of
PIMC and QOFWH shows that the two ab initio approaches are
in good agreement above 10 eV, which induces us to think that
they both give reliable results in this domain; some significant
differences occur, however, at low temperature and low or
intermediate mass density.

Whether the discrepancies between the ab initio approaches
QOFWH and PIMC stem from the choice of Fxc or from a
numerical problem in PIMC remains to be known. It can be
noted, however, that the discrepancies observed occur mainly
in a domain where the sensitivity of QOFWH to exchange
correlation, if it is measured by the difference between GGA
and LDA for pressure, turns out to be small and where
the statistical error on PIMC results is much larger than
the statistical error on QOFWH results. Future work could
therefore consist in revisiting PIMC at the conditions where
large differences with QOFWH occur. It could also consist in
applying our approach to an element with a higher atomic
number and in comparing the results with other ab initio
approaches, particularly with PIMC.
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066408 (2009).
[38] F. Lambert, J. G. Clérouin, and G. Zérah, Phys. Rev. E 73,
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[44] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[45] M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze,
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