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A model is presented for the nonlinear interaction between a large-amplitude laser and semiconductor plasma
in the semirelativistic quantum regime. The collective behavior of the electrons in the conduction band of
a narrow-gap semiconductor is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the
electromagnetic (EM) wave through the Maxwell equations. The parametric instabilities involving the stimulated
Raman scattering and modulational instabilities are analyzed theoretically and the resulting dispersion relation
relation is solved numerically to assess the quantum effects on the instability. The study of the quasi-steady-state
solution of the system and direct numerical simulations demonstrate the possibility of the formation of localized
EM solitary structures trapped in electrons density holes.
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The magnitude and response time of different types of
optical nonlinearities such as solitons in semiconductors is
a subject of considerable interest, as the optical solitary waves
have important applications in all-optical signal processing [1].
Parametric amplifications of oscillations have been observed
in n-doped narrow-gap semiconductors, where the nonlinear
optic effects come from the nonparabolicity of the conduction
band [2]. The conduction electrons can be reasonably taken as
a high-density semiconductor plasma with a fixed neutralizing
ionic background. The band structure of InSb leads to a
nonparabolic conduction band [3], which gives rise to a
momentum-dependent effective mass of the electrons near the
bottom of the conduction band, formally resembling that of
relativistic electrons [4–6], but with a smaller effective rest
mass and with an effective speed of light that is several orders
of magnitude smaller than the speed of light in vacuum. Similar
properties apply to the two-dimensional gas of massless and
massive Dirac fermions in graphene [7,8], where the electrons
are modeled by a Dirac equation. Hence, the collective
dynamics of conduction electrons with a velocity-dependent
mass may simulate some aspects a relativistic quantum plasma.
In the past, relativistic effects in gaseous quantum plasmas
have been invoked by using collective Klein-Gordon, Dirac,
quantum electrodynamic, and quantum fluid equations [9–16]
to model the interaction with large-amplitude electrostatic (ES)
and electromagnetic (EM) waves. For semiconductor plasmas,
the interaction with a large-amplitude laser can give rise to a
variety of linear and nonlinear excitations, such as the beat
wave generation of plasmons [17] and electron wake field
acceleration [18]. The pseudorelativistic velocity-dependent
mass increase due to a large-amplitude EM wave can lead to
nonlinear effects such as self-focusing of EM radiation [5],
parametric instabilities [6], a modulational instability and
saturation in the form of a chain of soliton structures [19],
multidimensional self-trapping of EM pulses [20], and the
self-organization of vortex solitons [21] in narrow-gap semi-
conductors. The pseudorelativistic and quantum effects on ES
nonlinear structures have recently been investigated [22].
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The quantum effects have attracted much attention due
to important applications in modern semiconductor quantum
devices, such as spintronics, nanotubes, quantum dots, and
quantum wells [23,24]. In semiconductor devices, the quantum
effects are significant when the de Broglie wavelength of the
charged carriers is comparable to the characteristic spatial
scales of the system and the effect of quantum tunneling
then has to be taken into account for semiconductor quan-
tum plasmas [25,26]. The formation of solitons has been
investigated in semiconductor quantum plasma [27,28], taking
into account the wave dispersion due to charge separation
and quantum recoil and the nonlinearities coming from the
large-amplitude ES potential and from the quantum statistical
and exchange-correlation effects.

In this paper we present a model that includes both
the pseudorelativistic and quantum tunneling effects for the
interaction of intense laser light with semiconductor plasmas.
Parametric amplification due to the Raman and modulational
instabilities is studied with our model, as well as the possibility
of localized nonlinear EM structures in the form of solitons
accompanied by a local depletion of the conduction electron
densities.

In narrow-gap semiconductors, the conduction electrons
have a small effective mass and exhibit a significant degree
of nonparabolicity. The dynamics of the conduction band
electrons is governed by a pseudorelativistic Hamiltonian in
the form [4–6]

E = (p2c2
∗ + m2

∗c
4
∗)1/2, (1)

where c∗ = (Eg/2m∗)1/2 plays the role of the speed of
light, m∗ is the effective rest mass of an electron at the
bottom of the conduction band, and Eg is the width of the
energy gap separating the valence and conduction bands.
For the semiconductor InSb, the effective speed of light is
c∗ ≈ 3 × 10−3c, where c is the speed of light in vacuum.
The Hamiltonian (1) can be used to model electrons on
length scales large enough that quantum tunneling effects
can be neglected and can then be used to construct a Vlasov
equation for the wave dynamics of the Fermi-Dirac distributed
electrons [5,6]. To model relativistic and quantum spin and
tunneling effects on equal footing would involve using the
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Dirac equation for a single electron as a basis to construct
a corresponding relativistic quantum kinetic equation via a
Wigner transform or some other approach. Such a model
would be too complicated to use in practice. We here use two
simplifying assumptions: (i) that spin effects are relatively
small due to the absence of a strong magnetic field and (ii)
kinetic effects are small due to the low temperature of the
plasma. The dispersive effects due to the electron degeneracy
pressure is also neglected with the assumption of a not too
dense plasma; a moderately doped InSb plasma has a density of
∼1023 m−3, while the density of a weakly doped InSb plasma
is ∼1020 m−3 [19], which are about 5–8 orders of magnitude
smaller than typical metallic densities. That spin effects are
neglected allows us to use a Klein-Gordon equation (instead
of the Dirac equation) for the electrons, which can then be used
for a single-particle wave function representing an ensemble
of electrons. By the substitutions E → i�∂/∂t and p → −i�∇
in Eq. (1), where � is the Planck constant divided by 2π , we
obtain the Klein-Gordon equation (KGE) for a free conduction
electron as

�
2 ∂2ψ

∂t2
− �

2c2
∗∇2ψ + m2

∗c
4
∗ψ = 0, (2)

where ψ is the conduction electron wave function. In order to
study the laser beam interaction with a semiconductor quantum
plasma, we next let ψ represent an ensemble of conduction
electrons and use the charge and current densities as sources
for the self-consistent EM scalar and vector potentials φ and
A, respectively. The EM potentials are introduced into the
KGE (2) with the substitutions i�∂/∂t → i�∂/∂t + eφ and
−i�∇ → −i�∇ + eA, resulting in

W2ψ − c2
∗P2ψ − m2

∗c
4
∗ψ = 0, (3)

where the energy and momentum operators areW = i�∂/∂t +
eφ and P = −i�∇ + eA, respectively. Using the Coulomb
gauge ∇ · A = 0, the self-consistent vector and scalar poten-
tials are governed by the EM wave equation and Poisson’s
equation, respectively, as

∇2A − 1

u2

∂2A
∂t2

− 1

u2
∇ ∂φ

∂t
= −μ0je (4)

and

∇2φ = −1

ε
(ρe + en0), (5)

where the electric charge and current densities are obtained as

ρe = − e

2m∗c2∗
[ψ∗Wψ + ψ(Wψ)∗] (6)

and

je = − e

2m∗
[ψ∗Pψ + ψ(Pψ)∗], (7)

respectively. The charge and current densities obey the conti-
nuity equation ∂ρe/∂t + ∇ · je = 0. Here μ0 is the magnetic
vacuum permeability, ε is the effective dielectric permittivity
of the lattice, −e is the electron charge, and n0 is the
unperturbed density of the electrons and of the positive
neutralizing ionic background. For the semiconductor InSb,
the effective dielectric permittivity is ε = 16ε0, where ε0 is the
vacuum electric permittivity and u = 1/

√
εμ0 is the effective

light speed in the semiconductor lattice. Systems similar
to (3)–(7) have been used in the past to describe relativistic
interactions with electromagnetic waves in gaseous quantum
plasmas [9,11,13,14], the difference being that the present
model for a semiconductor plasma contains the effective speed
of light c∗ for the dynamics of the electrons and the effective
speed of light u for the propagation of the EM wave in the
semiconductor lattice.

We now consider the instability of a pseudorelativistically
intense circularly polarized electromagnetic (CPEM)
wave propagating in a semiconductor quantum plasma.
To investigate the growth rates of the stimulated Raman
and modulational instabilities, we linearize our system
by introducing ψ = [ψ̃0 + ψ̃1(r,t)] exp(−iγAm∗c2

∗t/�),
A = A0(r,t) + A1(r,t), and φ(r,t) = φ1(r,t), where

γA =
√

1 + e2A2
0/m2∗c2∗ is the pseudorelativistic gamma

factor due to the quivering motion of an electron in the laser
field, A0 is the amplitude of the CPEM carrier wave A0, and
ψ̃0 is assumed to be constant. The equilibrium quasineutrality
requires that ψ̃0 is normalized such that |ψ̃0|2 = n0/γA

[14]. We now introduce the Fourier representations
ψ̃1 = ψ̂+ exp(−i	t + iK · r) + ψ̂− exp(i	t − iK · r), φ1 =
φ̂ exp(−i	t + iK · r) + c.c., A0 = (1/2)Â0 exp(−iω0t +
ik0 · r) + c.c., and A1 = [Â+ exp(−iω+t + ik+ · r) +
Â− exp(−iω−t + ik− · r)] + c.c., where ω± = ω0 ± 	,
k± = k0 ± K, and c.c. stands for complex conjugate.
Separating different Fourier modes and eliminating the
Fourier coefficients, we find the nonlinear dispersion relation

1 + 1

χ̃e

= c2
∗K

2 − 	2 + ω2
pe/γA

4γ 2
Am2∗c4∗ − �2(	2 − c2∗K2)

×
[
c2
∗e

2|k+ × Â0|2
k2+DA(ω+,k+)

+ c2
∗e

2|k− × Â0|2
k2−DA(ω−,k−)

]
, (8)

where ωpe =
√

n0e2/m∗ε is the effective quantum semicon-
ductor plasma frequency and the EM sidebands are governed
by DA(ω±,k±) = u2k2

± − ω2
± + ω2

pe/γA. The carrier wave A0

obeys the nonlinear dispersion relation (see Ref. [14]) ω0 =√
u2k2

0 + ω2
pe/γA. The electric susceptibility in the presence

of the laser field is given by

χ̃e(	,K) = ω2
pe

[
4γ 2

Am2
∗c

4
∗ − �

2(	2 − c2
∗K

2)
]

γA

[
�2(	2 − c2∗K2)2 − 4γ 2

Am2∗c4∗	2
] . (9)

In the absence of EM waves (A0 = 0), the dispersion relation
1 + χ̃e = 0 supports ES electron plasma waves and pair
branches in quantum plasmas [11,14] and semiconductor
quantum plasmas [22]. In the limits c∗ → c and u → c,
the dispersion relation (8) governs the relativistic parametric
interaction between an EM wave and a gaseous quantum
plasma [14].

It should be noted that for frequencies ω0/ωpe > 2/
√

γA

and the corresponding wave numbers k0u/ωpe >
√

3/γA,
the dispersion relation (8) governs the three-wave resonant
Raman scattering instability, in which the laser decays into a
frequency-downshifted EM sideband and a plasma oscillation.
For this instability, |DA(ω−,k−)| � |DA(ω+,k+)|, so that the
term proportional to 1/DA(ω+,k+) can usually be neglected.
The resonance condition for the maximum growth rate is then
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FIG. 1. Normalized growth rate 	I/ωpe of the stimulated Raman
scattering (left column) and modulational instability (right column) in
the nonlinear interaction of a pseudorelativistic intense CPEM wave
with an InSb semiconductor quantum plasma.

approximately given by 1 + χe(	,K) ≈ 0 and DA(ω−,k−) ≈
0. For very short wavelengths of the laser, the quantum
tunneling (quantum recoil) effects become important for the
plasma oscillations. On the other hand, when ω0/ωpe �
2/

√
γA (corresponding to k0u/ωpe �

√
3/γA), the dispersion

relation (8) supports the modulational instability [19], which
is a four-wave coupling where the laser decays into two neigh-
boring EM sidebands and a nonresonant plasma oscillation. In
this case, |DA(ω−,k−)| and |DA(ω+,k+)| are of the same order
and have to be kept in the dispersion relation. The modulational
instability typically saturates by the formation of solitary wave
structures.

To proceed with the numerical evaluation of the nonlinear
dispersion relation, we choose a coordinate system such that
the right-hand CPEM wave takes the form Â0 = (x̂ + iŷ)Â0

and the CPEM wave vector is k0 = k0ẑ, where x̂, ŷ, and ẑ
are units vectors in the x, y, and z directions. Without loss
of generality, we choose a coordinate system such that the
perturbation wave vector for the plasma density oscillations
can be written K = Kzẑ + Ky ŷ. We now assume that the wave
frequency is complex valued 	 = 	R + i	I , where 	R is the
real frequency and 	I the growth rate, and solve numerically
the dispersion relation (8) for 	. We consider typical parame-
ters for semiconductor InSb plasma as [19] m∗ = me/74, ε =
16ε0, c∗ = c/253, and n0 = 1020 m−3. The amplitude of the
CPEM wave is e|Â0|/m∗c∗ = 1. The dimensionless quantum
parameter H = �ωpe/m∗c2

∗ = 0.0074 obtained from the InSb
semiconductor parameters is a measure of the importance of
quantum effects in the system. On the left-hand side of Fig. 1,
we have plotted the growth rate as a function of the wave
numbers Kz and Ky for k0u/ωpe = 12, which corresponds to
a wavelength of 3.23 × 10−5 m for H = 0.0074, which is in
the THz regime. In Fig. 1, the stimulated Raman instability
takes place in a narrow circular region for large wave numbers
where the resonance condition of the instability is fulfilled.
The modulational instability is visible for small values of
|Kyu/ωpe| � 1 and |Kyu/ωpe| � 7. On the right-hand side
of Fig. 1, we investigate the instability of a CPEM dipole
wave field with k0 = 0, where the modulational instability
dominates. The modulational instability has a positive growth-
rate for relatively small wave numbers with |Kyu/ωpe| � 0.4
and |Kyu/ωpe| � 0.6. For moderately doped samples, the
quantum parameter H becomes relatively large. This leads
to a reduction of the growth rate of the Raman instability,
while the quantum diffraction effects have little influence on
the modulational instability at small wave numbers.

We have used a collisionless model for the electrons, even
though the collision time for electrons in semiconductors is
comparatively short [19]. The collisionality depends on the
level of doping, the quality of the sample, and the temperature
of the semiconductor plasma. The mobility of the electrons
in InSb plasma is high, but due to their small effective
masses, the measured mean collision time due to collisions
with charged particles is in the range τ0 = 10−11–10−13 s
in a InSb plasma at a temperature of Te = 77 K. However,
the high laser field significantly increases the collision time
and drives the plasma towards a collisionless state. The
relaxation time scales as τr = τ0(E/E0)3/2 [29,30], where
E0 ≈ 3kBTe/2 ≈ 1.6 × 10−21 is the average kinetic energy of
the unperturbed state and E ≈ m∗c2

∗(γA − 1) ≈ 7 × 10−21 is
the average kinetic energy in the presence of the field. Hence,
we get τr ≈ 10τ0 = 10−10–10−12 s. The Raman instability
(see the left panel of Fig. 1) develops on a time scale
of τi = ω−1

I ≈ 50ω−1
pe ≈ 4 × 10−11 s, while the modulational

instability develops on τi ≈ 10ω−1
pe ≈ 10−11 s. Hence, in an

InSb plasma in the lower range of collisionality τ0 ∼ 10−11,
the collisionless assumption could remain justified, while at
higher collisionality such as τ0 ∼ 10−13, the growth rate of
the instability could be decreased or the instability could be
quenched by collisions.

We next investigate the possibility of localized CPEM
wave excitations in semiconductor quantum plasma. It is
convenient to first introduce a new wave function 
(z,t)
via the transformation ψ(r,t) = 
(z,t) exp(−im∗c2

∗t/�). To
study quasi-steady-state structures propagating with a constant
speed v0, we assume that φ = φ(ξ ) and A2 = A2(ξ ), where
ξ = z − v0t and A2 = |A|2. The CPEM wave vector potential
is of the form A = A(ξ )[x̂ cos(k0z − ω0t) − ŷ sin(k0z − ω0t)].
It is convenient to introduce the eikonal representation 
 =
P (ξ ) exp[iθ (ξ )], where P and θ are real valued. The boundary
conditions for the localized structures are A = 0, P = √

n0,
φ = 0, and d/dξ = d2/dξ 2 = 0 at |ξ | = ∞. Then, using a
formalism similar to that in Ref. [14], with k0 = ω0v0/u

2,
we obtain the phase from dθ/dξ = (v0m∗γ 2

2 /�)[(eφ/m∗c2
∗ +

1) − n0/P
2] and the coupled system of equations

d2A

dξ 2
+ ω2

pe

u2

[
λ + γ 2

1

(
1 − P 2

n0

)]
A = 0, (10)

d2P

dξ 2
+ m2

∗c
2
∗γ

4
2

�2

[(
eφ

m∗c2∗
+ 1

)2

− v2
0

c2∗

n2
0

P 4
− γ 2

A

γ 2
2

]
P = 0,

(11)

d2φ

dξ 2
= en0γ

2
2

ε

[(
eφ

m∗c2∗
+ 1

)
P 2

n0
− 1

]
, (12)

where λ = ω2
0/ω

2
pe − γ 2

1 is a nonlinear eigenvalue

and γ1 = 1/
√

1 − v2
0/u

2, γ2 = 1/
√

1 − v2
0/c

2
∗, and

γA = √
1 + e2A2/m2∗c2∗ are pseudorelativistic gamma factors.

The coupled system (10)–(12) describes the profile of EM
solitary waves in a quantum semiconductor plasma. We solved
the system (10)–(12) as a nonlinear boundary value problem
with the boundary conditions eA/m∗c∗ = eφ/m∗c2

∗ = 0 and
P/

√
n0 = 1 at the boundaries ξωpe/u = ±20. The spatial

domain is numerically resolved with 4000 intervals and the
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FIG. 2. Spatial profiles of the vector potential, the conduction
electron density, and the scalar potential (top to bottom panels)
for v0 = 0 (left column) and v0 = 0.52u (right column) with the
frequency shift λ = −4.

second derivatives in the system (10)–(12) are approximated
by centered second-order approximations. The resulting
nonlinear system of equations is then solved numerically
by Newton’s method. We choose the same parameters
as in Fig. 1. The numerical solutions are displayed in
Fig. 2. As shown in Fig. 2, the local depletions of the
conduction electron density P are associated with a single
maximum of the localized vector potential A and a localized
positive potential φ for v0 = 0. For v0 = 0.52u, we instead
have the plasma wake oscillations as illustrated by scale
potential eφ/m∗c2

∗ in right-hand column of Fig. 2. Hence, an
EM pulse creates an oscillatory wake that extends far away
from the propagating soliton. In classical InSb semiconductor
plasmas, the wake field also forms when the laser pulse length
is comparable to the inverse of the plasma frequency [18].

In order to study the dynamics of the localized CPEM
packets, we have carried out numerical simulations of the
KGE-Maxwell system of equations (3)–(5) in the slow varying
envelope approximation limit. We have here restricted our
study to one space dimension, along the z direction, and have
written our governing equations in the form

2iω0

(
∂A

∂t
+ vg

∂A

∂z

)
+ u2 ∂2A

∂z2
+ ω2

pe

(
1 − P 2

n0

)
A = 0,

(
i�

∂

∂t
+ eφ + m∗c2

∗

)
ψ̃ = W,

(
i�

∂

∂t
+ eφ + m∗c2

∗

)
W + �

2c2
∗
∂2ψ̃

∂z2
− γ 2

Am2
∗c

4
∗ψ̃ = 0,

∂2φ

∂z2
= e

2m∗c2∗ε
(ψ∗W + ψW ∗) − en0

ε
, (13)

where we have used the transformation ψ =
ψ̃ exp(−im∗c2

∗t/�). The group velocity is vg = k0u
2/ω0.

We use a pseudospectral method for calculating the spatial
derivatives and the standard fourth-order Runge-Kutta

FIG. 3. Dynamics of the normalized CPEM vector potential
eA/m∗c∗ (left), conduction electron density |ψ |2/n0 (middle), and
scalar potential eφ/m∗c2

∗ (right) in an InSb semiconductor quantum
plasma.

method to advance the solution in time. The spatial domain
is from zωpe/u = 0 to zωpe/u = 40 with 2048 intervals
in space, with periodic boundary conditions. We carry out
the simulation from time ωpet = 0 to ωpet = 200 using
the time step ωpe�t = 2 × 10−6. The initial conditions are
A = m∗c∗/e, ψ̃ = √

n0, W = 0, and φ = 0. Small-amplitude
noise (random numbers) of order 10−2m∗c∗/e is added to A to
give a seed for any instability. We use the same semiconductor
parameters as in Figs. 1 and 2, with k0 = 0 so that A initially
represents an oscillating dipole field.

The numerical results are shown in Fig. 3. We found
that the instability grows and saturates at time ω0t ≈ 100.
The CPEM waves collapse and form localized solitary wave
structures, where the maxima of the vector A is accompanied
by depletions of the conduction electron density and maxima of
the scalar potential. Small-scale spatial oscillations are excited
in the electron density due to quantum diffraction effects.
The scalar potential also has high-frequency oscillations in
time near the plasma frequency as illustrated in the right-hand
column of Fig. 3.

In summary, we have developed a model for the interaction
between intense EM waves and a pseudorelativistic semi-
conductor quantum plasma. Our nonlinear model is based
on the coupled Klein-Gordon and Maxwell equations for
the relativisticlike electron dynamics and the EM fields. A
nonlinear dispersion relation is derived for the growth rates
of the Raman scattering and modulational instabilities in the
presence of pseudorelativistically intense CPEM waves. In the
nonlinear regime, we have demonstrated theoretically and by
simulations the localization and collapse of large-amplitude
CPEM waves into solitary EM wave packets in semiconductor
quantum plasmas.

This research was partially supported by NSFC (Grant
No. 11104012) and the Fundamental Research Funds for
the Central Universities (Grants No. FRF-TP-09-019A and
No. FRF-BR-11-031B).
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