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Ionic transport in high-energy-density matter
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Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann
approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant
cross sections and collision integrals. Our results have been validated with molecular-dynamics simulations for
self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to
examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the
velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model,
we examine the role of dynamical screening in transport. Implications of these results for Coulomb logarithm
approaches are discussed.
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I. INTRODUCTION

Coulomb collisional processes in plasmas occur in many
scenarios, ranging from particle and energy transport (e.g.,
self-diffusion, interdiffusion, thermal diffusion, viscosity, ther-
mal conduction, stopping power, temperature relaxation, and
electrical conduction) to wave damping, particulate drag, wake
formation, and others. Central to the description of such
processes is the Coulomb logarithm (CL), which is usually
defined as

ln � = ln

(
bmax

bmin

)
. (1)

Here bmax and bmin are the maximum and minimum impact
parameters, respectively. These parameters arise through
truncating both limits in an integral [see, e.g., (5) below]
over the impact parameter of the form

∫
db/b; these integrals

would otherwise be divergent. The importance of knowing
the correct CL cannot be overestimated, as the CL is used in
a variety of applications, including numerical methods, such
as direct-simulation Monte Carlo [1], multilevel Monte Carlo
[2], particle-in-cell [3], and continuous-time Monte Carlo [4]
methods, and modeling of physical systems, including stellar
envelopes [5], dusty plasmas [6], ultracold plasmas [7,8],
inertial confinement fusion (ICF) [9–14], laser ablation [15],
and star clusters [16], among other physical systems.

Typically, bmax is chosen to be a screening length λ

and bmin is chosen to be the distance of closest approach
D ≈ Z1Z2e

2/T , where Zie is the ionic charge and T is the
temperature in energy units. The need to supply these two
parameters can be traced to two independent approximations.
In the binary scattering description of the Boltzmann equa-
tion, the relevant integrated cross sections for the Coulomb
interaction are divergent owing to the long-range nature of the
Coulomb potential. This divergence as b → ∞ is attenuated by
introducing many-body screening into bmax ex post facto. That
is, the Boltzmann equation, or any more approximate kinetic
equation obtained from it, requires the use of an effective po-
tential between charged particles. Such many-body screening
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in Coulomb systems was first described by Debye and Hückel
[17] in the context of electrolytes and was generalized by Pines
and Bohm [18] in the context of the dynamical properties of
dense electron gases. However, the Boltzmann formulation
does allow for an impact parameter of b = 0; thus, no bmin

cutoff is needed and strong scattering is well described. In the
weak-scattering limit of the Boltzmann equation, one obtains
the Landau (Fokker-Planck) equation [19], which introduces
an additional divergence at b = 0, thereby requiring the bmin

cutoff. This divergence is handled by noting that the strength
of scattering is bounded by trajectories at the distance of
closest approach D. The Landau approach thereby includes
strong scattering, again ex post facto. Today, we understand
this situation in the context of kinetic theory, as illustrated
in Fig. 1. The Boltzmann branch, which contains the Landau
equation as a subset, is the binary scattering approximation of
the full Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy [20,21] and, for this reason, requires an effective
potential to handle Coulomb systems. The choices bmax and
bmin in (1) implicitly reflect some choice of effective potential.

Alternatively, kinetic equations can be obtained via a
correlation expansion that innately includes screening; that is,
the effective potential arises naturally. Significant conceptual
progress was made by Lenard [22] and Balescu [23] through
their development of such a parallel branch of kinetic theory
(parallel to that of Boltzmann), yielding two complementary
approaches, as shown in Fig. 1. In Lenard-Balescu (LB)
approaches, many-body effects arise naturally through a
dynamical dielectric response [18] that gives rise to an effective
potential of the form v(k)/ε(k,ω) and thus a bmax need not
be specified; however, because the correlation expansion is
perturbative, a bmin divergence remains for classical systems
[24].

A sense of the importance of these issues can be seen
by choosing λ to be the classical Debye-Hückel (DH)
screening length λDH =

√
T/4πnZ2e2 and noting that ln � ≈

ln(1/
√

3�3/2), where � = Z2e2/aT is the Coulomb coupling
parameter in terms of the ion-sphere radius a = (3/4πn)1/3,
where n is the number density; the CL becomes negative
when � > 3−1/3 (≈ 0.7), suggesting that CL-based models
fail significantly near and above this value. Because of
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FIG. 1. Relevant structure of kinetic theory. From a many-body
Hamiltonian, one solves the equations of motion either directly, as
in molecular dynamics, or through an approximation of the BBGKY
hierarchy [20,21]. Most approximations made in the latter case are
of two types, either binary-collision approximations, which handle
strong collisions well using a cross section, or correlation expansions,
which include many-body physics only in the weak-scattering limit.
Here we aim to exploit both avenues via the use of an effective
potential, motivated by the right (Lenard-Balescu) branch, in a
numerical cross section from the left (Boltzmann) branch. Finally,
this approach is compared with the Landau (weak, binary-scattering)
approach, which uses a so-called Coulomb logarithm.

the challenge of directly measuring collisional processes
in high-energy-density experiments in this coupling regime,
researchers have turned to comparisons with the results of
molecular-dynamics (MD) codes incorporating higher-fidelity
physics; in such codes, the trajectories of particles in many-
body systems are computed directly [25–27]. This approach is
shown in the top branch of Fig. 1.

Given the structure of kinetic theory [21] shown in Fig. 1
and the limitations of the two complementary branches, a
fully convergent kinetic theory (CKT), which provides a self-
consistent treatment of both strong scattering and screening
without any adjustable parameters, is desired. In the seminal
work of Liboff [28], the Chapman-Enskog (CE) solution of the
Boltzmann equation with an effective potential was analyzed to
find effective CLs that include strong scattering and screening
while allowing the full integration over impact parameters (that
is, bmin = 0 and bmax = ∞). Nearly simultaneously, Kihara
[29] also emphasized the importance of directly including
potentials of mean force [30–33] to describe irreversible
transport processes in binary-scattering calculations rather
than a more naive choice for the effective potential. Aono
[34] extended these ideas to include both strong scattering
and dynamical screening, thereby yielding a convergent result
that improves upon the static screening assumptions of Liboff
and Kihara and is more consistent with predictions of the LB
approach. We now understand that the approaches of Liboff,
Kihara, and Aono are combinations of the two branches in

Fig. 1 that include properties of the Boltzmann equation at
a small impact parameter and the LB equation at a large
impact parameter, and these works laid the groundwork for
more formal theoretical developments by Frieman and Book
[35], Kihara and Aono [36], and Gould and DeWitt [37], all of
which combine aspects of the Boltzmann and LB branches.

More recent developments in Coulomb collisional pro-
cesses in the spirit of CKT have been proposed by Brown
et al. [38], whose findings are in good agreement with MD
results [25]. None of these works, however, are applicable
across coupling regimes. A seminal contribution, in the
context of stellar-evolution modeling, was that of Muchmore
[39], who both numerically computed cross sections with an
effective potential and proposed a coupling correction in the
screening length, which will be discussed in detail below. This
particular model was then numerically explored and tabulated
by Paquette, Pelletier, Fontaine, and Michaud (PPFM) [5].
In a different, but similar, treatment of the screening length
in the context of temperature relaxation, Gericke, Murillo,
and Schlanges (GMS) [9,40] proposed an effective CL that
included strong-coupling corrections in the effective screening
length used in bmax; comparisons with MD simulations [25,26]
revealed the accuracy of such an effective-potential approach
across coupling regimes, and this model will also be discussed
in more detail below. The models of Muchmore, PPFM, and
GMS are all based on choosing an optimal effective screening
length in a Yukawa-like effective potential. Such approaches
have recently been extended by Grabowski et al. [27] to
the dynamical process of charged-particle stopping across
coupling regimes, using a hypernetted-chain approach that
directly computes the effective potential and yields excellent
agreement with nonequilibrium MD simulations as well.

In parallel with these CKT developments, the Landau
(Fokker-Planck) approach was extended by many authors, in-
cluding Chandrasekhar [41], Cohen et al. [42], and Rosenbluth
et al. [43], and in all of these approaches, the doubly divergent
form was retained (1). More recently, in the context of ICF, Li
and Petrasso [13] have derived the leading-order (inverse CL)
corrections to the Fokker-Planck equation and have applied
these corrections to stopping power [14]; however, while yield-
ing a correction to the Fokker-Planck equation, the basic CL is
unmodified and remains an input parameter. In contrast with
these Boltzmann-based approaches, additional, recent results
have built upon the LB branch. Strong scattering (associated
with bmin) and coupling are incorporated in these approaches
with local field corrections; Ichimaru and co-workers [44,45]
have developed CKTs based on such an approach. In related
work, an effective CL for the one-component plasma valid
across coupling regimes has been proposed by Khrapak [46];
this CL is based on a modification of the effective bmin that
accounts for regions of negative density in the DH theory.

In this work we build upon these recent results by first
constructing effective potentials, as suggested in the works
of Kihara, Muchmore, GMS, and Grabowski et al., and we
compute ionic transport coefficients using a CE approach
similar to those of Liboff and Muchmore. The paper is
structured as follows. In Sec. II we introduce the Boltzmann
formalism [5,27,39,40] in the CE [47] expansion to assess
the importance of treating the cross section directly. In
addition, we review the pathologies associated with neglecting
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many-body effects in a bare Coulomb collision. The concept
of an effective potential is introduced in Sec. III, in which
the many-body problem is cast as an effective two-body
problem. We then numerically compute cross sections and
collision integrals in Sec. IV and present simple, accurate fits
to the calculations. These results are compared with various
formulations of the CL to reveal the relative importance
of specific approximations made in the CL derivation. In
Sec. V we explore the implications of our results for several
transport coefficients in the context of various phenomena;
we include in this section a validation of our results with
MD and several results for self-diffusion. Because our results
are based on an effective Boltzmann equation, we explore
the validity of the binary collision approximation in Sec. VI
by examining transitions between different behaviors of the
velocity autocorrelation function. We additionally explore the
role of dynamical screening on transport in this section using
a velocity-dependent screening model. Finally, concluding
remarks are presented in Sec. VII.

II. COULOMB LOGARITHM

In a plasma, the bare interaction between two particles with
charges Zie and Zje, respectively, is given by the Coulomb
potential (4πε0 = 1)

uij (r) = ZiZje
2

r
. (2)

Here the charges are either the bare nuclear charge or the
mean ionization state; see Appendix A for a more detailed
discussion. For the remainder of this work, we use atomic
units such that e = � = me = 1; however, these variables
will occasionally be used to provide context. The resulting
scattering angle of a collision can be calculated as

θij (b,v) = π − 2b

∫ ∞

r0

dr

r2
√

1 − (
b
r

)2 − 2
μij v2 uij (r)

, (3)

where b is the impact parameter of the collision, v is the relative
velocity between the particles, and the reduced mass is given
by μij = mimj/(mi + mj ), with mk being the mass of the kth
particle. The lower limit of integration r0 is the distance of
closest approach, which is the largest root of the equation

1 −
(

b

r0

)2

− 2

μijv2
uij (r0) = 0. (4)

The scattering angle can in turn be used to calculate the
momentum-transfer cross sections

σ
(n)
ij (v) = 2π

∫ ∞

0
db b{1 − cosn[θij (b,v)]}. (5)

For first-order CE theory, only the values n = {1,2} are needed.
Finally, the relevant collision integrals are given by

�
(n,m)
ij =

(
T

2πμij

)1/2 ∫ ∞

0
dV e−V 2

V 2m+3σ
(n)
ij (V ), (6)

V 2 = μijv
2

2T
, m = {1,2,3}. (7)

A discussion of how (6) is used in transport models is given
in Appendix B. For the remainder of this work, the subscripts
i and j will be omitted unless required to distinguish between
interactions between different types of species. Using (3), the
relevant scattering angle of a binary (Coulomb) collision is
then

θC(b,v) = 2 sin−1

(
1√

1 + ε2b2

)
, ε = μv2

ZiZje2
. (8)

If we then use (8) to calculate the momentum-transfer cross
section, we encounter a divergence as b → ∞ in (5). If
this upper limit is instead truncated at some bmax = λ, the
integration of (5) gives finite cross sections

σ
(1)
C (v) =

(
4π

ε2

)
1

2
ln(1 + ε2λ2), (9)

σ
(2)
C (v) =

(
4π

ε2

)[
ln(1 + ε2λ2) + ε2λ2

1 + ε2λ2

]
. (10)

Note that no notion of bmin is required to bound this calculation.
Before moving on, we should understand what this approxima-
tion means physically. It should be emphasized that introduc-
ing a truncated range in the impact parameter is not equivalent
to truncating the range of the Coulomb interaction. As shown in
Fig. 2, all particles with a sufficiently small impact parameter
will interact throughout their entire trajectories, while the
remaining particles will never interact with each other.

If one were instead to approximate the system with
a truncated-Coulomb (TC) interaction, where uij (r) =
(ZiZje

2)/r for r < λ and uij (r) = 0 otherwise, the scattering
angle would then take the form

θTC = 2 cos−1

(
(1 + 2w2)ρ√

1 + 4(1 + w2)w2ρ2

)
, (11)

ρ = b

λ
, w2 = μijλv2

2ZiZje2
. (12)

For all impact parameters with ρ > 1, the angle is not defined
and should be taken as zero, because there is no interaction in
this range. Note that Eq. (3) cannot be used to calculate this
angle, as it assumes a continuous interaction over all distances.
The corresponding momentum-transfer cross section can also
be calculated as

σ
(1)
TC = 2πλ2

[
ln[1 + 4(1 + w2)w2]

4(1 + w2)w2

]
. (13)

A similar expression can be obtained for σ
(2)
TC but has been

omitted for brevity. We have plotted σ
(1)
TC/2πλ2 as a function

of the dimensionless velocity w in Fig. 3 and compared
it to the corresponding Coulomb interaction in (9). While
qualitatively similar, the behaviors of the cross sections differ
at intermediate values of w.

Before Eq. (6) is used to calculate the collision integrals
for binary Coulomb interactions, it is common to make
two additional approximations. First, the explicit velocity
dependence of the logarithms in (9) is usually neglected and
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FIG. 2. Collision trajectories for various impact parameters in
the reference frame of one of the particles placed at the origin. All
lengths are in units of the screening length and all trajectories are
for the same fixed initial energy of E = 4Z2e2/λ. In both panels, the
dashed line indicates the trajectory for a full Yukawa potential. In
the top panel, the solid lines are trajectories computed by assuming
a pure Coulomb potential everywhere for particles that enter with
impact parameters below unity (in these dimensionless units), as
indicted by the green region, while particles not entering in this range
of impact parameters experience no force anywhere. In the bottom
panel, the impact parameter cutoff is replaced by a distance cutoff
(below the screening length), as indicated by a circular green region,
and a potential of zero elsewhere; this is the TC model described in
the text. Each of the three trajectory types yields different scattering
angles, with some improvement offered by the TC model over the
more common impact parameter cutoff model.

replaced by some thermal velocity

σ
(1)
th (v) =

(
4π

ε2

)
ln �hyp, (14)

ln �hyp ≡ 1

2
ln

[
1 +

(
2T λ

ZiZje2

)2]
. (15)

Next, weak coupling is also assumed in the argument of the
logarithm to yield

σ
(1)
WC(v) =

(
4π

ε2

)
ln �, ln � ≡ ln

(
2T λ

ZiZje2

)
. (16)

Here both (14) and (16) contain CLs. The latter CL in (16)
is in the form of (1), where bmax = λ and bmin = ZiZje

2/2T ,
which can be negative for certain parameters. As the CL in (14)
still contains some information about the hyperbolic trajecto-
ries of the collisions (rather than straight-line trajectories),
positivity of the logarithm is maintained. Either form results

FIG. 3. Reduced cross section σ (1)/2πλ2 as a function of the di-
mensionless velocity w = (μλ/2ZiZje

2)1/2v for truncated Coulomb
interactions (green lower curve) and Coulomb interactions using the
truncated impact parameter bmax = λ (blue upper curve). While the
two interactions result in qualitatively similar cross sections, these
cross sections differ for moderate values of w.

in the following simple expression for the first-order collision
integral:

�(11) =
√

πZ2
i Z

2
j e

4

2
√

2μT 3
ln �; (17)

however, each CL can introduce spurious and even patho-
logical physics into the model. As already mentioned, the
weak-coupling approximation in (16) can yield negative cross
sections and thus negative collision integrals for sufficiently
large values of the plasma parameter g = ZiZje

2/λT such
that g > 2. Second, the thermal approximation in (14), while
always positive, lacks a velocity dependence in the logarithmic
term that cannot be approximated with a constant value in
the collision integrals even for g � 1. To illustrate this issue,
we have calculated �

(11)
ij using both the velocity-dependent

cross section in (9) and the thermally approximated cross
section in (14) and have then plotted the ratio of these two
quantities as a function of g in Fig. 4. It can be seen that
the thermal approximation is a singular perturbation of the
collision integral and thus there is a significant deviation from
the true result for any finite g.

To summarize this section, the derivation of the CL (from
a Boltzmann perspective) requires a series of uncontrolled
approximations; our numerical results will shed light on their
applicability.

III. EFFECTIVE POTENTIALS IN PLASMAS

As mentioned in Sec. I, no notion of bmin is needed in
(1) within a Boltzmann description (i.e., bmin = 0); however,
bmax is still required to bound the cross sections. The presence
of bmax and its connection to screening reveal that transport
in plasmas is inherently a many-body process. Rather than
generalize the Boltzmann equation by including many-body
collisions directly with higher-order correlation functions
[48,49], it is far more practical to cast the many-body problem
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FIG. 4. Ratio of the collision integral �
(11)
C (velocity-dependent

CL), calculated using (9), to the collision integral �
(11)
th (velocity-

independent CL), calculated using (14), as a function of the plasma pa-
rameter g = ZiZje

2/λT . The thermal-velocity approximation within
the CL is a singular perturbation and thus approaches the Coulomb
form logarithmically as g → 0. This illustrates the magnitude of the
error that results from neglecting the full velocity dependence of the
cross section.

in terms of an effective two-body problem, which in turn allows
(3)–(6) to be used. This effective Boltzmann (EB) approach,
which was developed by Liboff [28], Kihara [29], and Aono
[34], has the additional advantage of including contributions
from the full density. At the lowest order, the presence of a
screening length can be rigorously incorporated through an
effective pair potential described by the so-called screened
Coulomb (SC) (or Yukawa) interaction

ueff(r) = ZiZje
2

r
e−r/λ, (18)

where λ is the screening length. While (18) is obviously an
approximation, it still represents the leading-order behavior
of a screened interaction and in the most important plasma
regimes of weak to moderate coupling, this form is likely to
be accurate. The SC potential has several additional benefits.
First, we wish to determine which screening length to use
in the Boltzmann context and it is crucial that this length be
well defined, as it is in the SC model. Second, such a choice
allows all of the numerical results of this work to be presented,
discussed, and fit to a single functional form, with the choice
of λ left to the context in which the results will be used.

In our present work we will additionally assume a plasma
with ions being linearly screened by background electrons
(or any background species) and hence the pair interaction
between two particles is given by

uij (r) = ZiZje
2

r
e−r/λe . (19)

Here the electron screening length λe is not to be confused
with the screening length in (18), which would include the
screening effects from ions as well. For example, it is (19)
that would be used in MD or Monte Carlo simulations, where
the ionic screening would be included through the many-body

calculation. Furthermore, Eq. (19) can be thought of as the
first-order generalization of a pure Coulomb system, which is
lacking in any screening from background electrons, and the
results for this special case can be obtained by simply letting
λe → ∞. However, plasmas in which electron screening is
negligible are rare in nature.

A. Effective screening length

The choice of the screening length λ is crucial to accurately
encode the many-body physics lacking in binary collision
models and there are many potential choices. For ionic
collisions, an intuitive choice is the electron screening length,
or λ = λe. However, to construct an effective potential that
includes the surrounding medium, a better choice might be the
total screening length

λ = λtot =
(

1

λ2
e

+ 1

λ2
ion

)−1/2

, (20)

which includes both electrons and ions. In high-energy-density
(HED) environments, specific choices for these lengths are the
DH theory for N ionic species

λi =
(

T

4πZ2
i e

2ni

)1/2

, (21)

λion =
(

N∑
i=1

1

λ2
i

)−1/2

, (22)

where ni is the number density of the ith ionic species, and the
(nonrelativistic) Thomas-Fermi (TF) length for the electrons

λ−2
e ≈ λ−2

TF =
√

8T

π
F−1/2(βμe), (23)

where the electron chemical potential μe is related to the
electron density ne through

ne =
N∑

i=1

Zini =
√

2T 3

π2
F1/2(βμe) (24)

and β = 1/T is the inverse temperature (in energy units). The
TF screening length naturally includes degeneracy and recov-
ers the electron DH screening length λe ∼ (4πe2ne/T )−1/2 in
the appropriate limits. Here the Fermi-Dirac integral of order p

is defined as Fp(x) ≡ ∫ ∞
0 ds sp/(1 + es−x) and accurate Padé

fits to these integrals and their inverses can be found in [50,51];
an accurate approximation [52] to these fits is given by [53]

λ−2
TF ≈ 4πe2ne√

T 2 + (
2
3EF

)2
, (25)

where the Fermi energy of the electrons is given by EF =
�

2(3π2ne)2/3/2me. If it is also necessary to include electronic
exchange and correlation effects, a procedure for adding first-
order corrections into the screening length can be found in [54].
While (20) is accurate for weakly coupled systems, the DH
model overscreens for strong coupling, potentially yielding the
unphysical result that the screening length becomes drastically
smaller than the interionic spacing.
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FIG. 5. Radial distribution functions g(r) (in the hypernetted-
chain approximation) for a one-component plasma (κ = 0) with � =
{0.01,0.1,1,10,100}. Note that the hole in the ion density around the
origin (where there is implicitly an ion) changes very little for � > 10
and that the peak does not shift, revealing that the screening-scale
length is approximately ai over most of the range of strong coupling.

The collapse of the screening length in strongly coupled
systems can be avoided by preventing it from dropping
below the ion-sphere radius, a behavior consistent with well-
known properties of the radial distribution function g(r). This
behavior is shown in Fig. 5, where the ionic structure is shown
to be dominated by the length scale ai rather than by the
screening length as the coupling is increased. The procedure
of transitioning the screening length to the ion-sphere radius at
strong coupling is obviously not unique and special care must
be taken to choose such a procedure appropriately. In GMS’s
model [40], a floor on the screening length was enforced by
choosing

λGMS =
√

λ2
e + a2

i , (26)

although GMS’s screening length does not include the DH
limit for all species, as in (20), and the prescription is
ambiguous in that regard. Alternatively, a simple method
suggested by PPFM [5] modifies the screening length to be

λPPFM = max{λtot,ai}; (27)

however, this form can yield inconsistent results in the limit
of weak coupling, especially when electronic screening is
strong. This is readily seen by simply taking λion → ∞ (that is,
vanishing ion screening) and noting that neither (26) nor (27)
recovers the correct limit of λ → λe. In this work we present
an effective screening length that treats each ionic species
separately and recovers the appropriate weakly coupled limits.
For one ionic component, this effective length takes the form

λeff =
(

1

λ2
e

+ 1

λ2
i + a2

i

)−1/2

(28)

=
[

1

λ2
e

+ 1

λ2
i

(
1

1 + 3�

)]−1/2

, (29)

where the screening length associated with a single ionic
species is given in (21) and we have used the definition of
the Coulomb coupling parameter � = (Zie)2/aiT .

These empirical approaches have have been successful
in many cases and their phenomenological behavior can be
justified by considering the following model. Take a system in
which a point source is being screened by both electrons and
ions, yet a hole of radius ai prevents the ions from approaching
the source charge. The corresponding Poisson equation, in
terms of the electrostatic potential, is given by

− 1

4π
∇2� = Zδ(r) − �

4πλ2
e

− �

4πλ2
ion

H(r − ai), (30)

where δ(r) is a delta function and H(r) is the Heaviside step
function. Applying the appropriate boundary conditions, the
general solution is given by

�(r) = Z

r
×

{
Aer/λe + (1 − A)e−r/λe , r < ai

Be−r/λtot , ai < r.
(31)

The coefficients A and B can be solved for by enforcing
C1 continuity in the solution at r = ai . Finally, this ion-hole
potential can be expanded about r = 0 as

� ∼ Z

r

(
1 − r

λIH
+ · · ·

)
(32)

to obtain an effective screening length. Solving for A and B

and introducing the standard definition κ ≡ ai/λe, the above
expansion yields the expression

λIH =
[
λe sinh(κ) + λtot cosh(κ)

λe cosh(κ) + λtot sinh(κ)

]
λe. (33)

In the DH limit, where both λe and λion are large, we recover
the relation (20). Furthermore, as λe → ∞, we obtain λIH ∼
ai + λion. While this model provides some insight into the
effects of strong coupling on an effective screening length, we
have found few quantitative differences in the results obtained
using either (28) or (33) and we thus use the simpler λeff

defined in (28) for the remainder of this work.

B. Multicomponent plasmas

While the above quantities are well defined for a single ion
species, ambiguities arise in the more general multicomponent
case. In particular, we must introduce a definition for the ion-
sphere radius of each species that is consistent with the model.
Given a system of N species, an approximate representation
for the ion-sphere radius of the ith species is

ai =
(

3Zie

4πρtot

)1/3

, ρtot =
N∑

j=1

Zjenj . (34)

This relation is obtained by giving each ion sphere a volume
proportionate to its charge such that Vi/Zi = Vj/Zj , where
Vi = 4πa3

i /3, and by enforcing the overall volumetric con-
straint

∑
i niVi = 1 as well. Note that (34) reduces to the

more common definition for the single-component case [55].
The appropriate effective screening length associated with a
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multicomponent system of N ionic species is now simply

λeff =
[

1

λ2
e

+
N∑

i=1

1

λ2
i

(
1

1 + 3�IS
i

)]−1/2

. (35)

Here the screening lengths are again given by (21) and the
coupling parameter of each ionic component �IS

i is now written
in terms of the respective ion-sphere radius, which is now
defined by the relation (34) as

�IS
i = (Zie)2

aiT
. (36)

While this is not the typical definition for the coupling
parameter in mixtures, this is the relevant quantity for the
desired physics in the screening length and the usual form
is returned in the single-component case. The above relation
is connected to the more common definition of the coupling
parameter in Sec. V B. Of course, a similar modification can be
made to the electronic contribution, but for hot dense matter,
electrons are precluded from being too strongly coupled due
to their smaller charge and partial degeneracy.

IV. SCREENED COULOMB RESULTS

We now repeat the analysis of Sec. II using the SC potential.
This section follows closely the work of Muchmore [39] and
Paquette et al. [5], who extended the works of Liboff, Kihara,
and Aono to include the numerical determination of cross
sections and collision integrals. To first illustrate the dramatic
effect of incorporating screening into the interaction, a series
of trajectories is shown in Fig. 2. Here the screened Coulomb
trajectories are seen as dashed curves and are compared to the
simpler Coulomb interactions with either a truncated impact
parameter (top panel) or a truncated range (bottom panel). The
scattering angle of a binary collision will now be given by

uij (r) = ZiZje
2

r
e−r/λ, (37)

θij (b,v) = π − 2b

∫ ∞

r0

dr

r2
√

1 − ( b
r
)2 − 2

μv2 uij (r)
, (38)

where λ is again the screening length and the distance of closest
approach r0 is now the largest root of the equation

1 −
(

b

r0

)2

− 2ZiZje
2

μv2r0
e−r0/λ = 0. (39)

To reduce the size of the parameter space, it is convenient to
introduce the transformation and dimensionless parameters

r → λr, ρ = b

λ
, w2 = λμijv

2

2ZiZje2
. (40)

Generally, there is no closed-form solution to (38). In the
weak-scattering approximation, Liboff [28] obtained an ap-
proximate scattering angle for the screened Coulomb potential
of the form θ ∼ w−2K1(ρ), where K1(ρ) is the first-order
modified Bessel function of the second kind; however, a full
numerical treatment is required to span the parameter space.
Consequently, the momentum-transfer cross sections (5) must

FIG. 6. Reduced cross sections φn = σ
(n)
ij /2πλ2 versus dimen-

sionless velocity w = (μλ/2ZiZje
2)1/2v shown for n = 1 (top) and

n = 2 (bottom). The numerical results (black circles) are compared
to fits generated with a least-squares method (blue lines); these fits
are presented in Eqs. (C15)–(C18).

be calculated numerically as well. The cross sections can be
expressed in terms of the dimensionless parameters as

σ
(n)
ij (w,λ) = 2πλ2φn(w). (41)

Properties and numerical solutions of φn(w) are presented
in Appendix C. Furthermore, Eqs. (C15)–(C18) represent
accurate fits to this function, as shown in Fig. 6. We can now
compare this result to the cross sections calculated in Sec. II.
The dimensionless cross section φ1(w) is shown with the
Coulomb cross sections with and without velocity-dependent
logarithms in Fig. 7. It can be seen that using the velocity-
dependent logarithm in (9) recovers the limiting behavior
at high velocities but exhibits significant deviation at low
velocities. Furthermore, the cross section in (14), which uses a
thermal velocity, only recovers mild qualitative agreement for
the range of plasma parameters chosen.

Using the same units, we can also express the collision
integrals as

�
(n,m)
ij =

√
2π

μij

(ZiZje
2)2

T 3/2
Knm(g), (42)

Knm(g) ≡ gm

∫ ∞

0
dw e−gw2

w2m+3φn(w), (43)

where

g = ZiZje
2

λT
. (44)

The collision integrals are thus entirely characterized by
the function Knm(g). We have provided fits for Knm(g) in
Eqs. (C22)–(C24) in Appendix C as well, where the numerical
calculation of K11(g), along with the corresponding fit, is
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FIG. 7. Comparison of dimensionless cross sections. The
screened Coulomb (black solid curve) cross section from Eq. (C15)
and the Coulomb cross section using a truncated impact parameter
(blue dashed curve), as in Eq. (9), have the same limiting behavior
at high velocities but deviate significantly from each other at low
velocities. The Coulomb cross section using a thermal velocity in
the logarithm, as in Eq. (14), is shown for several plasma parameters
(green dash-dotted curve), for a range of values of g = {0.1,1,10}.

shown in Fig. 8. To compare these calculations to the simpler
CL results, it is convenient to plot the ratios of the collision
integrals, which allows these quantities to be represented in
terms of the plasma parameter g alone. The ratios of the
full collision integral, using the SC potential within the EB

FIG. 8. Reduced collision integral (43) as a function of the plasma
parameter g = ZiZje

2/λT for the case (n,m) = (1,1). The numerical
results (black circles) are compared to fits generated with a least-
squares method (blue lines); these fits are shown in Eqs. (C22)–(C24).
The cases of (1,2), (1,3), and (2,2) yield visually similar results and
have been omitted for brevity.

FIG. 9. Comparison of collision integrals as ratios of these
integrals to the EB collision integral calculated from (42). Here
�tip (black solid curve) is calculated using the cross section with
a truncated impact parameter in (9), �th (blue dashed curve) is
calculated using the cross section with a thermal velocity in (14),
and �WC (red dotted curve) is calculated using the cross section in
the weakly coupled limit from (16). Each approximation results in
significant deviations from unity for even smaller values of the plasma
parameter g.

approach, to the collision integrals calculated from the cross
sections (9), (14), and (16) are shown in Fig. 9. Note that
significant deviation from unity is seen for each approximation
at even smaller values of the plasma parameter g.

V. TRANSPORT COEFFICIENTS

High-energy-density environments are most typically mod-
eled using the macroscopic equations of hydrodynamics
[56–58]. When mild kinetic effects are important, HED
matter can be modeled by the Fourier-Navier-Stokes equations
(FNSEs)

∂ρi

∂t
+ ∇ · (ρiv) = ∇ · Dij [xj∇ρi − xi∇ρj ], (45)

ρ

(
∂v
∂t

+ v · ∇ ⊗ v
)

= −∇P + η∇2v, (46)

∂Ti

∂t
= 1

CV

∇ · (Ki∇Ti) +
∑

j

1

τij

(Tj − Ti) + Si, (47)

which are the usual three conservation laws for a mixture. Note
that ρ represents the mass density in this section, whereas it
represents the charge density elsewhere in this work. These
equations describe the time evolution of a mixture subject to
pressure forces but also include diffusive mixing, viscosity,
thermal conduction, temperature relaxation, and possibly an
external energy source or sink. As is common, there is one
momentum equation, representing the total momentum of
the mixture. This form is generic and the detailed material
properties enter through choices of the equation of state and
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of the transport coefficients. Obviously, when the transport
coefficients are small, this set of equations becomes the simpler
Euler hydrodynamics equations [59]; conversely, for hot dense
matter, accurate models require knowledge of the transport
coefficients because they are moderate to large. In fact, at
very high temperature [60], or when there are steep gradients
[61], the FNSE description itself may become inadequate as
nonlocal transport becomes important; such circumstances are
beyond the scope of the present work, but see the discussion
around (83) below.

In previous sections, we have provided an effective potential
approach to computing the transport coefficients for processes
involving ion-ion collisions and the results have been reduced
to simple fits in (C22)–(C24). In this section we will discuss
each transport coefficient in turn. We begin in the next
subsection with the self-diffusion coefficient, which, while
it does not appear in (45)–(47), provides the simplest test
of the models, and we have generated MD data to validate
our result for this coefficient. In the following subsections
we discuss interdiffusivity, viscosity, and thermal conductivity
and we validate our predictions with the MD results of several
investigators.

A. Self-diffusivity

The simplest transport process is self-diffusivity, which
describes the movements of tagged individual particles from
regions of high concentration to regions of low concentration.
To linear order, this can be represented in terms of gradients
of the mass density ρ, as Fick’s first law

J = −D∇ρ, (48)

where J is the the mass flux and D is the self-diffusion
coefficient. To validate the EB model for D, we compare with
the more fundamental Green-Kubo relation

D = 1

3

∫ ∞

0
dt〈v(t) · v(0)〉, (49)

where v is the velocity of a particle and the angular brackets
correspond to both an average over particles and equivalent
initial times of the stationary ensemble. It is useful to define
the velocity autocorrelation function (VACF)

Z(t) = 〈v(t) · v(0)〉
〈v(0) · v(0)〉 , (50)

which is a normalized measure of the collision dynamics of
individual particles over time; note that

D = T

m

∫ ∞

0
dt Z(t). (51)

We will examine detailed properties of Z(t) in Sec. VI.
The particle trajectories needed to evaluate Z(t) are readily

obtained from MD; here we have used a standard methodology
with interionic potentials of the form

u(r) = Z2e2

r
e−r/λe . (52)

Note that (52) contains only the electronic screening length,
as the many-body effects of the ions are included naturally in
the MD simulation. While many authors have computed the

self-diffusion coefficient for Yukawa systems, we validated our
MD using the results of Ohta and Hamaguchi [62]; we also
extended the work of these authors to weaker coupling, where
the transport coefficients are large, and our results are therefore
relevant to HED applications. In particular, we focused on
plasma conditions for which there are important differences in
CL prescriptions.

As usual, we characterize the plasma using the standard
dimensionless quantities

� = Z2e2

aiT
, κ = ai

λe

, (53)

where � is the Coulomb coupling parameter. The plasma
parameter, which is the principle input to the collision
integrals, can be expressed in terms of these quantities as

g = Z2e2

λeffT
= �

(
κ2 + 3�

1 + 3�

)1/2

. (54)

Molecular-dynamics simulations were carried out for the
parameter values listed in Table I to yield dimensionless
self-diffusivities D∗ = D/ωpa2

i , where ai is the ion-sphere
radius and ωp = (4πnZ2e2/mi)1/2 is the plasma frequency.
The MD results were then compared to the first-order CE
prediction of the self-diffusivity

D = 3T

8nmi�
(11)
ii

= 3T 5/2

16
√

πminZ4
i e

4K11(g)
, (55)

which in its reduced form is given by

D∗ =
√

3π

12�5/2K11(g)
. (56)

TABLE I. Results from molecular-dynamics calculations of the
self-diffusion coefficient D∗ = D/ωpa2 are given for ranges of κ and
�. These results are shown and compared with theoretical models in
Fig. 10.

κ � D∗ κ � D∗

0.5 0.1 143 1.5 0.1 209
0.3 16.4 0.3 24.5
0.5 6.4 0.5 10
0.7 3.76 0.7 5.92
1.0 2.14 1.0 3.15
2.0 0.82 2.0 1.19
5.0 0.28 5.0 0.356

10.0 0.13 10.0 0.155
20.0 0.069 20.0 0.0787
30.0 0.043 30.0 0.0505

1.0 0.1 173 2.0 0.1 241
0.3 20.9 0.3 28.4
0.5 8.41 0.5 12.3
0.7 4.72 0.7 7.32
1.0 2.54 1.0 3.72
2.0 1.02 2.0 1.52
5.0 0.31 5.0 0.504

10.0 0.15 10.0 0.229
20.0 0.073 20.0 0.0998
30.0 0.0456 30.0 0.0681
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FIG. 10. Self-diffusion coefficient D∗ = D/ωpa2 versus � for κ = {0.5,1.0,1.5,2.0}. Shown are three variants of the EB approach based
on an electron-only screening length (solid yellow curve), the total DH screening (dashed red curve), and the effective screening length
of (28) (solid blue curve). Black points are our MD results. Also shown are the results obtained using the CL of (15) (dash-dotted green
curve).

We can define an effective diffusion CL as ln �D ≡ 4K11 to
recover the more familiar expression for the self-diffusion
coefficient.

Our results are shown in Fig. 10, where we compare MD
with EB for three choices of the effective potential—electron-
only screening, total DH screening, and the effective screening
of (28)—and the CL of (15) using the screening length in
(28). Compared with MD, the electron-only screening model,
shown as a solid yellow line, does a fair job, especially when
the electron screening is strong (large κ). This trend is expected
because the electrons dominate screening when κ is large
unless the ions are very strongly coupled. Including the ions
in the screening length according to (20) yields the dashed red
curve, which represents a very slight improvement for small
� but is considerably worse for large �. This trend can be
seen in Fig. 11, where an expanded view of the weak-coupling
region is shown, now on a log-linear scale. However, with
the modification of (28), excellent agreement with MD is
found over most of the ranges of � and κ . These results can
be understood as follows. When κ is small, ionic screening
contributes substantially to the overall effective potential;
however, as the coupling becomes modest to large, the DH
model for the ions overscreens and the additional contribution
of ai in (28) becomes very important. We would like to point
out that the trend seen in this figure occurs in part because
the ionic � is allowed to vary while the electron screening κ

is being held fixed; in a real plasma, a much more complex
interplay between these parameters would occur.

B. Atomic-scale diffusive mixing

Atomic-scale mixing between species is described in
the FNSE model through terms in (45) that contain the
interdiffusion terms involving the coefficients Dij . Preventing
such material mixing at interfaces in ICF experiments is
essential to ensure a clean fuel region. Because interdiffusion
is sufficiently different from self-diffusion, we present here
some of the important definitions needed when considering
interdiffusion before discussing numerical results.

For simplicity, consider a binary mixture with species
number densities n1 and n2, total number density n = n1 + n2,
masses m1 and m2, total mass density ρ = ρ1 + ρ2 = m1n1 +
m2n2, and charges Z1e and Z2e. Using these quantities, we
can form the fractional densities ci(r,t) = ni(r,t)/n(r,t) and
xi(r,t) = ρi(r,t)/ρ(r,t). The mixing rate for species i can be
written using the continuity equation

∂ρi

∂t
+ ∇ · (ρiu) = −∇ · Ji , (57)

which is written in terms of the center-of-mass velocity field

u(r,t) =
∑

j

xj (r,t)uj (r,t), (58)

which is in turn written in terms of the local velocity fields
uj (r,t). The mass flux in excess of the inertial convection for
each species is then

Ji(r,t) = ρi(r,t)[ui(r,t) − u(r,t)]. (59)
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FIG. 11. Same quantities as in Fig. 10, but shown here using an abbreviated linear scale for � to emphasize the weak-coupling limit.

Using the conservation of the total density ρ(r,t), we can also
express (57) as

ρ

[
∂xi

∂t
+ u · ∇xi

]
= −∇ · Ji . (60)

These relations, which are microscopically exact, are simply
expressions of species continuity written in terms of variables
relevant to mixing.

If we assume time scales such that momenta have reached
a steady state and the only gradients present are the concentra-
tion gradients, we can approximate the mass fluxes using the
relation

Ji ≡ −ρ(r,t)Dij∇xi(r,t) (61)

= −Dij [xj (r,t)∇ρi(r,t) − xi(r,t)∇ρj (r,t)], (62)

which serves to define the interdiffusion coefficient Dij [63].
Given the total flux balance J1 + J2 = 0, it must then be true
that Dij = Dji . (However, we will retain the subscripts to
distinguish this coefficient from the self-diffusion coefficient.)
In general, Dij is a complicated function of the local properties
of a dense plasma mixture. In the limit in which the nonlinear
advection term in (60) is negligible, (45) decouples from (46)
to yield

∂ρi

∂t
= ∇ · Dij [xj∇ρi − xi∇ρj ]. (63)

Note that unlike with self-diffusion, density fluctuations in ρi

can arise from inhomogeneities in the j th species, even if the
ith species is itself uniform. If we additionally approximate
the mean total density ρ(r,t) to be a constant, we obtain the

simpler form of

∂xi

∂t
= ∇ · Dij∇xi, (64)

which describes the change in the relative concentration
of species i due to its gradient. These nonlinear diffusion
equations are analogous to those obtained by Molvig et al. [60].
However, note that (63) is a set of coupled diffusion equations
for the two species and, despite its simple appearance,
(64) is coupled to the evolution equation for xj as well
because Dij = Dij (xi,xj ). For example, note that collision
rates of species i will depend on the screening properties of
species j , through the effective potential, and therefore on
the temperature, density, and charge of species j as well.
In modeling real experiments, of course, the steady-state
assumption (62) obviates the use of such diffusion equations
for short times, the flux in (62) may involve other gradients,
the nonlinear advection terms may not be negligible, and the
total mean density may not be nearly uniform; in such cases,
(46) must be solved simultaneously with (45). When (62) is
used to model the relative fluxes, the atomic mixing problem
reduces to the solution of nonlinear diffusion equations that
require Dij values, which can be written as

Dij = 3T

16nμij�
(11)
ij

(65)

= 3T 5/2

16
√

2πμijnZ2
i Z

2
j e

4K11(g)
, (66)

where the collision integral �
(11)
ij is given by (6).

To validate our numerical results, we have chosen to
compare with the MD results of Hansen, Joly, and McDonald
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FIG. 12. Comparison of our EB solution of the interdiffusion
coefficient to MD data from [64]. Two models for the effective
screening length are used: total (red dashed curve) and effective (blue
solid curve).

(HJM) for dense plasma mixtures relevant to stellar interiors
[64]. The case of HJM was chosen in part because these
investigators employed the binary-ionic mixture, in which
the ions interact through a bare Coulomb force. That is,
in this case, there is no electron screening contribution in
(28), or equivalently κ = 0; the effective screening length
is thus determined by the self-screening of the ions alone.
A 50/50 mixture of H+ and He2+ was used for the three
values of �ij = {0.8,8,80}, where �ij = ZiZje

2/atotT , with
atot = (3/4πntot)1/3 and ntot = nH + nHe. In these units, the
plasma parameter can be written as

g = ZiZje
2

λeffT
(67)

= �ij

(
κ2 +

N∑
k=1

3x−1
k �kk

1 + 3(xk/zk)1/3�kk

)1/2

, (68)

where now κ = atot/λe, xi = ni/ntot is the number-density
concentration, and zi = ρi/ρtot is the charge-density concen-
tration. In Fig. 12 we show comparisons with the MD results
of HJM for this case and with two EB results using the total
DH screening length and the effective screening length of
(28). In this case of a mixture, the coefficient is normalized as
D∗ = D/ωHPa

2
tot, where the hydrodynamic plasma frequency

ωHP is defined in terms of the mean charge and mean mass of
the mixture. Once again, we see excellent agreement between
MD results and the effective model and the usual DH screening
model fails for moderate coupling.

C. Viscosity coefficient

We now turn to macroscale mixing. When a high-density
fluid is accelerated by a low-density fluid, an interfacial
fingering instability known as the Rayleigh-Taylor instability
(RTI) occurs [65–68]. In an imperfect ICF capsule, small-scale
perturbations between the ablator and fuel layers can grow to
large amplitudes and potentially result in a turbulent state. In

a simple fluid model, in which the amplitude of the interfacial
perturbation is given by h, the growth of instability can be
approximately modeled as

dh

dt
= αh, (69)

where the growth rate α is a function of the physical properties
of the plasma and the forces. The simplest model for the growth
rate α0(k) is given by

α0(k) =
√

Agk, (70)

where A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number in
terms of the two fluid densities ρ1 and ρ2, g is the acceleration,
and k is the wave number of the interfacial disturbance. This
formulation of RTI does not include the effects mentioned in
the previous section; however, Duff et al. [69] developed a
model for instability growth that includes both diffusive and
viscous corrections. In the absence of diffusion, they employ
the approximate result

αν = (Agk + ν2k4)1/2 − νk2, (71)

where ν = (η1 + η2)/(ρ1 + ρ2) is the mean kinematic viscos-
ity in terms of the densities and viscosities of each material.
As is well known, viscosity generally suppresses instability
growth at shorter length scales and this is increasingly true for
larger viscosities. Similarly, when the effects of diffusion are
included, the total growth rate becomes

ανD = [Agk/ψ + ν2k4]1/2 − (ν + D)k2, (72)

where ψ is a known function of A, k, and D [69]. Thus,
accurate values of the material viscosities and diffusivities are
needed to understand and model RTI growth rates. Because
diffusion can be slow, mixing is often dominated by fluid
instabilities, in which case we can characterize the impact of
transport on RTI by scaling the growth rate (71) by (70) to
obtain

α(k)

α0(k)
=

√
1 + ν̃2k̃3 − ν̃k̃3/2, (73)

where ν̃ = ν/νe is in terms of νe, the viscosity computed using
the electron screening length, and k̃ = k/(Ag/νe)1/3. Framed
this way, we can examine the role of viscosity in terms of
different choices for the effective potential, using

η = 5T

8�
(22)
ii

= 5
√

miT
5/2

16
√

πZ4
i e

4K22(g)
. (74)

Alternatively, the reduced viscosity is given by

η∗ = 5
√

3π

36�5/2K22(g)
, (75)

where η∗ = η/mnωpa2. Note that K22(g) can be thought of as
an effective Coulomb logarithm for viscosity, as

ln �η ≡ 2K22(g), (76)

for which the numerical results above can be used. Given that
the cross section σ (2)(v) must be used for this transport process,
the CL with an impact parameter cutoff and a thermal velocity
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FIG. 13. Dimensionless viscosity η∗ = η/mnωpa2 shown for κ = {1,2,3} using the MD data of Donko and Hartmann (black triangles)
[70] and the EB approach with both the total screening length (red upper curve) and the effective screening length of (28) (blue lower curve).
The effective screening length result agrees well with the MD data for � < 10 at κ = 1 and for even larger values of � as κ increases, to nearly
� ∼ 100 with κ = 3.

analogous to (15) is given by

ln �
(2)
hyp = 1

2

[
ln

(
1 + 4

g2

)
+ 4

4 + g2

]
. (77)

This illuminates the important point that different CLs must
be used for different transport processes. Even within the
binary framework of the EB approach, the collision integrals
clearly change, as indicated by the indices (n,m). Generally,
the effective Coulomb logarithm associated with the index pair
(n,m) can be expressed in terms of the function (43) as

ln �(n,m) = 4Knm(g)

n(m − 1)!
. (78)

Our results are shown in Fig. 13, where we plot the
dimensionless viscosity η∗ versus � for the three values of
κ = {1,2,3}. We compare MD results from [70] to the EB
predictions using the total and effective screening lengths.
Once again, we see much better agreement using (28) relative
to the total DH screening length. In the case of viscosity, we
see especially poor agreement for very strong coupling and this
behavior differs from that observed with the other coefficients
presented above. This failure can be traced to the fact that the
Boltzmann equation is incapable of describing correlations in
systems poorly modeled by the ideal gas equation of state and
binary collisions. However, in the regimes most relevant to
HED materials, for which the viscosity is large, the agreement
between the MD and EB results is very good.

D. Thermal conductivity

The transport coefficients discussed above are associated
with particle and momentum transport. Equally important is
the transport of heat (or temperature or energy). Short-pulse
laser-target interactions are an important class of applications
in which large amounts of energy are rapidly absorbed in
a small region of a target. These applications include laser
ablation of metals [71], ICF [72,73], and x-ray laser deposition
[74]. When heating is rapid, there may be little mass motion
and the full set of equations (45)–(47) may not be needed.
Under such circumstances, only (47) is needed; such a model
that includes radiation absorption is given by the electron-ion

two-temperature model (TTM) [15,75,76], which includes the
coupled energy equations

∂Te

∂t
= 1

Ce

∇ · (Ke∇Te) + 1

τie

(Ti − Te) + Srad, (79)

∂Ti

∂t
= 1

Ci

∇ · (Ki∇Ti) + 1

τie

(Te − Ti), (80)

which are a variant of coupled nonlinear reaction-diffusion
equations for the electron and ion temperatures. In this TTM,
it is assumed that the radiation is absorbed into the electrons
only and is included through the source term Srad(t). More
advanced versions of the TTM replace the ion temperature
equation (80) with a full MD description [71]. More complete
models used for ICF include the full set of hydrodynamic
equations [73], as in (45)–(47), but also include an additional
radiation-diffusion equation. The thermal conductivities Ke

and Ki for the electrons and ions, respectively, obviously play
a key role in the distribution of energy in these models. (The
temperature relaxation term is discussed elsewhere [25,40].)

Here we focus on the ion thermal conductivity, as our
approach is most applicable to ionic transport; the general
conclusions will apply to electron heat conduction as well,
which can be treated with a cross-section calculation for at-
tractive quantum scattering [77]. The EB thermal conductivity
is given by

K = 75T

32mi�
(22)
ii

= 75T 5/2

64
√

πmiZ
4
i e

4K22(g)
, (81)

which is in terms of the same collision integral �
(22)
ii as the

viscosity (to this order) and thus the ratio (proportional to the
Prandtl number) is independent of details of the collisions.
Alternatively, the reduced conductivity is given by

K∗ = 25
√

3π

48�5/2K22(g)
, (82)

where K∗ = K/mωpa2
i . Our results are shown in Fig. 14 for

various values of � and κ . We also show a fit to previous MD
data [78] as a solid black line; a dashed black line is used
to denote regions in which the fit is an extrapolation of the
MD data. Our numerical result has a different scaling with
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FIG. 14. Dimensionless thermal conductivity K∗ versus � for four values of κ = {0.1,1,2,3}. The EB result using (28) is shown as a solid
blue line. A fit to MD results [78] is shown in black; we use a solid line for the fit over the � range where MD results contributed to the fit and
a dashed line in the range where the fit is extrapolated, revealing the large error associated with extrapolating MD results to weak coupling.
For this transport coefficient, the MD fit provides much less of a validation than for the others.

� at weak coupling, revealing a transition of behavior in the
moderate-coupling regime; MD fits obtained in the strongly
coupled regime should not be extrapolated. As with the
viscosity, our results do not capture the thermal-conductivity
minimum; however, as we mention above, when values of
the transport coefficients are very small, they are relatively
less important to the overall hydrodynamics, so this does not
represent a serious limitation. Importantly, the MD data does
not exist at sufficiently small couplings to validate the model
in the same way as the other transport coefficients discussed
above. This suggests the need for further MD studies of thermal
conductivity, which is notoriously difficult to compute [79].

It is important to note that heat conduction, because it
involves a larger velocity moment, can become nonlocal [80]
when there is a steep gradient, thereby obviating the form of
the TTM given above. Under such circumstances, however,
our approach can still be used to give approximate results in
nonlocal kernel models, such as models of heat flux of the
form [80,81]

q(z) =
∫

dz′G(z,z′) qlocal(z
′), (83)

where G(z,z′) describes the nonlocality and qlocal is a local
approximation. The local flux, given by Fourier’s law, could
employ the thermal conductivity coefficient described in
the present work; however, additional work in this area is
warranted, especially for the electron-ion scattering case.

VI. EFFICACY OF THE EFFECTIVE BINARY APPROACH

The effective Boltzmann approach based on (B1) and
(18) cannot describe the collective dynamics of a many-body
system. In the LB branch of Fig. 1, dynamical effective
potentials are of the form v(k)/ε(k,ω), where ε(k,ω) is
the frequency-dependent dielectric response function; such
effective potentials incorporate hydrodynamic waves and
flows, as well as finite-velocity effects. For example, in the
effective potential approach of Grabowski et al. to describing
stopping power [27], a finite-velocity correction to the effective
potential was essential. Because a static effective potential
used in a Boltzmann (CE) approach cannot easily handle
many-body dynamics, we wish to estimate the importance
of such effects, which we do in the context of the self-
diffusion coefficient. (See Appendix B for further details of
the Boltzmann approach.)

We begin by noting that the Boltzmann equation effectively
describes very short-time scattering events; the derivation of
the Boltzmann equation, as with most collision operators,
assumes a Bogolyubov separation of time scales between the
one- and two-body distribution functions. Moreover, the ran-
domization (stosszahlansatz) incorporated into the boundary
conditions of the collision process results in a Markov process.
Taken together, this predicts a simple exponential decay of the
VACF. Modifying the force law, as in the choice of the effective
potential, does not impact these properties of the Boltzmann
equation. Thus, the appearance of non-Markovian features
reveals a breakdown of the effective Boltzmann approach
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FIG. 15. Variation in functional forms of the VACF. In the left panel, the Yukawa phase diagram for three different behaviors is shown: the
bottom (green) region is exponential decay, the middle (blue) region is the modulated decay regime in which oscillations in the VACF begin
to arise, and the top (purple) region is the caged regime. In the right panel, we show several characteristic VACFs across the phase diagram
corresponding to the (κ,�) values of (0.5,70), (1,20), and (1.5,5), respectively.

and this breakdown is readily observed in the MD results.
We have computed the VACF over a wide range of the (�,κ)
parameter space and have examined its decay properties. These
results are summarized in Figs. 15 and 16. In Fig. 15 we
show the Yukawa phase diagram with three regions shaded. In
the lower (green) region, the VACF decays monotonically to
zero. For very weak coupling, the decay is visibly exponential,
although a ballistic behavior at early time becomes observable
as the effective coupling is increased. One expects that the EB
approach would model this regime quite well. In the middle

FIG. 16. Transition from exponential decay to algebraic t−3/2

decay versus coupling. Several VACFs on a log-log scale are shown
for fixed κ = 1 and various values of �. Note that the top two curves
show exponential decay and this decay is faster than the dashed t−3/2

line. However, near � ∼ 10, the decay remains mostly exponential but
with important modulations at later times. At � = 20, the VACF has
well-defined minima and decays very slowly at late time, a behavior
that increases for large �.

(blue) region, the VACF is always positive at early times
(ωpt < 30) but exhibits an onset of oscillations: The decay
is no longer monotonic, revealing a feature not well described
using a Boltzmann approach. The collective dynamics are
occurring on the same time scale as the collision itself. As
we have seen in the previous section, we get reasonable
agreement in this regime, perhaps because the decay is similar
enough to the simpler exponential decay. We have defined
the boundary between these two regions as being the point at
which the first oscillation in the VACF has a zero derivative and
an approximate representation of this boundary in the range
κ ∈ [0,2] is given by

�osc ≈ 5.97 + 1.93κ + 1.16κ2 + 1.44κ3. (84)

Because the modulated decay region occurs for modest values
(� > 5.97) of the Coulomb coupling, it only impacts transport
when the transport coefficients are modest to small. Finally, in
the top (purple) region, we have the so-called caging regime,
in which the VACF changes sign, indicating a reversal of the
direction of the ion. Caging implies quite strong coupling, as
each particle is temporarily trapped by the cage formed by its
(several) neighbors, a phenomenon clearly incapable of being
described appropriately by considering binary cross sections.
As seen in the previous section, the effective Boltzmann
approach shows significant deviations in this regime. However,
for transport described by (45)–(47), the transport coefficients
are relatively small in this regime and their utility and accuracy
are not of paramount importance. We have defined the onset of
the caged regime as the point at which the first oscillation in the
VACF becomes negative and an approximate representation of
this boundary in the range κ ∈ [0,2] is given by

�cage ≈ 34.1 + 17.1κ2 − 13.6κ3 + 5.39κ4. (85)

Next, in Fig. 16 we examine the same properties in more
detail to reveal additional ways in which the Boltzmann picture
begins to fail. Here we show the VACF itself as a function of
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time for several values of � and, without loss of generality, for
fixed κ = 1. Note that this plot is on a log-log scale in which
power laws appear as straight lines. The top two curves (blue
and green) decay exponentially for small �, consistent with the
Boltzmann picture. However, for � � 10, the decay not only
exhibits inflections but also begins to form a slowly decaying
tail. This tail broadens as the coupling increases. We also
show a dashed line consistent with a decay of ∼ 1/t3/2, which
is the the so-called long-time tail [82]. Our results indicate a
transition to the long-time tail around � � 10, but always in
the presence of oscillations.

While the interaction within the EB formalism is inherently
static, it is possible to modify the effective screening length to
incorporate finite-velocity effects. The effective interactions
between ions will become more Coulomb-like at higher
velocities, as the screening background is unable to respond as
quickly. Zwicknagel et al. [83] suggested the following form
to modify the ionic screening length:

λi(v) =
[

1 +
(

v

vi

)2]1/2

λi, (86)

where we have defined the thermal velocity of the ith
species as vi = (2T/mi)1/2, although this is not a unique
choice. As shown by Grabowski et al. [27], the modification
(86) yields surprisingly good agreement when predicting
dynamical properties such as stopping power. The resulting
velocity-dependent effective screening length will then take
the form

λeff(v) =
[

1

λ2
e

+
∑

i

1

λ2
i

(
1

1 + v2/v2
i + 3�i

)]−1/2

. (87)

It is important to note that this quantity can no longer be
applied to the fits (C22)–(C24) and must instead be used in the
momentum-transfer cross sections first before calculating the
collision integrals due to the velocity dependence. We examine
the implications of a velocity-dependent screening length in

FIG. 17. Impact of a velocity-dependent screening length λ(v)
on the first-order cross section shown by taking the ratio of the
dynamically screened cross section using λeff(v) (denoted by σ

(1)
DS )

to that using only the static λeff as a function of v/vi . The ratios are
calculated at κ = 0.5 for the values � = {0.5,1,2,5,10}. Deviations
are greatest for v ∼ vi and increase for larger coupling values.

FIG. 18. Ratio of the dynamically screened self-diffusion (top)
and viscosity (bottom) coefficients to their static counterparts as a
function of coupling � for κ = {0.5,1,1.5,2}. Note that for weaker
screening (smaller κ), the dynamical correction can be significant.

Fig. 17, where we show the ratio of the dynamically screened
cross section using (87) and its static counterpart [i.e., λeff(v =
0)] as a function of v/vi for a range of �. One expects the
dynamical effects to be negligible at low velocities; however,
these effects are small at high velocities as well. This latter
behavior occurs because the screening length itself has little
impact on the cross section in this regime. Indeed, it is only
when v ∼ vi that dynamical effects are greatest and these ef-
fects on the cross section are greater for larger coupling values.

Once the momentum-transfer cross sections are computed
with (87), the collision integrals can be recalculated to
determine the effects of dynamic screening on the transport
coefficients. In Fig. 18 we show the ratios of the dynamically
screened self-diffusion and viscosity to their static counter-
parts. As we can see, dynamic screening can reduce each
coefficient on the order of 10% when � ∼ 1 and κ is small.
However, for systems with strong electron screening (large
κ), the effects of dynamic ion screening are negligible for all
coupling strengths.

VII. CONCLUSION AND OUTLOOK

Ionic transport in dense HED plasmas, including self-
diffusion, interdiffusion, viscosity, and thermal conductivity,
has been described using an effective potential approach in
the context of the CE solution of the Boltzmann equation. We
have focused on the weak-screening and moderate-coupling
regimes where transport can play an important role in HED
experiments. For practical use, we have formulated an effective
potential that is of the screened Coulomb (Yukawa) form,
which allows detailed numerical solutions to be reduced
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FIG. 19. Diagram outlining the algorithm to calculate transport
properties using the fits of this work. The calculation begins with
a determination of the atomic structure of the possibly partially
ionized mixture, followed by a determination of the relevant plasma
properties (electron screening length and ion screening length) to
obtain the effective screening length. This can then be used to compute
transport coefficients either near equilibrium (right branch) or using
cross sections and a non-Maxwellian distribution (left branch).

to simple fits valid over wide ranges of parameter values.
Fits have been provided for both the intermediate velocity-
dependent cross sections and the thermally averaged collision
integrals, allowing one to easily obtain the near-equilibrium
ionic transport coefficients or perform integrals over the
cross section weighted by a non-Maxwellian distribution. Our
approach has greatly extended the numerical methods needed
to compute the collision integrals and our results are more
accurate over a wider range of parameter values and consid-
erably simpler to use than those of Paquette et al. [5]. A brief
overview of how our results can be used to model HED plasmas
is shown in the diagram in Fig. 19. In our analysis, we have also
connected the effective Boltzmann approach to the simpler CL
approach and have detailed the natures of the approximations
that are required to obtain specific CL models. Interestingly,
while there is a convergence of the EB approach to the simpler
CL models at weaker coupling, we find that the convergence
is extremely slow and poorly behaved, as shown in Fig. 4.

We have validated our results with MD simulations for the
self-diffusion coefficient and found the EB model to be quite
predictive over the ranges of � and κ of importance to HED
experiments, thereby validating our model for the effective

potential. In particular, we found that the effective screening
length (28) yields excellent agreement between the theoretical
model and MD results. We have also compared our predictions
for the other transport coefficients to MD results from the
literature and have found similarly good agreement in the
weak- to moderate-coupling regimes where the coefficients
are large. As expected, the EB approach deviates from the
MD results at larger coupling and for certain coefficients
(i.e., η and K), the EB model is unable to predict their
respective minima; however, this regime is difficult to achieve
experimentally and the coefficients are near their minimum
values in this regime as well.

We have also explored the limitations of the EB approach
in detail. The behavior of the VACF was examined across
the liquid portion of the Yukawa phase diagram in the (�,κ)
space. We have delineated several regimes wherein the VACF
exhibits qualitatively different behaviors. In the first regime,
the decay of the VACF is close to exponential (defined as
purely monotonic) and the Boltzmann equation would be a
reasonable approximation. In the next regime, the decay was
modulated but always positive, and in the final regime, caging
(anticorrelations in the velocity) was observed. In fact, many
other types of behavior are possible (e.g., the first minimum
is positive, but the second is not); however, these possibilities
are beyond the scope of this work. Surprisingly, the EB model
performs well in much of the modulated decay region despite
being unable to capture the presence of these modulations.
Next, we also examined the assumption of static screening in
the effective potential. Because the velocity of the ions will
be distributed well below, near, and well above the thermal
velocity, dynamical screening could play a role. Using an
effective, velocity-dependent screening length that has been
shown to be very successful for stopping power [27], we found
small (∼10%) changes in the transport coefficients, suggesting
that the use of the static, effective screening lengths in (28) is
justified to that level of accuracy.

This work can be extended in several ways. First, other
ionic transport coefficients, such as those for thermal diffusion
and mixture viscosities [47], could be considered. Second, the
EB model and our extension to include velocity-dependent
screening could be examined with LB approaches, in which
the dynamical long-range screening is treated more rigorously.
Third, we have not treated the various transport processes that
involve electron scattering, such as thermal conductivity and
electron-ion temperature relaxation, as in (47) and (80); such
scattering requires a quantum treatment.
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APPENDIX A: MEAN IONIZATION STATES
IN PARTIALLY IONIZED MIXTURES

In our effective potential approach, the effective screening
length λeff plays a central role; however, another key input is the
ionic charge. Throughout this work, the quantity Zie represents
either the nuclear charge in a fully ionized plasma or the mean
ionization state (MIS) in a partially ionized plasma. In the
latter case, an ionization model is required to appropriately
separate free electrons that weakly interact with the nuclei and
those with strong interactions that are bound. By doing so,
the strongly interacting bound states are treated as a compact
charge density near the nucleus, while the remaining free states
are treated using an appropriate linear screening model [54].

A wide range of MIS models has been developed and
detailed comparisons among many of these models can be
found in [84]. The simplest model that includes both thermal
and pressure ionization is the so-called Thomas-Fermi model,
first developed by Feynman et al. [85], which can be readily
implemented as an average atom model where the electronic
structure ne(r) about a single central nucleus in a charge-
neutral spherical cell is calculated for a particular ionic number
density and temperature. The effects of ionic density, such as
pressure ionization, enter through the choice of the radius of the
cell as ai . The MIS can be defined in terms of the value of the
normalized electron density evaluated at the ion-sphere radius
ZTF = Znuc − 4

3πa3
i ne(ai), where Znuc is the bare nuclear

charge. Despite its facile prescription, this TF model can be
fairly accurate over a wide range of parameters [84].

To avoid the expense of computing the atomic structure
within a hydrodynamics code, an approximate fit to the
function ZTF(ni,Znuc,Te) was given in [86], which we repeat
for convenience and completeness in Table II. In comparison
with the original description [86], we have simplified the
implementation of the fit by only requiring the ionic number
density rather than both the mass density and atomic mass of
the species.

The TF model has the additional advantage of being fairly
straightforward to implement in multicomponent systems.
Using reasoning similar to that used in Sec. III B, the MIS of
each species must be calculated as Zi = ZTF(V −1

i ,Znuc,i ,Te),
where Vi is the volume of the ion sphere associated with the

TABLE II. Fit and coefficients from [86] for the Thomas-Fermi
mean-ionization model. The Avogadro constant is NA = 6.022 14 ×
1023, Znuc is the nuclear charge number, the ionic number density ni

is in units of 1/cm3, and the electron temperature is in units of eV.

α1 = 14.3139 α2 = 0.6624
R = ni/ZnucNA k0 = 3.323 × 10−3

T0 = TeZ
−4/3
nuc k1 = 0.9718

Tf = T0/(1 + T0) k2 = 9.26148 × 10−5

A = k0T
k1

0 + k2T
k3

0 k3 = 3.10165
B = − exp(k4 + k5Tf + k6T

7
f ) k4 = −1.7630

C = k7Tf + k8 k5 = 1.43175
Q1 = ARB k6 = 0.31546
Q = (RC + QC

1 )1/C k7 = −0.366667
x = α1Q

α2 k8 = 0.983333

ZTF = Znucx/(1 + x + √
1 + 2x)

ith species in the presence of the other species. To calculate
each reduced volume, we set Vi/Zi = Vj/Zj for every pair of
species; this is consistent with the TF model of [85], which
assumed that the free-electron density is uniform beyond the
ion sphere. Finally, the volumetric constraint of

∑
i niVi = 1

is required for completeness. As an example, a two-component
system would require the solution of the equations

Z1 = ZTF
(
V −1

1 ,Znuc,1,Te

)
, (A1)

Z2 = ZTF
(
V −1

2 ,Znuc,2,Te

)
, (A2)

n1V1 + n2V2 = 1,
V1

Z1
= V2

Z2
. (A3)

Simple iterative methods can be used to rapidly converge to a
solution of this system.

APPENDIX B: TRANSPORT COEFFICIENTS

The plasma transport coefficients can be derived using
a variety of methods and here we provide a more detailed
background for the approach we employ. In this work we base
our results on an effective Boltzmann approach [27,28,34,40],
in which we build upon the Boltzmann equation, which
includes strong scattering through a numerical cross section,
by capturing long-range screening effects through an effective
potential to incorporate both branches of kinetic theory shown
in Fig. 1. Such an approach yields a convergent kinetic model
for all of the transport coefficients needed in a hydrodynamic
description of a dense plasma.

The effective Boltzmann approach is described through a
set of coupled Boltzmann equations for each species j of the
form

∂

∂t
fj + v · ∇fj + Fext

j

mj

· ∇fj =
∑

l

Cjl[fj ,fl], (B1)

Cjl[fj ,fl] =
∫∫

dv′d�gI (g,θ )(f ′
j f

′
l − fjfl). (B2)

Here Fext
j is any external force, g = |v − v′| is the relative

velocity, � is the solid angle, the primes denote functions of
v′, and the differential cross section is defined as

I (g,θ ) = b

sin(θ )

db

dθ
. (B3)

As we detail in Sec. VI, such a kinetic model makes several
assumptions. While strong scattering is well described through
the cross section (B3), the cross section is only a well-defined
quantity for binary collisions in which the initial and final
states are distinct and separated, as in (B2); note that the time
evolution of the scattering event does not appear in Boltzmann
descriptions. For example, if Fext

j were to include a Vlasov
contribution, the resulting dynamical fluctuations could not
modify (B3) in any simple way, as is also discussed in Sec. VI.

As written for Coulomb systems, (B1) is famously diver-
gent; this difficulty is eased via the use of an effective potential,
as in (18). The cross section in this effective potential is
obtained from (3) and (5). Given this scheme, the relevant
coefficients remain to be generated. The standard procedure
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[47] is the CE expansion, which yields a solution of (B1)
that can be used to construct hydrodynamic moments and,
importantly, closed-form expressions for the fluxes associated
with these moments. This method proceeds by using a method
of successive approximations for the distribution functions fj ,

fj = 1

ε
f

(0)
j + f

(1)
j + εf

(2)
j + · · · , (B4)

where ε is an ordering parameter. The lowest-order solution
f (0) can be shown to be a local drifting Maxwellian. In turn,
higher-order corrections can be systematically obtained by
substituting the full CE expansion (B4) into the Boltzmann
equations (B1). From the relevant fluxes computed using
the solution (B4), leading-order expressions for the transport
coefficients can be obtained. For transport processes associated
with single-component systems, we have

D = 3T

8nmi�
(11)
ii

, (B5)

η = 5T

8�
(22)
ii

, (B6)

K = 75T

32mi�
(22)
ii

, (B7)

which are the self-diffusivity, viscosity, and thermal conduc-
tivity, respectively. For transport processes associated with
systems of multiple components, the coefficients become
increasingly complicated, as a linear set of equations must
be inverted. In a binary mixture, we have

Dij = 3T

16nμij�
(11)
ij

, (B8)

ηtot = x2
i Ri + x2

jRj + xixjR′
ij

x2
i Riη

−1
i + x2

jRj η
−1
j + xixjRij

, (B9)

Ktot = x2
i QiKi + x2

jQjKj + xixjQ′
ij

x2
i Qi + x2

jQj + xixjQij

, (B10)

kT ≡ DT

Dij

= 5xixjC(xiSi − xjSj )

x2
i Qi + x2

jQj + xixjQij

, (B11)

with the coefficients

A = �
(22)
ij

5�
(11)
ij

, B = 5�
(12)
ij − �

(13)
ij

5�
(11)
ij

, C = 2�
(12)
ij

5�
(11)
ij

− 1, E = T

8MiMj�
(11)
ij

, (B12)

Pi = Mi

ηi

E = �
(22)
ii

5Mj�
(11)
ij

, Pij = 3(Mi − Mj )2 + 4MiMjA, (B13)

Qi = Pi

(
6M2

j + 5M2
i − 4M2

i B + 8MiMjA
)
, Q′

ij = 15E[Pi + Pj + (11 − 4B − 8A)MiMj ]

2(mi + mj )
, (B14)

Qij = 2PiPj + 3(Mi − Mj )2(5 − 4B) + 4MiMjA(11 − 4B), Ri = 2

3
+ Mi

Mj

A, (B15)

Rij = 4A
3MiMjE

+ E
2ηiηj

, R′
ij = 4

3
+ E

2ηi

+ E
2ηj

− 2A, Si = MiPi − Mj [3(Mj − Mi) + 4MiA], (B16)

where the mass ratios are Mi = mi/(mi + mj ) and the number
density ratios are xi = ni/(ni + nj ) [47]. Here the coefficients
Dij , ηtot, Ktot, and kT are the interdiffusivity, total viscosity,
total thermal conductivity, and thermal diffusion ratio, which
is the ratio of the thermal diffusion coefficient DT to the
interdiffusivity. Higher-order corrections can also be obtained
(see, e.g., [33,47]), but they are usually very small.

The general problem of transport is made complex by the
introduction of both more complex phenomena and mixtures
[87,88]. In the former category, plasmas may contain mag-
netic fields, electric fields [10], gravitational fields, relativity,
radiation, multiple ionization states, multiple temperatures,
and so on. For example, sedimentation in white dwarfs
[89] and neutron stars [90] involves impurities in strongly
coupled mixtures in electric and gravitational fields; in fact,
the structure of the flux equations, as in (62), has coupling
corrections beyond what appear in the transport coefficients
themselves [90,91]. Mixtures cause additional complexities
due to couplings among the various continuity and momentum

equations, which require potentially large matrix inversions
[92–96]. It is thus impossible to express generalized coef-
ficients without specifying the physical model; however, in
most cases the transport equations are formulated in terms of
the binary coefficients we present here.

APPENDIX C: NUMERICAL EVALUATION
OF INTEGRALS

To reduce the dimension of parameter space, it is useful to
nondimensionalize the spatial scale of the problem. While
several length scales are present, the ideal choice is the
screening length λ, as it does not contain any variables
of integration (e.g., the impact parameter). We therefore
introduce the dimensionless parameters

r → λr, ρ = b

λ
, w2 = μλ

2ZiZje2
v2, (C1)
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where we have assumed a finite value for λ. In the case λ = 0,
there is no interaction and thus the trivial result θij = σ

(k)
ij =

�
(k,l)
ij = 0 is obtained. Alternatively, as λ → ∞, we recover

the Coulomb interaction, which yields the scattering angle
(8). The corresponding momentum-transfer cross sections will
diverge as b → ∞; however, truncating this upper limit with
the screening length yields the finite forms (9) and (10).

1. Scattering-angle integral

In the transformed variables (C1), the scattering angle takes
the form

θij (ρ,w) = π − 2ρ

∫ ∞

r0

r−1dr√
r2 − ρ2 − w−2re−r

, (C2)

where r0 still satisfies the the zero of the denominator. This
integral is improper because of both this singularity at the lower
limit and the infinite upper limit. We wish to circumvent these
issues for numerical reasons and thus introduce the variable
s = (1 − r0/r)1/4 to yield

θij (ρ,w) = π −
∫ 1

0

8γ s3ds√
1 − γ 2(1 − s4)2 − u(s)

, (C3)

u(s) = 1 − s4

w2r0
exp

( −r0

1 − s4

)
, γ =

√
1 − e−r0

w2r0
. (C4)

We can examine the large-angle scattering limit by approx-
imating u(s) ≈ u0(s) = (1 − s4)e−r0/w2r0, which gives the
scattering angle

θ0(γ ) = π + 2 sin−1

(
γ 2 − 1

γ 2 + 1

)
. (C5)

Adding and subtracting this limiting solution to (C2) yields
the more rapidly converging integral

θij (ρ,w) =
∫ 1

0

8γ s3ds√
1 − γ 2(1 − s4)2 − u0(s)

−
∫ 1

0

8γ s3ds√
1 − γ 2(1 − s4)2 − u(s)

− 2 sin−1

(
γ 2 − 1

γ 2 + 1

)
. (C6)

Given the broad range of parameters, we used an adaptive
integration scheme in which quadrature points were doubled
upon each iteration until the desired convergence was achieved.
The treatment of the distance of closest approach r0 will be
addressed in the next subsection.

2. Cross-section integrals

The momentum-transfer cross sections now take the form

σ
(n)
ij (w,λ) = 2πλ2φn(w), (C7)

φn(w) =
∫ ∞

0
dρ ρ{1 − cosn[θij (ρ,w)]}. (C8)

To integrate over ρ, we must continually calculate the
distance of closest approach r0 from the implicit relation
r2

0 = ρ2 + r0e
−r0/w2. We can simplify the parameter space

by first writing ρ = ρ(r0,w) and introducing the integration
variable z = (r0 − rc)1/p, where rc is defined through the
simpler implicit relation rc = e−rc /w2 and the parameter p

can be changed depending on the stiffness of the integrand.
Equation (C8) can now be written as

φn(w) = p

∫ ∞

0
dz zp−1f (z,rc)[1 − cosn(θij )], (C9)

with

f (z,rc) = zp + rc + zp + rc − 1

2w2 exp(zp + rc)
. (C10)

While the upper bound is still infinite, the integrand was found
to decay sufficiently fast enough to allow for a truncated
domain. As with (C6), we employed a similar adaptive
integration scheme.

It can be shown that φn(w) will take on asymptotic forms

φn(w) ∼ n

w4
ln(w) (C11)

for w � 1 and

φn(w) ∼ An ln2(w2) + A′
n ln(w2) + A′′

n (C12)

for w � 1. The values of the above coefficients for the low-w
limit were found numerically to be

A1 = 0.47871, A′
1 = 2.7935, A′′

1 = 15.944, (C13)

A2 = 0.32020, A′
2 = 1.0479, A′′

2 = 7.8182. (C14)

With these asymptotic forms in mind, we have constructed a
suitable fit that obeys each limit, respectively:

φn(w) ≈
{

φSC
n (w), w < 1

φWC
n (w), w > 1,

(C15)

where the strongly coupled component is given by

φSC
n (w) = c0 + c1 ln(w) + c2 ln2(y) + c3 ln3(w)

1 + c4 ln(w)
(C16)

TABLE III. Coefficients for fits (C16)–(C18) of the reduced cross sections (C8).

n c0 c1 c2 c3 c4 d0 d1 d2 d3 d4 d5

1 0.30031 −0.69161 0.59607 −0.39822 −0.20685 0.48516 1.66045 −0.88687 0.55990 1.65798 −1.02457
2 0.40688 −0.86425 0.77461 −0.34471 −0.27626 0.83061 1.05229 −0.59902 1.41500 0.78874 −0.48155
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TABLE IV. Coefficients for fits (C23)–(C24) of the reduced collision integrals.

(n,m) a1 a2 a3 a4 a5 b0 b1 b2 b3 b4

(1,1) 1.4660 −1.7836 1.4313 −0.55833 0.061162 0.081033 −0.091336 0.051760 −0.50026 0.17044
(1,2) 0.52094 0.25153 −1.1337 1.2155 −0.43784 0.20572 −0.16536 0.061572 −0.12770 0.066993
(1,3) 0.30346 0.23739 −0.62167 0.56110 −0.18046 0.68375 −0.38459 0.10711 0.10649 0.028760
(2,2) 0.85401 −0.22898 −0.60059 0.80591 −0.30555 0.43475 −0.21147 0.11116 0.19665 0.15195

and the weakly coupled component is given by

φWC
n (w) = n

2w4
ln(1 + w2)P (w), (C17)

P (w) =
[
d0 + d1 ln(w) + d2 ln2(w) + ln3(w)

d3 + d4 ln(w) + d5 ln2(w) + ln3(w)

]
. (C18)

By next minimizing the magnitude of the relative error between
the fit and the numerical calculations while still maintaining C1

continuity of the overall function (particularly at w = 1), we
have obtained values of these coefficients for which maximal
deviations from (C8) are on the order of 10−3 near w ≈ 16
(but are usually under 10−5). The coefficients for (C16) and
(C18) are presented for n = {1,2} in Table III.

3. Collision integrals

Finally, we turn to the collision integral expressed in terms
of the transformed variables as

�
(n,m)
ij =

√
2π

μij

(ZiZje
2)2

T 3/2
Knm(g), (C19)

Knm(g) ≡ gm

∫ ∞

0
dw e−gw2

w2m+3φn(w), (C20)

where

g = ZiZje
2

λT
. (C21)

The integration of (C20) was performed over three intervals,
where an intermediate range of w ∈ [10−7,102] used numeri-

cally calculated values of φn(w) with cubic spline interpolation
and asymptotic limits of φn(w) were used outside this range.
Once Knm(g) was calculated for each index pair (n,m), the
numerical values were used to generate fitting functions.
For optimal accuracy, we divide these fits into two regions
as

Knm(g) ≈
{
KWC

nm (g), g < 1

KSC
nm(g), g > 1,

(C22)

where the weakly coupled component is given by

KWC
nm (g) = −n

4
(m − 1)! ln

(
5∑

k=1

akg
k

)
(C23)

and the strongly coupled component is given by

KSC
nm(g) = b0 + b1 ln(g) + b2 ln2(g)

1 + b3g + b4g2
. (C24)

As with (C15)–(C18), the coefficients were determined by
minimizing the magnitude of the relative difference between
the fit and the numerical calculations while maintaining C1

continuity of the overall function (particularly at g = 1). This
optimization yields deviations from (C20) on the order of 10−2,
where these deviations are maximized around g ≈ 2, and the
coefficient values are presented in Table IV for the (n,m) pairs
relevant to first-order CE theory.
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