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The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT)
fields with different integral scales �1 and �2 and different turbulent kinetic energies E1 and E2. In this study, the
sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric
variations of �1/�2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach;
using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at
Re�1 = 90 for the high-energy HIT region and different integral length scale ratios 1/4 � �1/�2 � 4 and turbulent
kinetic energy ratios 1 � E1/E2 � 30. It is found that the most influential parameter on the variability of the
mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible
influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large
and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to
the variations of �1/�2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field
intermittency and the turbulent penetration depth show monotonic dependence on �1/�2 and E1/E2. The mixing
layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters.
However, the probability density function of these quantities shows relatively small solution variations in response
to the variations of the initial condition parameters.

DOI: 10.1103/PhysRevE.93.043122

I. INTRODUCTION

Turbulent mixing occurs in a wide variety of geophysical
flows as well as in many industrial and energy-related
applications. Turbulent mixing might be essentially considered
a process involving stretching and folding of material lines or
surfaces which is accompanied by the spatiotemporal chaotic
motion of the turbulent flow. The chaotic aspect of these
stretching-folding processes results in extremely intricate
trajectories for flow particles, which drastically modify flow
field transport properties compared to those in a laminar state.

Due to the chaotic nature of the turbulent mixing, this
process can show extreme sensitivity to the variations of the
specifying flow field parameters at the initial or upstream
flow field. This sensitive dependence of the turbulent mixing
process, both in the transitional period and the asymptotic
states, to the upstream or initial condition has been the subject
of many studies [1,2].

Besides initial or upstream flow field parameters, dynamics
of the chaotic motion and consequently hydrodynamical
mixing can be drastically influenced by the reduction of the
space dimensionality. In turbulence, it is well known that the
reduction of the physical space dimension from the relevant
value 3 to 2 results in an energy-enstrophy double cascade,
i.e., an inverse cascade of the kinetic energy to large scales
and a direct cascade of enstrophy to small scales. Therefore,
two-dimensional turbulence can show qualitatively and quanti-
tatively different dynamics compared to its three-dimensional
turbulence counterpart. Although two-dimensional turbu-
lence is an idealized configuration, the inverse cascade
can be observed in many three-dimensional turbulent flows
such as the rotating fluid turbulence, magnetohydrodynamic
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turbulence, and geophysical flows in atmosphere, oceans, and
magnetosphere. This issue is one of the main motivations
behind the enormous amount of research which has been
done on the two-dimensional turbulence (see among others
Ref. [3–5], and an extensive review of experiment research
can be found in Ref. [6]).

To investigate the abstract nature of the hydrodynamical
mixing process, two canonical flow field configurations are
mainly considered which are depicted in Fig. 1, i.e., shear
mixing layer and shearless (or shear-free) mixing layer. In
the shear mixing layer, two initially separated and parallel
streams with different mean velocities are merged and form
a mixing layer in which intense mixing process occurs in the
velocity-gradient region between the two free streams [7]. The
shearless mixing layer is formed in a decaying grid turbulence
in which the mean velocity is constant throughout but two
different homogenous isotropic turbulent (HIT) regions are
formed on either side of the stream. As the flow evolves,
energetic large eddies from these two HIT fields penetrate
and diffuse into one another and form an anisotropic mixing
region [8].

Since flows encountered in nature or industrial applications
are more often accompanied by shear, the shear mixing layer
has been extensively investigated both in three dimensions (see
Refs. [1,9–13]) and in two dimensions (see Refs. [14–18]),
just to name a few. Concisely, in this experimental and
numerical research, the impact of the turbulent intensity,
energy spectrum, Reynolds-stress tensor, integral length scales
of the upstream and initial velocity fluctuations, as well as
the dynamics of the coherent vortical structures on the shear
mixing layer evolution have been examined.

However, concerning the turbulent mixing process, the
shearless mixing layer has two distinguishing features com-
pared to the shear mixing layer. First, in the latter flow
field configuration, the turbulent mixing process can be
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FIG. 1. Schematic of the spatially evolving mixing layer.
(a) Shear mixing layer; (b) shearless mixing layer.

overwhelmed by the mean shear effects such as the turbu-
lent production or entrainment flow caused by the Kelvin-
Helmholtz instability. In the shearless mixing layer, due to
the absence of the mean shear, dynamics and kinematics
of turbulent mixing are isolated from the above-mentioned
mechanisms. Therefore, in the shearless mixing layer, it is
possible to investigate the fundamental aspects of the mixing
process, which is exclusively originated from turbulence-
turbulence interactions.

The second issue is related to the impact of the variation
of the space dimensionality on the turbulent mixing layer
evolution. It is well known that flow field evolutions of both
shear and shearless mixing layers are profoundly influenced
by the dynamics of the coherent energetic eddies [19,20]. In
the shear mixing layer, these energetic eddies mainly originate
from the Kelvin-Helmholtz instability, which is originally a
two-dimensional phenomenon. Therefore, one might expect
qualitatively similar features between the two- and three-
dimensional shear mixing layers evolutions.

In the shearless mixing layer, on the other hand, these
influential energetic eddies originate from the dynamics of the
interacting HIT regions, which, due to the existence of the dual
cascade, are significantly affected by the space dimensionality.
Therefore, it is expected that, in contrast to the shear mixing
layer, two- and three-dimensional shearless mixing layers
show nontrivially different dynamics.

Notably, in spite of the fundamental differences between
dynamics of the two- and three-dimensional shearless mixing
layers, almost all research has been carried out three dimen-
sionally. The first experimental investigation of a shearless
mixing layer was carried out by Gilbert [21]. In this experi-
ment, the impact of the turbulent kinetic energy ratio of two
interacting HIT regions on the growth rate of the mixing layer
is investigated. This study discerns no significant deviation
from Gaussian statistics for the velocity inside the mixing
region.

In a later experimental study, Veeravalli and Warhaft
investigated the combined effects of the integral length scale
and turbulent kinetic energy ratios of two HIT regions on
the shearless mixing layer evolution [8]. In contrast to the
previous experiment, a pronounced deviation from Gaussian
distribution was observed by examining the velocity skewness
and flatness coefficients. They also found that the penetration
of energetic eddies from the high-energy HIT region into the
low-energy one is the primary mechanism of mixing.

In the first numerical study of the shearless mixing layer,
Briggs et al. investigated the effect of the low-wave-number
part of the initial energy spectrum (coherent vortical structures)
on the subsequent mixing layer growth, using the direct

numerical dimulation (DNS) approach [19]. Consistent with
the experimental results of Veeravalli and Warhaft [8], this
numerical study revealed that the primary source of the mixing
layer growth, departure from Gaussianity, and energy transport
into the mixing layer is penetrations of eddies with the size of
(k3/2/ε), known as energetic eddies.

In a later numerical study, Knaepen et al. more accurately
investigated this departure from Gaussianity inside the mixing
layer, using both large-eddy simulation (LES) and DNS ap-
proaches [22]. They also found that this non-Gaussian velocity
statistics is entirely produced by the transport mechanisms,
which can be accurately predicted by both LES and DNS
approaches.

In another numerical study, Tordella and Iovieno investi-
gated the impact of the kinetic energy and integral length-scale
ratios of the two interacting HIT fields on the Gaussian asymp-
totic state and extent of the mixing region [23]. In comparison
to the experimental research of Veeravalli and Warhaft [8],
in this numerical study a wider range of the turbulent kinetic
energy and length-scale ratios was considered. They observed
that the intermittency level and the growth of the mixing
region are amplified by imposing concordant kinetic energy
and integral length-scale gradients across the mixing layer.

Kang and Meneveau conducted both numerical and exper-
imental studies on the shearless mixing layer with Reynolds
numbers considerably higher than those of prior studies [24].
They found that the dominant effect of the large-scale motions
on the deviations from Gaussianity persists in high-Reynolds-
number regimes. In the same line as in the numerical studies,
Tordella and Iovieno found that even small-scale structures
in the mixing region show a nontrivial level of anisotropy
and departure from Gaussianity [25]. In a more recent DNS
study by the same authors, it was observed that only the
existence of the integral length-scale difference between two
interacting HIT fields can develop intermittency and departure
from Gaussianity in the subsequent mixing layer evolution
[26].

Recently, as the only documented study on the two-
dimensional shearless mixing layer, Iovieno et al. investigated
the mixing of a passive scalar in two- and three-dimensional
shearless mixing layers [27]. In this research, they reported
the mixing layer growth as well as the evolutions of the mean
profiles of the passive scalar and its variances. Moreover, they
found significant differences in the passive scalar diffusion
and the propagation of the intermittent layers in two and three
dimensions.

Considering very limited reported results about the two-
dimensional shearless mixing layer and the fact that the shear-
less mixing layer involves essentially different mechanisms
in its two- and three-dimensional evolutions, this research
focuses on the further investigation of the two-dimensional
shearless mixing layer. The objective of the present study
is to address the sensitivity of a two-dimensional shearless
mixing layer evolution to the parametric variations of the
integral length scale and turbulent kinetic energy ratios of two
interacting HIT fields. More specifically, this research aims
at identifying the impact of these controlling parameters on
the (1) intermittency and departure from Gaussian statistics
inside the mixing region, (2) energy transfer mechanisms into
the mixing region, and (3) the mixing process in a decaying
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FIG. 2. Graphical representation of the initial flow field config-
uration consisting of two shearless mixing layers. The transparent
surface depicts matching profile.

temporal two-dimensional shearless mixing layer, using the
DNS approach.

It should be noted that the considered controlling param-
eters, i.e., the integral length scale and the turbulent kinetic
energy, are closely related to the low wave-number part of the
energy spectrum which influences the motion of the coherent
energetic eddies in the shearless mixing layer [23].

The remainder of the paper is organized as follows. First,
in Sec. II, the methodology of the sensitivity analysis, the
governing equations, and flow field configuration and its ini-
tialization are briefly explained. Next, in Sec. III, results of the
sensitivity analysis are presented. Finally, some conclusions
are summarized in Sec. IV.

II. SENSITIVITY ANALYSIS: FORMULATION
OF THE STOCHASTIC SYSTEM

Among a variety of methods for sensitivity analysis, in
this study a nonstatistical approach based on the nonintru-
sive generalized polynomial chaos (gPC) expansion is used
[28–32].

Here, controlling flow field parameters are considered as
independent random variables L and E ,

L ≡ �1

�2
, and E ≡ E1

E2
, (1)

where � and E are respectively initial integral length scale and
initial turbulent kinetic energy, and indices 1 and 2 refer to the
interacting HIT regions 1 and 2 (see Fig. 2). Therefore, the
evolution of the shearless mixing layer may be considered as a
function of independent random variables L and E in addition
to the existing physical spatiotemporal variables x and t , i.e.,

∂tu(x,t ; L ,E ) = NS(u), (2)

where u presents any flow field variable, NS stands for the
NS equation operator which describes the dynamics of an
incompressible viscous fluid flow on the spatial domain D ⊂
R2 and time interval (0,T ]. Extra dimensions L and E are
defined within the square domain sample space 1 � E � 30
and 1/4 � L � 4 with certain probability distribution. The
methodology of the sensitivity analysis may be concisely
expressed as follows.

By parametric variations of L and E , a set of Nq =
nL × nE individual quadrature nodes (Li ,Ei) in the L -E
plane is generated. Since in each of these quadrature nodes

the value of L and E is specified, the dynamical system (2)
can be integrated in time, using any deterministic NS solver,
to produce the corresponding sample solution u(x,t ; Li ,Ei).

Having obtained sample solutions u(x,t ; Li ,Ei) at all
quadrature nodes, an interpolate response surface in the L -E
plane can be constructed based on the gPC to establish an
explicit relation between evolution of any flow field variable
u(x,t ; L ,E ) and controlling parameters L and E .

In this research, nL = nE = 11 different values of L
and E are considered, which results in Nq = 121 quadrature
nodes. The flow field initialization of the NS equation at each
Nq quadrature node and the numerical solution method are
presented in Sec. II A. In Sec. II B, the reconstruction of the
response surface using orthogonal gPC basis is given.

A. Flow field configuration, initialization,
and method of solution

To perform DNS at each Nq = 121 quadrature node, a
properly calibrated initial condition is required. To enforce
the periodicity, which is required from the numerical point
of view, the flow field configuration is considered as two
shearless mixing layers which are placed side by side along
the inhomogeneous direction x and are performing reverse
transitions compared to each other, as depicted in Fig. 2. The
shearless mixing layer consists of two distinct HIT fields 1 and
2, with different turbulent kinetic energies and integral length
scales, which are matched through a rapid transition layer as
follows:

ω(x,y) = (1 − f (x))
1
2 ω2(x,y) + f (x)

1
2 ω1(x,y), (3)

where ω1(x,y) and ω2(x,y) are respectively two HIT vorticity
fields 1 and 2. The matching function f (x) is

f (x) = 1

2

[
1 + p(0)p

(
L

4

)
p

(
3L

4

)]
, (4)

p(ξ ) = tanh

(
c
x − ξ

L

)
,

where L is the size of the computational domain. The constant
c determines the transitional layer thickness and is set as c =
1000 to ensure that matching is made over a layer with a width
of the same order as the smallest flow field integral length
scale, i.e., L/800. It should be noted that since vorticity fields
are merged in Eq. (3), the matching process does not destroy
the divergence freeness of the resulted initial velocity field.

Each HIT vorticity field is generated in Fourier space with
the following amplitudes:

ω̂(kx,ky,0) =
[
k2Es(k,0)

π

]1/2

exp(iθ ), (5)

where i = √−1, the random phase is denoted by θ ∈ [0,2π ]
with uniform probability distribution, and Es(k,0) is an initial
energy spectrum

Es(k,0) = 1

kp

(
k

kp

)7

exp

[
−3.5

(
k

kp

)2
]
, (6)

where k2 = k2
x + k2

y is the spectral radius [33]. Moreover, kp is
the peak wave number which, in two-dimensional turbulence,
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is related to the length scale [33–35],

� =
( ∫ ∞

0 Es(k)dk∫ ∞
0 k2Es(k)dk

)1/2

=
√

7

8
k−1
p . (7)

There is a discrepancy for the interpretation of this length
scale in Refs. [33–35]. Chasnov [33] considered this length
scale, which is closely related to the Taylor length scale, as
the microscale length scale. On the contrary, in Refs. [34,35]
this length scale is attributed to the integral length scale,
which may be defined as Lint = ∫ ∞

0 k−1Es(k)dk/
∫ ∞

0 Es(k)dk

[36, p. 55]. Here, following Refs. [34,35], the length scale (7)
is considered as the integral length scale. However, it can be
easily shown that for the specific energy spectrum (6), the
length scale (7) and the integral length scale Lint are in the
same order, i.e., Lint = 1.13�.

The reconstruction of each HIT vorticity field is followed
by a freely decay development run until a mature spectrum
with physical phase relation among different Fourier modes
is established. Since during this development run the integral
length scale increases, to restore the desired length scale �

the peak wave number kp in the initial energy spectrum (6)
is set as 0.9�. Depending on the desired integral length scale,
this adjustment evolution approximately endures between 5τ

to 10τ , where τ = t�/
√

E is the number of eddy turnovers
at time t . Afterwards, Fourier amplitudes of the time-evolved
HIT field are rescaled in order to match the prescribed initial
turbulent kinetic energy E.

To generate initial shearless mixing layers corresponding
to Nq = 121 quadrature nodes, the turbulent kinetic energy
and the length scale of the HIT region 1 are kept constant as
�1 = L/200 and E1 = 2.5 in arbitrary units while turbulent
kinetic energy and the length scale of the HIT region 2 are
varied as �1/4 � �2 � 4�1 and E1/30 � E2 � E1.

The upper bounds of these intervals are set based on the
resolution as well as the computational domain size consid-
erations. However, performing a few numerical experiments
with higher values of L and E revealed that further increasing
the ranges of these intervals does not lead to a considerably
higher level of the flow field variability.

Moreover, in order to examine the diffusion of the passive
scalar interface across the turbulent mixing region, the passive
scalar Z ∈ [0; 1] is also introduced into the flow field. The
passive scalar concentration is initially uniform in the two
isotropic regions, Z = 1 in the HIT region 1 and Z = 0 in
the HIT region 2. The passive scalar concentration is matched
through a rapid transition layer as

Z(x,y) = f (x)
1
2 ω1(x,y), (8)

where f is introduced in relation (4).
The governing equation for the evolution of an incom-

pressible two-dimensional temporal shearless mixing layer
may be best expressed in terms of vorticity-stream function
formulation:

∂tω + ∇.(uω) = 1

Re
∇2ω,

ω = −∇2ψ, (9)

u = ∇ × (ψêz),

TABLE I. The specification of different initial conditions.

HIT region Reλ Re� L/� η/�1

1 180 90 200 0.1
2 8.2–731.7 4.11–360 50–800 0.052–0.48

where u is the incompressible velocity field, ω is the vorticity
field, ψ is the stream function, and Re is the Reynolds number.
The flow field also consists of the passive scalar Z ∈ [0,1],
governed by the following equation:

∂tZ + u · ∇Z = 1

RePr
∇2Z, (10)

where Pr is the Prandtl number. Given the reference values
of velocity uref , length Lref , constant density ρ, and constant
thermodynamic properties, i.e., dynamic viscosity μ, mass
specific heat cp, and thermal conductivity κ , the Reynolds and
Prandtl numbers may be, respectively, defined as

Re = ρurefLref

μ
, Pr = μcp

κ
. (11)

Using appropriate reference values for ρ, μ, cp, and κ , the
Prandtl number is set as Pr = 1. Reference values uref and
Lref are considered as the square root of the turbulent kinetic
energy and the length scale of HIT field 1, i.e.,

√
E1 and �1.

Using these reference values the initial Reynolds number of
the HIT field 1 is Re1 = 90 while the initial Reynolds number
for the HIT region 2 varies as 4.11 � Re2 � 360.

A summary of initial condition specifications, used in the
numerical experiments, is listed in Table I. In this table, Reλ

is the Reynolds number defined based on the Taylor length
scale λ2 = (E/u2

x) and η is the Kolmogorov micro length
scale.

Figure 3 provides further information about the initial
turbulent fields by demonstrating the normalized energy
spectra of three HIT fields. In this figure, the spectrum with
the smallest spectral extent is related to the HIT region 2 with
the lowest Reynolds number, i.e., Re2 = 4.11. This energy
spectrum and its subsequent flow field evolution correspond to
a turbulent field in its final period of decay (see Ref. [33]).
On the other hand, the spectrum with the widest spectral

10
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10
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10
2

10
−10

10
−5

10
0

0

E
(k

)/
E

(k
p
)

FIG. 3. The normalized energy spectra for different initial condi-
tions. The spectrum with the shortest, middle, and largest spectral
extents represent HIT flow fields with Re = 4.11,90, and 360,
respectively.
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extent presents the HIT region 2 with the highest Reynolds
number, i.e., Re2 = 360. The spectra of all other initial fields
are located within the spectral envelope which is established
by these two limiting high- and low-Reynolds-number spectra.
In this figure, the normalized energy spectra of the HIT region
1, i.e., Re1 = 90, can also be seen between two high- and
low-Reynolds-number spectra.

The two-dimensional computational domain is a square
with periodic boundary conditions of period 2π in both
space directions x and y. DNS experiments are performed
using a classical pseudospectral method at the N2 equally
spaced (collocation) points, N = 2048. The nonlinear terms
are calculated in physical space and dealiased using the 2/3
rule [37].

The time integration is performed using a low-storage, four-
stage, fourth-order Runge-Kutta method with the coefficients
of αi = {1/4,1/3,1/2,1}. Variable time step �t is used based
on the Courant-Friedrichs—Lewy (CFL) condition:

�t = CFL
�x√
Emax

, (12)

where CFL = 1.6, �x is the grid spacing, and Emax indicates
the maximum value of the turbulent kinetic energy, over all
the grid points. The total dimensionless integration time for all
simulations is τ = 25, beyond which the periodic boundary
conditions can have an unphysical impact on the dynamics of
the mixing layer.

B. gPC expansion

Following Wiener’s homogeneous chaos theory, the best
l2-norm approximation of any random field F (x,t ; χ ) with
finite variance can be expressed as a truncated expansion in
terms of gPC [28,30,38],

F (x,t ; χ ) ≈
M∑

|i|=0

ai(x,t)�i(χ), (13)

where χ = {χ1, . . . ,χd} is a random vector with mutually
independent and identically distributed (IID) random compo-
nents χi , ai(x,t) are deterministic modal coefficients, and i =
(i1, . . . ,id ) is the multi-index with i = i1 + · · · + id [39]. The
expansion basis �i(χ) are the d-dimensional ith-degree gPC
which can be expressed as the products of the corresponding
one-dimensional gPC polynomials

�i(χ ) =
∑

i=i1+···+id

φi1 (χ1) · · · φid (χd ), (14)

where summation is over all combinations of the products
in which i = i1 + · · · + id . The basis function φim(χm) is the
one-dimensional imth-degree gPC in the direction parame-
terized by random variable χm with following orthogonality
relation:

〈φi(χd )φj (χd )〉 = 〈
φ2

i

〉
δij . (15)

In relation (15), δij is the delta function and 〈〉 denotes the
ensemble average expressed as an inner product,

〈f (χ )g(χ )〉 =
∫

f (χ )g(χ )PDF(χ )dχ, (16)

where PDF(χ ) is the probability density function of IID
random variables χi . Following relations (14)–(16), expansion
basis �i(χ) are orthogonal polynomials with respect to a
weight function which corresponds to the PDF of the random
variables χi . Therefore, polynomial basis in expansion (13)
has to be chosen based on the correspondence between the
weighting function of the orthogonal polynomial family and
the PDF of the random variables χi .

In this research, random variables χi control the initial
condition parameters L and E , which are considered as
uniformly distributed random variables with bounded sup-
ports. This choice for their PDF does not favor any particular
turbulent flow and generalizes the results of the sensitivity
analysis. Therefore, the orthogonal basis in expansion (13) has
to be constructed based on the Legendre polynomials, which
its orthogonality weight function is consistent with uniform
distribution [29].

In a nonintrusive approach [32], the gPC modal coefficients
ai(x,t) in expansion (13) are computed by projecting the
random field F (x,t ; χ) onto orthogonal multivariate gPC basis
�i(χ),

ai(x,t) = 〈F (x,t ; χ ).�i(χ )〉
〈�2

i 〉
. (17)

The inner product in the numerator of (17) involves multi-
dimensional numerical integration, which, using appropriate
indexing, can be concisely expressed as

〈F (x,t ; χ ) · �i(χ)〉 ≈
Nq∑
j=0

F (χ (j))�i(χ
(j))w(j)

i , (18)

where for the sake of brevity the dependency of F on x and t is
omitted in summation. The index j and w

(j)
i refer to the nodes

and integration weights of the Nq quadrature points. Based
on the numerical integration theory, for optimal accuracy, the
quadrature points χ (j) must be the roots of the polynomials
�. Choosing the type of the gPC basis function, which in
this research is the Legendre polynomial, these specific points
have to be roots of these polynomials, including the boundary
nodes which are known as Legendre-Gauss-Lobatto (LGL)
quadrature points [40].

Using explicit Eq. (13), a large population of solutions
can be reconstructed at the expense of algebraic evaluation
instead of conducting DNS. From this large population of
solutions, it is also possible to construct interpolate response
surfaces for different flow field quantities in sample space
L -E . These response surfaces provide visual information
about the sensitive dependence of the physical quantities
under consideration on the controlling random variables.
Moreover, statistical moments and the PDF of the solution
can be also easily extracted from this large population of
solutions.

The sensitivity analysis of the system can be also carried
out by decomposing the variance of F (x,t ; χ) into fractions
which originate from variations of different random arguments
χi , using Sobol’s sensitivity index [41],

Di = var{F (x,t ; χ )|χi}
σ 2

F

, (19)
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FIG. 4. Vorticity-scalar snapshots of shearless mixing layers with four different imposed E and L at τ = 20. In each snapshot, the scalar
field is located at the right part of the plane (presented in bright-black color) and the vorticity field is located at the left part of the plane
(presented in gray). The horizontal and vertical axes are, respectively, the inhomogeneous and the homogeneous directions. (a) L = 1/4,E = 1;
(b) L = 4,E = 1; (c) L = 1/4,E = 30; (d) L = 4,E = 30.

where the numerator represents the variation of F originated
from variation of χi and denominator is the total variance of
F . Similarly, the combined effects of the variations of different
χi on the variability of F (x,t ; χ ) can be obtained based on the
higher-order sensitivity indices:

Di1···im = var
{
F (x,t ; χ )|χi1 · · · χim

}
σ 2

F

. (20)

Correspondingly, the numerator represents the variation of F

originated from interactions among χi1 · · · χim .
Since in this research two controlling parameters E and

L are considered, the variance of any flow field quantity
can be decomposed into three parts, DE , DL, and DE,L.
Sobol’s indices DE and DL respectively represent fractions
of the flow field variance which are caused by variations of E
and L . Moreover, due to the nonlinear nature of the flow field
evolution, the impact of variation of E (or L ) on the flow field
variance can be modified by varying L (or E ). The mixed

index DE,L measures the fraction of the flow field variance,
which originates from this interaction between E and L .

III. RESULTS

The overall evolution of a shearless mixing layer may
be described as follows. Due to the random motions of the
coherent vortical structures in two adjacent HIT fields, eddies
with large kinetic energies intermittently penetrate from one
HIT field into the other HIT field. As a result of these
penetrations, a layer between these two adjacent HIT fields
is formed in which velocity statistics are non-Gaussian and
highly intermittent.

Figure 4 visualizes four different vorticity ω and scalar
concentration Z fields at τ = 20, corresponding to four
extremum values of the initial condition parameters E and
L . In each snapshot the vorticity field ω is presented in gray
at the left part of the plane and the scalar concentration Z is in
black at the right part of the plane. The penetrations of vortical
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FIG. 5. Spatial distribution of the velocity skewness and kurtosis for the mixing layer with E = 6.7 and L = 1.0. The HIT regions 1 and 2
are respectively located at η < 0 and η > 0 where η = x/� is the inhomogeneous coordinate x normalized by the mixing layer width �. [(a)
and (b)] Skewness and kurtosis of the velocity components in inhomogeneous and homogeneous directions, i.e., u and v, at different times.
Darker curves represent u; gray curves represent v; symbols � represent data from Ref. [23]. [(c) and (d)] Skewness and kurtosis of the velocity
derivative ∂u/∂x at different times. Note that to provide a direct comparison between skewnesses of velocity and velocity derivative, −Sux

is
plotted in (c).

structures from one HIT region into the adjacent HIT region
deforms the scalar interface structure and creates different
fluid regions [19]: intermittent regions of coherent vortical
structures, regions with a stretched interface in which fluid
packets are engulfed, and regions with intricate and corrugated
small-scale structures.

Variations of the initial condition parameters E and L
can reshape these different regions and, consequently, the
statistical character of the mixing region. By comparing
Figs. 4(a) and 4(d), it can be seen that increasing E and L leads
to more frequent penetration of the coherent vortical structures
into the mixing region and more intermittent formation of the
engulfment regions. The impact of E and L on the mixing
layer intermittency and deviation from Gaussianity is studied
in detail in Sec. III A.

Moreover, by comparing Figs. 4(b) and 4(c), it can be
observed that increasing L and total turbulent kinetic energy
(which in this case is equivalent to reduction of E ) leads to
exceeding formation of the intricate and tangled small-scale
structures, in which small-scale mixing occurs. In Sec. III C
impact of L and total turbulent kinetic energy on the flow
filed mixing efficiency is investigated.

In the following results, for any flow field quantity φ̃,
the uppercase letter � denotes the mean quantity and the
lowercase letter φ represents the fluctuation part, i.e., φ̃ =
� + φ. To obtain reasonable and repeatable statistical results
for any sample solution φ̃, at each Nq = 121 quadrature node,
200 independent and statistically identical realizations are
generated by performing DNS. The variability of the flow
field quantity φ̃ is examined by generating 106 random sample

solutions using explicit form of the corresponding 10th-order
truncated gPC polynomials.

A. Intermittency and anisotropy

The skewness and kurtosis of the velocity component ui

are respectively defined as

Sui
≡ u3

i(
u2

i

)3/2
, Kui

≡ u4
i(

u2
i

)2
, (21)

where u1 = u and u2 = v are the inhomogeneous and ho-
mogeneous components of the velocity field u. Using these
quantities, intermittency and departure from Gaussianity in-
side the mixing layer, caused by the intermittent penetration
of energetic eddies, can be measured.

It should be noted that intermittency implies non-
Gaussianity but not necessarily vice versa. The kurtosis of
any variable which is a nonlinear function of a Gaussian
flow field may show deviation from a Gaussian value 3.
Similarly, passive scalars can also show nonzero odd moments,
which does not reflect intermittency aspects of the flow field
dynamics. However, skewness and kurtosis of the velocity
field and its derivative may be appropriate indicators of
intermittency [42, ch. 7].

Figure 5 shows velocity skewness and kurtosis at different
times for a mixing layer with E = 6.7 and L = 1.0, similar to
the performed numerical experiment by Tordella and Iovieno
on a three-dimensional mixing layer [23]. In this figure,
HIT regions 1 and 2 are respectively located at η < 0 and
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FIG. 6. Time evolutions of mean solutions and standard deviation envelopes of (a) Smax
u and (b) −Smax

ux
; (—) mean solution; (− − −) mean

± STD. Time evolutions of the Sobol’s sensitivity indices with respect to the variations of (c) energy ratio, (d) integral length scale ratio, and
(e) interaction of their covariation; (—) sensitivity index of Smax

u ; (− − −) sensitivity index of Smax
ux

.

η > 0 where η = x/� is the inhomogeneous coordinate x

normalized by the mixing layer width �. The width � is equal
to the distance between the points with scalar 0.25 � Z(x,t) �
0.75.

From Fig. 5(a), it can be clearly observed that in HIT
regions 1 and 2 both Su and Sv show the Gaussian value
of zero. Within the mixing layer the inhomogeneous velocity
component skewness Su takes a positive value, which indicates
intermittent motions of energetic eddies across the mixing
layer from HIT region 1 toward HIT region 2. Statistical
invariance of the velocity field under the reflection of the
homogeneous axis y yields an even function for the PDF of
v and, consequently, zero Sv inside the mixing region (see
Ref. [43], p. 89).

As a further indication of the intermittency and departure
from Gaussianity, the kurtosis of the inhomogeneous and
homogeneous velocity components, i.e., Ku and Kv , are shown
in Fig. 5 (b). Kurtosis of both velocity components u and v

remains close to the Gaussian value K = 3 in HIT regions
and show significant deviation from the Gaussianity inside
the mixing layer. However, comparing maximum values of
Ku and Kv reveals that the inhomogeneous velocity compo-
nent, u, is more intermittent than the homogeneous velocity
component v.

In Figs. 5(a) and 5(b) a close agreement between numerical
experiment of the three-dimensional mixing layer, indicated
by square symbols, and the current two-dimensional mixing
layer can be observed [23]. It may be concluded that motions
of energetic eddies inside the mixing region result in identical
intermittency and departure from the Gaussianity in two- and
three-dimensional flow field evolutions.

Likewise, Gaussian departure of the small scale structures
and their intermittency can be analyzed by the skewness and
kurtosis of the velocity derivative. Indeed intermittency of
the small scales, embodied in velocity derivative skewness,
has a significant effect on the turbulent flow field evolution:
in a three-dimension field it is responsible for the enstrophy

production while in the two-dimensional field it leads to the
palinstrophy production [34].

Figures 5(c) and 5(d) show the spatial distribu-
tion of the Sux

≡ (∂u/∂x)3/[(∂u/∂x)2]3/2 and Kux
≡

(∂u/∂x)4/[(∂u/∂x)2]2. It can be seen that both quantities
increased beyond the isotropic turbulence value within the
mixing layer. The noticeable feature is that the maxima of
−Sux

and Kux
are lower than the maxima of Su and Ku,

which implies that large scales are more intermittent than small
scales. This higher level of the intermittency of large scales can
be attributed to the inverse energy cascade in two-dimensional
turbulence. Indeed, the flow of energy from small scales toward
large scales regularizes the small scale dynamics close to
quasi-Gaussian and nonintermittent statistical properties [44].

To investigate the impact of the variations of E and L on
the variabilities of the flow field intermittency, time evolutions
of maximum values of Su and Sux

, i.e., Smax
u and Smax

ux
, are

reconstructed using gPC polynomials. In Fig. 6, reconstructed
mean solutions and standard deviation envelopes of Smax

u and
Smax

ux
are reported. The standard deviation envelope consists

in adding and subtracting one standard deviation unit from
the mean value and spans a 33% confidence interval for an
identically distributed population.

In Figs. 6(a) and 6(b), both Smax
u and Smax

ux
start to increase

from an almost initial isotropic statistic. On average, Smax
u

shows a monotonic increase with time while Smax
ux

develops
to an almost temporal asymptotic value ∼(0.42 ± 0.2). The
wider variance envelop of Smax

u compared to that of Smax
ux

clearly shows that the intermittency of large scales is more
sensitive to the variations of E and L compared to the small-
scale intermittency. Therefore, in two-dimensional turbulence,
smaller structures show lower levels of intermittency and
less sensitivity to the initial condition parameters compared
to the larger-scale structures. Sensitivities of the large- and
small-scale intermittencies to the variations of E and L can
be further examined by decomposing total variances of Smax

u
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FIG. 7. Maximum skewness of the inhomogeneous velocity component Smax
u . (a) Time evolutions of Smax

u for mixing layers with E = 6.7
and different L s. Mixing layers with L < 1.0 (− − −) and L > 1.0 (——) show moderate reduction and monotonic increase in Smax

u at
the well-developed stage τ � 10, respectively . (b) Response surface of the maximum skewness growth rate, dSmax

u /dτ , as a function of E
and L .

and Smax
ux

into the three parts, DE , DL, and DE,L, using Sobol’s
sensitivity index. Graphically, DE and DL indicate fractions
of the standard deviation envelopes area which originate from
the variations of E and L respectively. The mixed Sobol’s
index DE,L measures the fraction of the standard deviation
envelope area which originates from interactions between
E and L .

Figure 6(c) shows that more than 85% of contributions to
the large- and small-scale intermittency comes from variations
of E while the contribution from variations of L is at most
15% [in Fig. 6(b)]. Figure 6(c) shows that interaction of E and
L has a negligible influence on the total variances of Smax

u

and Smax
ux

, i.e., less than 5%. Therefore, the most influential
parameters on the intermittency is E while L has a secondary
effect on the flow field intermittency. Velocity kurtosis Ku

and Kux
show completely similar behavior for intermittency,

which are not shown.
Impacts of E and L on the development of the mixing layer

intermittency is further investigated in Fig. 7, which presents
the time evolution of Smax

u . In Fig. 7(a) time evolutions of
Smax

u for mixing layers with identical E = 6.7 and different
L s are shown. It can be observed that during the flow field
evolution in the well-developed stage, i.e., τ � 10, mixing
layers with L < 1.0 show a moderate reduction in Smax

u while
for L > 1.0 this quantity undergoes a monotonic increase.

This issue is further established in Fig. 7(b) by demonstrat-
ing dSmax

u /dτ as a function of E and L . The response surface
is constructed based on the average of dSmax

u /dτ over 10 �
τ � 25. First, it can be observed that the growth rate of the
intermittency, presented by dSmax

u /dτ , is a monotonic function
of both E and L . Second, it can be seen that for the mixing
layer with L > 1.0 the mixing region becomes increasingly
intermittent as the flow field evolves, i.e., dSmax

u /dτ > 0,
while for the imposed L < 1.0 the intermittency annihilates
during the well-developed stage of the flow field evolution,
i.e., dSmax

u /dτ < 0. The borderline for these bifurcation is the
contour line L = 1.0.

Considering the monotonic dependence of dSmax
u /dτ on E

and the dominant effect of the later parameter on the evolution

of Smax
u , this behavior can be related to the effective turbulent

kinetic energy ratio of two interacting HIT regions, i.e.,
E1(τ )/E2(τ ). For a mixing layer with imposed L < 1.0, i.e.,
�1 < �2, the HIT region 1 has a higher turbulent kinetic energy
decay rate than that in HIT region 2. Therefore, during the
flow field evolution the effective turbulent kinetic energy ratio
of two interacting HIT regions decreases. The situation for the
concordant imposed E1 > E2 and �1 > �2 is the opposite: The
higher turbulent kinetic energy decay rate of the HIT region
2 than that in HIT region 1 amplifies the effective turbulent
kinetic energy ratio of the two interacting HIT regions during
the flow field evolution

As another intermittency characteristic, the penetration
depth of the energetic eddies can be considered, which is
defined as the averaged locations of the maxima of skewness,
xs , and kurtosis xk , i.e., xmax = (xs + xk)/2. It is found that
after few turn over eddy times, the normalized penetration
depth ηmax = xmax/� achieves an asymptotic value, which is
reported in Fig. 8. Figure 8(a) shows ηmax as a function of E
and L . Similarly to the intermittency growth rate dSmax

u /dτ ,
the penetration depth ηmax is also a monotonic function of
both E and L . The response surface shows a sharp increase
for E � 10 and afterward bends to a plateau, which implies
that in this region the penetration depth is less sensitive to the
variations of E and L in comparison to the region with a sharp
increase.

As discussed above, the evolution of a mixing layer with
imposed L < 1 is accompanied by the reduction of turbulent
kinetic energies ratio of the two interacting HIT regions,
i.e., E1(τ )/E2(τ ). Since the overall tendency of intermittent
turbulent penetration is from the high-energy HIT region
toward the low-energy HIT region [8,23], the penetration of
energetic eddies are suppressed when L < 1. This issue can be
clearly seen from the negative value of the penetration depth
in regions with E = 1 and L < 1, which indicates that the
motions of the energetic eddies are from HIT region 2 toward
the HIT region 1.

This visual information from the response surface is closely
related to the PDF of ηmax, presented in Fig. 8(b). The
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FIG. 8. Normalized position of the maximum skewness ηmax = xmax/�. (a) Response surface of ηmax as a function of E and L . (b) PDF
of ηmax. (c) ηmax as a function of E . The gray region represents 106 sample data with uncertainty of initial integral length scales, L . Symbols
in (c) represent DNS data of Ref. [45].

concentrated peak in the PDF distribution in Fig. 8(b), i.e.,
0.6 � ηmax � 0.9, is the most probable penetration depth and
corresponds to the plateau region of the response surface.
In contrast, the wide spread tail of the PDF distribution,
i.e., ηmax � 0.5, originates from large variations of ηmax and
corresponds to the large gradient regions of the response
surface.

Finally, Fig. 8(c) shows the envelop of penetration depths
generated by varying E and L . The width of the envelope at
constant E represents the impact of L on the variability of
ηmax. The monotonic dependence of ηmax on E can be clearly
observed in this figure. Moreover, the width of the envelope
decreases by increasing E , which means that at higher energy
ratios the penetration depth shows less sensitivity to the
variations of L . For the sake of comparison, in this figure
the penetration depths of a three-dimensional mixing layer
are also included by symbols which fall within the solution
envelope [45].

In Fig. 9, correlations among pertinent intermittency mea-
sures are investigated. In Fig. 9(a), maxima of skewness and
kurtosis of the inhomogeneous velocity components from
all simulations at different times are plotted against each
other. It can be seen that individual values follow an almost
quadratic relation Kmax

u = 3 + 2.615(Smax
u )1.75 in the Su-Ku

plane. Notably, Tordella and Iovieno [26] reported a quite
similar scaling relation, namely Kmax

u = 3 + 2.5(Smax
u )2, from

their numerical experiment of a three-dimensional mixing
layer. This close analogy, however, indicates that the dynamics
of energetic eddies in two- and three-dimensional flow field
evolutions have similar intermittent characters.

In Fig. 9(a), the borderline of the Betchov [46] inequality,
i.e., (21/4)S2 � K , is also included by the dashed line, which
clearly shows that the relation between Smax

u and Kmax
u violates

the Betchov inequality in some regions with a high level of
intermittency. It should be noted that this inequality exists
between the fluid velocity dkewness and kurtosis at identical

spatiotemporal coordinate while locations of the maxima of
skewness, xs , and kurtosis, xk , are not identical.

In Fig. 9(b) the maxima of the velocity components
of kurtosis, i.e., Kmax

u and Kmax
v , from all simulations at

different times are plotted against each other. From the linear
correlation between Kmax

u and Kmax
v one might conclude that

the main part of the homogeneous fluctuations, v, in mixing
layer is directly originated from the inhomogeneous velocity
fluctuations, u. Indeed, as energetic eddies penetrate into
the mixing layer, during their evolution some part of the
inhomogeneous velocity fluctuations, u, is transferred into
the homogeneous component, v, via the pressure-velocity
correlations. However, penetrating eddies with relatively low
kinetic energies will decay before this directional energy
transfer can be accomplished, which results in a lower value
of Kmax

v compared to Kmax
u .

B. Transport equations for statistical moments
and kinetic energy

To further investigate the two-dimensional shearless mixing
layer evolution, dynamics of u2, u3, u4 and turbulent kinetic en-
ergy E = (u2 + v2)/2 are discussed in this section. Dynamic
equations for the velocity second-order moments, i.e., u2 and
v2, may be written as

∂u2

∂t
+ ∂

∂x

(
u3 + 2pu − ν

∂u2

∂x

)
︸ ︷︷ ︸

Transport

= 2

(
p

∂u

∂x

)
︸ ︷︷ ︸
Redistribution

− 2ν

((
∂u

∂x

)2

+
(

∂u

∂y

)2
)

︸ ︷︷ ︸
Dissipation

, (22)
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FIG. 9. (a) Kmax
u as a function of Smax

u . The line shows the scaling Kmax
u = 3 + 2.615(Smax

u )1.75. The Betchov inequality K � (21/4)S2 is
also included by dash line. (b) Kmax

u as a function of Kmax
v .

and

∂v2

∂t
+ ∂

∂x

(
uv2 − ν

∂v2

∂x

)
︸ ︷︷ ︸

Transport

= 2

(
p

∂v

∂x

)
︸ ︷︷ ︸
Redistribution

− 2ν

((
∂v

∂x

)2

+
(

∂v

∂y

)2
)

︸ ︷︷ ︸
Dissipation

, (23)

where in the above equations the constant density ρ is
absorbed into the static pressure p̆, resulting in the modified
pressure p = p̆/ρ. Moreover, ν is the constant kinematic
viscosity, and x and y are, respectively, the inhomogeneous
and homogeneous directions. Evolution of the turbulent kinetic
energy E is obtained by combining Eqs. (22) and (23):

∂E

∂t
+ ∂

∂x

(
u(u2 + v2)

2
+ pu − ν

∂E

∂x

)
︸ ︷︷ ︸

Transport

= − ν

((
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2
)

︸ ︷︷ ︸
Dissipation

. (24)

Similarly, governing equations for u3 and u4 can be written
as follows:

∂u3

∂t
+ ∂

∂x

(
u4 − 3

2
(u2)2 + 3pu2 − ν

∂u3

∂x

)
︸ ︷︷ ︸

Transport

= 3

(
p

∂u2

∂x

)
︸ ︷︷ ︸
Redistribution

− 6νu

(
∂u2

∂x
+ ∂u2

∂y

)
︸ ︷︷ ︸

Dissipation

, (25)

and

∂u4

∂t
+ ∂

∂x

(
u5 + 4u3 u2 + 4pu3 − ν

∂u4

∂x

)
︸ ︷︷ ︸

Transport

= 4

(
p

∂u3

∂x

)
︸ ︷︷ ︸
Redistribution

− u2
∂u3

∂x︸ ︷︷ ︸
Production

− 12νu2

(
∂u2

∂x
+ ∂u2

∂y

)
︸ ︷︷ ︸

Dissipation

. (26)

Profiles of different terms of dynamics equations of u2, u3,
u4, and E across the mixing layer with imposed E = 15.5
and L = 2.125 are shown in Figs. 10(a)–10(d). Besides
ensemble averaging, these profiles are obtained by further time
averaging over the time interval 10 � τ � 25, in which the
peaks of profiles remain almost constant. The inhomogeneous
coordinate has been mapped on the mixing layer width
and is nondimensionalized by the mixing layer width, i.e.,
η = x/�. Similarly to Fig. 5, HIT regions 1 and 2 are
respectively located at η < 0 and η > 0. In Figs. 10(a)–10(d)
different terms are plotted in such a way that their positive
and negative values denote gain and loss of their respective
quantities.

Transport terms are responsible for the spatial distribution
of u2, u3, u4, and E throughout the mixing region by
convecting them from the neighborhood of the high-energy
HIT region 1 toward the low-energy HIT region 2. This
issue can be observed in Figs. 10(a)–10(d), which show that
transport terms take negative values in η < 0 while they are
positive in η > 0. The effect of the transport terms on the
total amount of the pertinent quantity inside the mixing layer
is restricted to the net flux from the homogeneous regions
1 and 2. Transport terms for the even moments u2, u4, and
E consist of odd moments and viscous transport terms, i.e.,
ν∂x(•), which are zero in HIT regions 1 and 2. Therefore, for
even-velocity moments the transport terms contribute to the
spatial distribution inside the mixing layer without altering
the total amount. The net flux of the transport term of the
odd moment u3 can be analyzed by means of simplifying
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FIG. 10. Statistical moment budget terms cross the mixing layer with imposed E = 15.5 and L = 2.125. The HIT region 1 is at η < 0 and
position of maximum intermittency is indicated by vertical gray line. Terms of transport equations of (a) u2, (b) E, (c) u3, and (d) u4. For the
sake of clarity, the highly oscillatory behavior of u4 in −2 < η < −1 is not shown. (—) Transport term (T); (- - -) redistribution term (R);(-.-.-)
production term (P); (...) dissipation term (�).

hypotheses: (i) the pressure transport is almost proportional
to the convective transport associated to the fluctuations,
i.e., pu2 ∼ u4; (ii) neglecting the viscose transport term;
and (iii) considering Gaussian distribution in HIT regions,
i.e., u4 = 3u2. Using these assumptions, the transport term
of u3 may be considered proportional to the difference of
the turbulent kinetic energies of HIT regions 1 and 2, i.e.,
[E1(t) − E2(t)]/�(t).

As can be observed in Figs. 10(a), 10(b), and 10(d),
dissipation terms of the even moments u2, u4 and the turbulent
kinetic energy E show an approximately error-function profile
across the mixing layer. However, Fig. 10(c) presents a
completely different behavior for the dissipation term of the
odd moment u3. In addition to it being considerably smaller
in magnitude, in the vicinity of the center of the mixing
layer η ≈ 0, the dissipation shows an augmentation effect
for u3. This observation can be explained by considering the
effect of the viscosity on the PDF of u. From a statistical
point of view, dissipation reduces even moments of u by
reducing the width of its PDF. In the same context, dissipation
increases u3 by more strongly dissipating the negative part
of the PDF, i.e., u < 0, compared to its positive part,
i.e., u > 0.

The motion of penetrating eddies from HIT region 1 into
the mixing layer pushes the fluid in front of them and produces
u > 0 while these penetrations from the HIT region 2 into the
mixing layer produce u < 0. Faster decay of the latter group
of eddies, which on average has relatively lower kinetic energy
compared to the former group of eddies, leads to this biased
effect of the dissipation on the PDF of u.

The production term u2∂xu3, which in the above equations
only appears in Eq. (26), concordant with the transport term,
reduces u4 in the neighborhood of the high-energy HIT
region 1 (η < 0) while it has an augmentation effect in the

neighborhood of the low-energy HIT region 2 (η > 0). Since
u2 is positive, this behavior of the production term is originated
from the behavior of ∂xu3 inside the mixing region. Due
to the isotropic condition, u3 is zero in both HIT regions
1 and 2 while within the mixing layer this quantity takes
positive values. To match this profile, ∂xu3 should be positive
in the neighborhood of the high-energy HIT region 1 and
negative in the neighborhood of the low-energy HIT region
2 which results in the observed profile for the production
term in Fig. 10(d). However, in contrast to the transport term,
the production term contributes to the total change of u4.
This contribution can be found by considering the following
relation:∫

�(t)

∂

∂x
(u3 u2)dx =

∫
�(t)

u3
∂u2

∂x
dx +

∫
�(t)

u2
∂u3

∂x
dx. (27)

Using Green’s theorem, the left integral is zero since u3 is zero
in both HIT regions 1 and 2. Considering an approximate error-
function profile for u2 throughout the mixing layer [8,47],
∂xu2 is negative inside the mixing layer, which results in a
negative value for the first integral on the right-hand side.
Therefore, the second integral on the right-hand side should
be always positive, which leads to an overall reduction effect
of the production term on the evolution of u4.

From Fig. 10(b) and Eq. (24) it can be observed that
the redistribution term has no effect on the evolution of the
turbulent kinetic energy. Indeed, Eqs. (22) and (23) show that
this term transfers kinetic energy between u2 and v2 without
changing the total amount of the kinetic energy due to the
incompressibility. Figure 10(a) shows that in the neighborhood
of the low-energy HIT region 2 (η > 0), this term extracts
energy from u2 and transfers it into v2. As indicated at
the end of the Sec. III A, this direct contribution of u2 to
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FIG. 11. Time evolutions of mean solutions and standard de-
viation envelopes of the averaged statistical moments. (—) Mean
solution; (− − −) mean ± STD. For the sake of clarity, (−u3)ave and
2Eave are plotted instead of (u3)ave and Eave.

developments of v2 establishes the observed linear correlation
between Ku − Kv in Fig. 9(b).

The contribution of the redistribution term on the evolutions
of u3 and u4 differs from that in u2. Overall, the contribution of
the redistribution term in the dynamics of all velocity moments
is in opposition to the transport term and might be considered
the effect of the pressure drag against the penetration of
energetic eddies. As explained by Briggs et al. [19], when
energetic eddies move through the mixing layer, the fluid in
front of them is pushed, which results in a positive pressure
(p > 0) while, due to the low-pressure wake, the pressure
behind penetrating eddies is negative (p < 0). This reverse
pressure gradient exerts a force on the penetrating eddies which
resists against their movements towards HIT region 2.

In Fig. 10, the location of ηmax is also indicated by
vertical gray line. It should be noted that both transport and
redistribution terms in the HIT regions are identically zero.
Therefore, nonzero values of these terms can be considered
as an indication of the flow field intermittency and deviation
from Gaussianity. Approximate coincidences of the transport
and redistribution extremums with the location of ηmax shows
that, at the penetration depth, intermittency and deviation from
Gaussianity are maximized.

Averaged statistical moments of the inhomogeneous
velocity component and kinetic energy of the mixing region
can be defined as:

(un)ave ≡ 1

�(t)

∫
�(t)

(un)dx, (n = 1,2,3,4),

(28)
Eave ≡ 1

�(t)

∫
�(t)

(E)dx.

Figure 11 shows mean solutions and standard deviation
envelopes of time evolutions of Eave, (u2)ave, (u3)ave, and
(u4)ave, reconstructed from their corresponding gPCs. This
figure shows almost stationary evolutions for (u2)ave, Eave,
and (u3)ave where from approximate equality of (u2)ave and
Eave it can be also inferred that (v2)ave ≈ (u2)ave. Despite a

considerably smaller value of (u3)ave compared to the (u4)ave,
it can be seen that time evolutions of these two intermittency
quantities are qualitatively similar. Comparing the standard
deviation envelope of (u4)ave with those of other moments of
u shows that (u4)ave is more influenced by the variations of E
and L . Moreover, it can be seen that during the mixing layer
evolution (u4)ave is higher than 3(u2)ave, which implies strong
deviation from Gaussianity.

Using the Leibniz integral rule, the time derivative of any
averaged quantity, φave, may be evaluated as

d

dt
φave = 1

�(t)

∫
�(t)

φtdx +
{

φ(+ �
2 ) + φ(− �

2 )

2
− φave

}
�̇

�
,

(29)
where �̇ denotes the mixing layer growth rate (ȧ is short for
da/dt) and φ(±�/2) represents values of φ at the boundaries
of mixing layer, i.e., HIT regions 1 and 2. In this relation, it
is assumed that during the flow field evolution the mixing
layer boundaries advance into HIT regions 1 and 2 with
equal velocity. This approximation is examined by numerically
evaluations of both sides of relation (29).

The time derivatives of Eave, (u2)ave, (u3)ave, and (u4)ave,
obtained based on this relation, are reported in Fig. 12.
Considerably smaller time derivatives of Eave, (u2)ave, (u3)ave

compared to that of (u4)ave is consistent with the observed
stationary evolutions of these statistical quantities in Fig. 11.
Moreover, the qualitatively similar time evolutions of (u3)ave

and (u4)ave in Fig. 11 can be better recognized by considering
their similar dynamics in Figs. 12(c) and 12(d). From the
relatively narrow bounds of the standard deviation envelopes
in Figs. 12(a)–12(d), it can be concluded that dynamics of these
statistical moments are not substantially affected by variations
of L and E .

The sensitivities of the dynamics of Eave, (u2)ave, (u3)ave,
and (u4)ave to the variations of E and L are reported in Fig. 13.
Similarly to the previous observations, E has the dominant
effect on the variabilities of the dynamics of these statistical
quantities. Further, it can be observed that by increasing the
order n in (un)ave, the contribution of E on the variability of
the dynamics of (un)ave reduces while the contributions of L
and its interaction with E increases.

C. Mixing layer evolution

In this section, the impact of the variations of initial
condition parameters on the thickness growth of the mixing
layer, stretching and folding of material lines, and mixing
efficiency are investigated. Notably, it has been found that,
in contrast to the intermittency statistics, increasing E shows
hampering effects on the evolutions of the above-mentioned
mixing parameters.

This contradictory effect can be attributed to the depen-
dency of the random motions of the energetic eddies on
the Reynolds number. The energetic eddies of the adjacent
HIT regions sporadically penetrate into the mixing region and
agitate the flow field inside the mixing region. Increasing the
Reynolds number can augment these random motions, leading
to the increase of the recurrence of these penetrations and
intensification of the agitation process.
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FIG. 12. Mean solutions and standard deviation envelopes of the growth rate of the averaged statistical moments (a) d(u2)ave/dt ,
(b) dEave/dt , (c) d(u4)ave/dt , and (d) d(u3)ave/dt . (—) Mean solution; (− − −) mean ± STD.

The Reynolds numbers of two adjacent HIT regions 1 and
2 can be related as Re2 = Re1/(

√
E L ). Since the turbulent

state of the HIT region 1 is kept constant, it can be observed
that reduction of E and L increases the Reynolds number of
the HIT region 2.

1. Thickness layer growth

As already noted, the mixing layer thickness �(t) can
be defined as the distance between the points with scalar
0.25 � Z(x,t) � 0.75. This length represents the extent of the
region with a significant level of anisotropy. Initially, all the

FIG. 13. Time evolutions of the Sobol’s sensitivity indices with respect to the variations of (a) energy ratio, (b) integral length scale ratio,
and (c) interaction of their covariation; (—): d(u4)ave/dt , (- - -): d(u3)ave/dt , (− · −): d(u2)ave/dt , and (· · · ): dEave/dt .
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FIG. 14. Time evolution of the normalized mixing layer thickness. (a) The mean solution and standard deviation envelope; (—) mean
solution; (− − −) mean ± STD. (b) PDF of the growth-rate power-law exponent n = d ln[�(t)]/d ln t . (c) Sobol’s sensitivity indices for the
variation of the mixing layer thickness with respect to the variations of (—) energy ratio, integral length scale ratio, and (· · · ) interaction of
their covariation. (d) Response surface of the final thickness of the mixing layer as a function of E and L .

mixing layers have identical thicknesses �(0) = L/800 while,
at the end of the simulations, mixing layer thicknesses vary as
0.05L � �(25) � 0.09L.

Figure 14 reports different information about the growth of
the mixing layer thickness. In Fig. 14(a), time evolution of the
mean solution and the standard deviation envelope of the nor-
malized mixing layer thickness is shown. A power-law growth
for the mixing layer thickness evolution can be observed which
is equivalent to a linear growth in a logarithmic scale. The
PDF of the slope of this linear growth in logarithmic scale,
defined as n = d ln[�(t)]/d ln t , is presented in Fig. 14(b).
From this PDF it can be observed that the growth-rate exponent
n is mainly between 0.72 and 0.78 with a mean value of
nave = 0.73. The relatively narrow width of this PDF shows
that the mixing layer growth is relatively insensitive to the
variations of the initial condition parameters L and E . The
sensitivity indices, reported in Fig. 14(c), reveal that despite
robust dynamics of the mixing layer growth, almost 99% of the
variability of the growth rate originates from variation of E .
Figure 14(d) shows the reconstructed response surface of the
final mixing layer thickness normalized by the initial thickness,
i.e., �(τ = 25)/�(τ = 0). It can be observed that the maxi-
mum spread of the mixing layer takes place at the lowest initial
energy ratio E = 1 and initial length scale ratio L = 1/4.

In this initial length scale ratio, HIT region 2 has the
largest integral length scale and, consequently, the lowest
turbulent kinetic energy decay rate. Therefore, the Re2 =√

E2(t)�2(t)/ν, has the highest magnitude during flow field
evolution. Increasing the integral length scale ratio L results
in a smaller integral length scale of the homogeneous region 2
and, consequently, a higher turbulent kinetic energy decay rate.

2. The scalar front and mixing efficiency

Kinematically, fluid mixing can be considered as the
stretching and folding of material lines and surfaces when they

are subjected to the induced strain field of the adjacent vortical
structures. To quantify this stretching and folding process, the
length and the mean curvature of the scalar isolevel contour
Z = 0.5, hereafter denoted as scalar front, are considered,
i.e.,

� =
∮

Z=0.5
dx, and κave = 1

�

∮
Z=0.5

abs(∇ · n)︸ ︷︷ ︸
κ

dx,

(30)

where n = ∇Z/|∇Z| is the normal vector to the scalar front
with a direction toward the center of the curvature (or center
of the osculating circle). Figure 15 shows time evolutions
of the normalized scalar front length, �(τ )/�(0), and its
mean curvature κave. Figure 15(a) shows that, similarly to
the three-dimensional turbulence, as the result of chaotic
stretching, the mean solution of the scalar front length and
its standard deviation envelope monotonically increase during
the flow field evolution. Figure 15(b) shows the mean solution
κave and its standard deviation envelope. It can be observed
that the front curvature, which represents the corrugation of
the scalar front elements, increases during an initial transition
period and afterwards, during the well-developed stage of the
flow field evolution, i.e., 10 � τ � 25, undergoes monotonic
reduction.

The rate of the material line filamentation is controlled
by the strain field of the adjacent large-scale eddies while
the strain field of the small scale eddies simply wrinkles the
material line. During the initial transition period τ � 10, in
which vorticity field includes large- and small-scale eddies,
material lines are subjected to the strain fields of both large-
and small-scale eddies which result in simultaneous growth in
the length and curvature of the material lines. At the end of
this transition period, turbulence adjusts to its fully developed
state in which the inverse energy cascade from the small
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FIG. 15. Mean solutions and standard deviation envelops for the scalar isolevel Z = 0.5 (a) normalized length and (b) its average curvature.
(—) Mean solution; (− − −) mean ± STD. Sobol’s sensitivity indices for the variations of (c) the scalar front length and (d) the average of its
curvature with respect to the variations of (—) energy ratio, (− − −) integral length scale ratio, and (· · · ) interaction of their covariation.

scales to the large scales results in vortex merging process
and continual growth in the size of eddies. Accordingly, after
τ � 10, material lines are mainly influenced by the strain field
of the large-scale eddies and continue to extend while their
curvature reduces.

Figures 15(c) and 15(d) show Sobol’s sensitivity indices
for the variations of the normalized scalar front length and its
mean curvature with respect to the variations of E and L . It
can be observed that above 90% of variations of both quantities
are originated from variations of E while variations of L and
its interaction with E have negligible effect on stretching and
folding process. Regarding the observed opposite tendency
between stretching and bending mechanism in Figs. 15(a)
and 15(b), a relation between the overall length of the material
line and its average curvature is south in Fig. 16. By examining
the time evolution of � · κave, it is immediately apparent
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x 10
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e
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FIG. 16. Time evolution of (� · κave) for the scalar isolevel Z =
0.5; (—) mean solution; (− − −) mean ± STD.

that during the well-developed stage, i.e., τ � 10, the mean
solution of this quantity and its standard deviation envelope
show an almost constant evolution, which means the length
of the material line and its average curvature are nearly
anticorrelated, i.e., � ∝ κave

−1. Related to this observation,
Drummond [48] and Thiffeault [49] reported that for a material
line segment high curvature regions are consistently associated
with low stretching with exponent −1/3.

Response surfaces of the final scalar front length normal-
ized by the initial length and its average curvature are also
demonstrated in Figs. 17(a) and 17(b). It can be observed in
Fig. 17(b) that the final scalar front length is a decreasing
function of both E and L , i.e., the largest final scalar front
length is at E = 1 and L = 1/4. Figure 17(a) shows that
the final average curvature is also a decreasing function
of E ; however, unlike the scalar front length, it increases
by increasing L . This issue is visualized in Fig. 4, i.e.,
E =1, in which interface structure becomes more intricate by
increasing L .

Closely related to the stretching process, mixing efficiency
of the flow field can be quantified based on the normalized
material line growth,

e = 1

�(t)

∫
�(t)

(
li lj sij√
sij sij

)
dx, (31)

where li = dxi/|dxi | is the orientation vector of the material
line |dx| and sij = (∂jui + ∂iuj )/2 is the strain rate tensor
[50]. It can be shown that for an incompressible two-
dimensional flow, the integrand in (31) can be simplified to
(
√

2/2)cos(2α), where α is the angle between the material line
alignment li and the stretching eigenvector of the strain rate
tensor [51]. This simplified equation provides an upper bound√

2/2 ≈ 0.707 for the mixing efficiency in an incompressible
two-dimensional flow.
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FIG. 17. Response surfaces for the final (a) averaged curvature and (b) length of the scalar isolevel Z = 0.5 as a function of E and L .

Figure 18(a) shows the time evolution of the mean solution
of the mixing efficiency e and its standard deviation envelope.
It can be observed that after an initial transitional period, i.e.,
τ ∼ 10, the mixing efficiency develops to an almost constant
level e ∼ 0.2, which is considerably lower than the maximum
efficiency

√
2/2 ≈ 0.707.

Figure 18(b) presents the PDF of the mixing efficiency
during the almost-stationary period 10 � τ � 25. The mixing
efficacy shows a Gaussian-like distribution between 0.19 and
0.21, in which the mean value is indicated with a gray vertical
bar. The relatively compact PDF in Fig. 18(b) and corre-
sponding narrow bound of the standard deviation envelope
in Fig. 18(a) imply that the mixing efficiency has relatively
low sensitivity to the variations of the initial parameters E
and L . However, using Sobol’s sensitivity index, it is found
that, similarly to the growth of the scalar front in Fig. 17(c),

almost 99% of the mixing efficiency variations is originated
from variations of initial E (results not shown).

In Fig. 18(c) the reconstructed response surface for the
time-averaged mixing efficiency is presented, i.e., eT =
(
∫
T

e dt)/T , where T ∈ [10 25]. The reconstructed response
surface shows smooth monotonic increase with increasing 1/E
and L with maximum of the mixing efficiency at E = 1,
L = 4. Moreover, it can be clearly observed that variations of
the initial condition parameters E and L lead to approximately
10% variation of the mixing efficiency. It should be noted that
the time-averaged mixing efficiency can be interpreted as the
Lyapunov exponent of the particle trajectories which quantifies
the divergence of initially adjacent fluid particles during the
flow field evolution.

Considering Figs. 17 and 18, it can be observed that
decreasing E has an augmentation effect on all indications of

FIG. 18. The mixing efficiency inside the mixing region. (a) Time evolution of the mean solution and standard deviation envelope of the
mixing efficiency; (—) mean solution; (− − −) mean ± STD. (b) PDF of the mixing efficiency with the average value of 0.201, indicated by
the gray line. (c) Response surface of the time averaged mixing efficiency, eT = (

∫
T

e dt)/T , as a function of E and L . Time interval for the
presented quantities in (b) and (c) is 10 � τ � 25.
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the mixing, i.e., the scalar front final length, �(25), the average
curvature κave(25), and the mixing efficiency. However, among
these quantities, only the scalar front final length �(25)
increases with increasing L while the other quantities show
opposite trends.

IV. CONCLUSION

The sensitivity of the temporal evolution of a two-
dimensional incompressible shearless turbulent mixing layer
to the variations of initial condition parameters is investigated
using DNS and gPC representation. Initial integral length
scales and turbulent kinetic energies of two interacting HIT
fields are considered as the controlling parameters for the
subsequent (a) flow field intermittency and departure from
Gaussianity, (b) energy transfer mechanisms, and (c) mixing
efficiency of the mixing layer.

It is found that all of the above-mentioned aspects of
the flow field evolution are influenced by the ratio of the
initial energy and integral length scales, i.e., E = E1(0)/E2(0)
and L = �1(0)/�2(0). However, dependency of flow field
intermittency and energy transfer mechanisms inside the
mixing region on E and L differs from that of mixing process
parameters.

To perform sensitivity analysis, a DNS database solution
has been produced by considering the controlling param-
eters as IID random variables with uniform distribution
over the parametric domain 1/4 � L � 4 and 1 � E � 30.
Subsequently, by stochastic gPC representation of discrete
DNS solution samples, different flow field quantities are
expressed as continuous functions of controlling parameters L
and E .

The study of the sensitivity indices shows that the most
influential parameter on the variability of all of the above-
mentioned aspects of the shearless mixing layer evolution is
E . Variation of L has considerably lower impact on the flow
field variability compared to the E . The interaction between L
and E shows negligible contributions on the total variations of
flow field parameters, which means that influence of the two

controlling parameters on the overall flow field evolution is
almost additive.

Similarly to the three-dimensional flow field, the two-
dimensional shearless mixing layer is also highly intermittent
and velocity statistics show significant deviation from Gaus-
sian distribution. This intermittency can be discerned in both
large and small scales. Large-scale intermittency is measured
by considering the skewness and the kurtosis of the velocity
field. Moreover, the structure of the two-dimensional shearless
mixing layer anisotropy establishes particular correlations
between the velocity skewness and kurtosis, similar to those in
the three-dimensional shearless mixing layers. The small-scale
intermittency is examined based on the velocity derivative
skewness and kurtosis. Comparing large and small scales,
it is found that the former group shows higher levels of
intermittency and larger variability compared to the latter
group. The small-scale intermittency develops to an almost
constant value while the large-scale intermittency shows
different behavior. It is observed that for mixing layers with
imposed L > 1, the mixing region intermittency and turbulent
penetration depth increases during the flow field evolution
while L < 1 leads to an opposite effect.

Time evolutions of velocities moments up to order three
do not show significant variability and sensitivity to the
variations of L and E . All of these moments develop to
an almost stationary evolutions with magnitude independent
from controlling parameters L and E . Contrariwise, the
fourth-order velocity moment does not achieve to a stationary
state and its evolution shows higher variability in comparison
with the lower velocity moments.

In all cases, the mixing region shows a power-law growth
during the flow field evolution. The growth rate, measured
by its slope, n, in the logarithmic scale, shows variations
within the range 0.72 � n � 0.78 in response to the variations
of L and E . It is found that variations of the growth rate
is a decreasing function of E and L . Finally, the mixing
efficiency inside the mixing region shows an almost stationary
evolution with magnitude 0.19 � e � 0.21 with a monotonic
dependence on both 1/E and L .
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