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Fluid-dynamical model for antisurfactants
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We construct a fluid-dynamical model for the flow of a solution with a free surface at which surface tension
acts. This model can describe both classical surfactants, which decrease the surface tension of the solution relative
to that of the pure solvent, and antisurfactants (such as many salts when added to water, and small amounts of
water when added to alcohol) which increase it. We demonstrate the utility of the model by considering the
linear stability of an infinitely deep layer of initially quiescent fluid. In particular, we predict the occurrence of an
instability driven by surface-tension gradients, which occurs for antisurfactant, but not for surfactant, solutions.
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I. INTRODUCTION

The surface tension of a solution generally differs from
that of the pure solvent. The molecules or ions of many
solutes accumulate preferentially at free surfaces, where they
lower the surface tension [1]; such substances are consequently
known as surfactants. However, it is also well known that there
are other solutes that have the opposite effect: as increasing
amounts of these solutes are added to the solvent, the surface
tension increases. Examples include many salts when added
to water [1,2], and small amounts of water when added to
alcohol [3]. For fluid-dynamical purposes, such solutes may
conveniently be described as “antisurfactants.”

Since this antisurfactant behavior may play a significant
role in the flow of solutions with free surfaces, it is perhaps
surprising that it has not yet been incorporated into fluid-
dynamical models, especially as corresponding models for
both soluble and insoluble surfactants are now well established
and have been widely studied [4—8]. It should be noted that, in
general, a model for an antisurfactant cannot be obtained from
one for a surfactant simply by reversing the dependence of the
surface tension on the surface concentration of solute, because,
as we shall explain below, this is not in general consistent with
the underlying physical mechanisms by which solutes affect
surface tension.

In this contribution we construct a fluid-dynamical model
which builds on existing models for surfactants but which,
unlike them, can also describe antisurfactants. By considering
a simple linear stability problem we demonstrate that the new
model is tractable and predicts an instability driven by surface-
tension gradients, which occurs for antisurfactant, but not for
surfactant, solutions.

II. MODEL CONSTRUCTION
A. Bulk-surface flux and surface tension

We follow many well-established fluid-dynamical models
of coupled flow and surfactant transport [4-8] by distinguish-
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ing between the surface region of the fluid, taken to have
a notional thickness 7 of the order of angstroms, and the
remaining bulk region of the fluid. The bulk region may include
a “subsurface” region of high concentration gradients, which
mediates solute exchange between the surface and the deeper
regions of the fluid [9]; for simplicity we assume that such
a region may be described by the same governing equations
as the rest of the bulk. The bulk concentration of solute ¢y, is
measured in mol m—3, while the surface concentration of solute
¢, is measured in mol m~2. The concentration in each region
obeys an appropriate transport equation, and the exchange of
solute between the bulk and the surface is described by the
bulk-surface flux J measured in molm~2s~!'. When the flux
is zero, J = 0, the surface concentration is in equilibrium
with the bulk concentration at the top of the bulk region; this
is a good approximation when flow and transport processes
are slow compared with the kinetics of bulk-surface exchange.
We will refer to this state as “bulk-surface equilibrium,” noting
that a system that is in bulk-surface equilibrium may still
be evolving slowly through diffusion-controlled adsorption
[9-11]. In the more general situation in which the flux is
nonzero, J # 0, both kinetics and diffusion play a part in solute
transfer between the bulk and the surface: this is sometimes
referred to as “mixed-kinetic adsorption” [9].

It is usual in existing models of surfactants to treat the
surface tension o as a decreasing function of the surface
concentration c,. This approach was developed originally for
insoluble surfactants (e.g. [4]) and subsequently extended to
soluble surfactants (e.g. [5-7]). However, as we shall see, in
general o also depends on the bulk concentration ¢y, evaluated
at the top of the bulk region, or, equivalently, on the surface
excess I, defined as

I' = ¢, — ney, (D

where again the concentration ¢y, is evaluated at the top of the
bulk region. The sign of I' indicates whether the molecules
of solute preferentially accumulate at the surface (I' > 0), as
they do for surfactants, or in the bulk (I' < 0), as they do
for antisurfactants. Note that when the surface concentration
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is high relative to the bulk concentration (specifically, when
¢s > nep) the surface excess I' is well approximated by
¢s, justifying the usual approach for surfactants. However,
as we shall now describe, in general, and particularly for
antisurfactants, it is necessary to account for the dependence
on ¢y, i.e., to distinguish between I" and c;.

Although the details of the electrochemical mechanisms
that lead to the exclusion of particular species from the surface
remain the topic of ongoing research [12,13], the qualitative
mechanism by which they affect the equilibrium surface
tension is clear. Solvent molecules in the bulk interact with the
dissolved solute; those near the surface have less interaction
with the solute, as well as with other solvent molecules, and
hence have higher energy than in the bulk, the excess being
exhibited as surface energy. What determines the net effect of
the added solute is then not the absolute values of ¢, and ¢y, but
the effective difference between these, i.e., the surface excess
" defined by (1).

More quantitatively, the surface excess plays a fundamental
thermodynamic role described by the Gibbs isotherm [1,9],
which requires that in equilibrium the gradient of surface
tension with respect to bulk concentration can be positive
only if the surface excess is negative. For surfactants, the
equilibrium surface excess is positive and so the equilibrium
surface tension decreases with increasing bulk concentration;
conversely, for antisurfactants the equilibrium surface excess
must be negative to lead to the experimentally observed
increase in the equilibrium surface tension with bulk concen-
tration.

Starting from standard expressions for the bulk-surface
flux of solute, we may employ the Gibbs isotherm to obtain
a relationship between surface tension and surface excess
when bulk-surface equilibrium holds. We will then extend this
relationship to situations in which bulk-surface equilibrium
does not hold. The new fluid-dynamical model that emerges
is able to capture both surfactant and antisurfactant behavior,
and thus allows us to explore the essential differences between
flows driven by surfactants and flows driven by antisurfactants.

We now describe the simplest model that may be con-
structed within this framework. Incorporating other effects,
such as a maximum surface concentration due to packing
effects or a critical micelle concentration in the bulk [7],
is straightforward in principle but in practice it introduces
distracting complications and so is not discussed further here.
Similarly, we do not attempt to represent the underlying
molecular or ionic interactions that control the surface excess
and its effects [13], but in the spirit of established surfactant
models [4-8] we subsume these into a simple kinetic descrip-
tion.

We consider the bulk-surface flux

J = kincy — kacs )

for some adsorption and desorption rate constants k; and k.
In bulk—surface equilibrium, J = 0, Eq. (2) reduces to the
Henry isotherm [9], i.e., ¢i* = Kncy', where K = k;/k» and
the superscript “eq” denotes an equilibrium value.

Using the definition (1), the equilibrium surface excess "
is given by

e = — ncﬁq =(K — l)ncﬁq. 3)
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Under isothermal conditions, the Gibbs isotherm [1,9] relates
the equilibrium surface tension 0®4 of a dilute solution to I"*4
according to
do®
¢y = = —RTT*, )

dcy,
where R denotes the gas constant and 7 the (constant)
temperature [14]. Substituting (3) into (4) and integrating with
res o4 in 04 i o4

pect to ¢,” we obtain ¢°d in terms of ¢ ",

aeq(cgq) =09+ RT(1 — K)ney', 5)

where oy is the surface tension of pure solvent (i.e., 0% =
oo when ¢’ =0). If 1 — K <0 then (5) corresponds to
a surfactant for which o4 decreases with c;', whereas if
1 — K > 0 then it corresponds to an antisurfactant with the
opposite behavior [15]. The conditions 1 — K < 0 correspond,
respectively, to k; 2 k», i.e., to conditions on the relative sizes
of the adsorption and desorption rate constants.

In the absence of a thermodynamic theory for nonequi-
librium surface tension, the equilibrium equation for o given
by (5) can be extended to nonequilibrium situations in various
ways. In general we may expect o to depend instantaneously
on both ¢, and c¢;, but we cannot expect there to be a
nonequilibrum relation between them corresponding to the
Henry isotherm. In principle, any function that reduces to (5)
in equilibrium could be considered but, following the usual
modeling principle that the model should be the simplest one
capable of capturing the key physical mechanisms, we consider
a general linear surface-tension law

(T:(T()+RT(1—K)< cs+n96b), (6)
where 6 is an artificial parameter which is included in order
to allow us to explore the sensitivity of our model to the
relative importance of ¢y and c,. As required, in bulk-surface
equilibrium (i.e., when J = 0 and hence ¢, = Kncy), Eq. (6)
reduces to o = 09 + RT (1 — K)ncy for any value of 6. The
particular choice § =1 makes o a function of ¢, only;
the particular choice # = 0 makes o a function of ¢ only,
recovering the equation used in the standard surfactant models;
while the particular choice 8 = 1/(1 — K) makes o a function
of the surface excess I' only. By considering all three of these
choices, we will demonstrate that our stability results are not
qualitatively sensitive to the value of 6, and thus that they
are not an artifact of the details of the specific surface-tension
law chosen. We will, however, demonstrate that the choice of 0
may have experimentally observable consequences. Of course,
within the confines of the linear stability analysis described in
Sec. IIT below, essentially any choice of the functional form of
the surface-tension law will reduce to a linear expression and
80, at least as far as the linear stability results are concerned,
the expression used in (6) is completely general.

B. Hydrodynamics and solute transport

Having obtained Eq. (6) for the surface tension o, we
incorporate it into a standard hydrodynamic model based on
the Navier-Stokes equations along with advection-diffusion
equations for solute transport.
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The governing equations are

V-u=0, @)
Ju 2
P E+(u~V)u =—-Vp+ uV-u, (8)
aCb 2
E + (ll . V)Cb = va Cp, (9)

dc
a—; + (- Vap)es + ¢s(Vs -w) = DyVies+J,  (10)

where f is the outward unit normal to the free surface,
Vs =V —ii(ii - V) is the surface gradient operator, V;p is
an appropriate two-dimensional gradient operator [16], u and
p denote the velocity and pressure of the fluid, respectively, ¢
denotes time, p and p are the constant density and viscosity
of the fluid, respectively, and Dy, and Ds are the bulk and
surface diffusivities, respectively. Note that (10) differs in
the advective term from the transport equation derived by
Stone [17] and used in many subsequent studies of surfactants;
the corrected version of this equation employed here was
derived by Wong et al. [18], and is used in more recent studies
(e.g. [8]). For simplicity, body forces are neglected throughout,
but they could readily be incorporated.

Equations (7)—(10) are to be solved subject to appropriate
boundary conditions at the free surface z = h(x,y,?), namely

ah

5 @V —2)=0, (11)

fi-T-h=—(V- o, (12)
A-T-t=t- Vo, (13)
Dy - Ve, = —J, (14)

where t denotes any unit tangent vector lying in the tangent
plane to the free surface, T is the total stress tensor, and all
bulk quantities are evaluated on z = h.

Equations (7)—-(14) with the bulk-surface flux J given
by (2) and the surface tension o given by (6) constitute our
new fluid-dynamical model. This model can represent both
surfactants and antisurfactants, and can be “tuned” through the
choice of the parameter 0 to represent different generalizations
of the equation for the equilibrium surface tension (5) to
nonequilibrium situations, including (as a special case) that
used in the standard surfactant models.

III. STABILITY OF AN INFINITELY DEEP LAYER

We now consider a simple stability problem, which demon-
strates that the new model (2), (6)—(14) is tractable and predicts
an instability driven by surface-tension gradients, which occurs
for antisurfactants but not for surfactants.

We consider the stability of an infinitely deep, initially
quiescent layer of fluid with a flat free surface which, referred
to the natural Cartesian coordinates (x,y,z), occupies the
region z < 0, and is initially in bulk-surface equilibrium and
at constant atmospheric pressure p,. The far-field conditions

PHYSICAL REVIEW E 93, 043121 (2016)

are taken to be

0
ﬁ—>0 as

u— 0,
9z

7 — —00, (15)

and hence the base state for the stability analysis is

kin
Cs = —Cp0,

u=20,
ky

P = Pa, Cb = Cho, h=0, (16)

where ¢y is the uniform base-state value of ¢y,. For simplicity,
we will consider only two-dimensional perturbations, and
neglect any variation or velocity in the y direction.

We note that, by taking the depth of the fluid layer to be
infinite, we exclude the possibility of finding solutions with
a characteristic length scale proportional to the depth of the
layer as in, for example, classical steady Marangoni convec-
tion [19,20]. For surfactants, this is problematic, because all
perturbations have this length scale; the infinite-depth problem
is therefore degenerate. However, for antisurfactants the per-
turbations with the greatest growth rate have a boundary-layer
structure, and so do not degenerate in the limit of infinite
depth. In the following analysis we will therefore generally
confine the discussion to antisurfactants, 0 < K < 1; the
Appendix investigates the finite-depth problem, and explains
the degeneracy in more detail forboth0 < K < land K > 1.

A. Nondimensionalization

We nondimensionalize the problem by choosing a natural
scaling with a characteristic velocity scale U and a character-
istic length scale L which reflects the following four assump-
tions. First, the flow will be driven principally by surface-
tension gradients, which thus set the characteristic velocity
scale so that the Marangoni number Ma = RT ncyy/(nU) = 1,
and hence U is given by

_ RTan()
" .

U a7)

Second, the characteristic concentration scale is set by the
bulk and surface concentrations in the base state. Third, there
is an approximate balance between advective and diffusive
transport, so that the bulk Péclet number Pe, = UL/Dy, = 1,
and hence L is given by

= M—Db. (18)
RTnewo
Finally, following recent work on surfactants (e.g. [7]) we
also assume that Dy = Dy, so that the surface Péclet number
Pe; =UL/Ds = Pe, = 1.
The scaled quantities are therefore defined via

x=Lx* z=Lz*, u=u,w)=Uu"=U®wu"w"),
L ntu nu
t = —t%, — pa=—p%, T=—7T¢
U P — Da L p L
Cb = CpoCp, Cs = NCwoCy, h = Lh*™ (19)
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With the scalings (19), the hydrodynamic equations (7)
and (8) become

V*.ut =0, (20)

8 *

where the Reynolds number Re = pUL/u.
The bulk and surface concentration equations (9) and (10)
become

dcy
ar*

+ (U - V¥ = V¥, (22)

*

ac
8; + (U - Vip)e! 4 ¢F(VFu®) = V2! + Da(Kcf —c?),

(23)

where the advective Damkohler number Da; = k, L/ U, and,
as before, K = k; /k».
The surface boundary conditions (11)—(14) become

o Lon o
u = w*,
ar* ax*
. . 1 (d-6)1-K)
A -Th= _(V:.n)[a-'_TC:_'_G(I_K)C;}’
(25)
~ A 1-6)(1-K
ﬁ-T*~t=t~V:[$c;k+9(l—K)C{,k:|, (26)
fi- Vit = —Day(Kcf — ), (27)

where the capillary number Ca = uU /oy and the diffusive
Damkohler number Da, = nLk,/ Dy, and where all bulk
quantities are evaluated on z* = h*.

The far-field conditions (15) become

x dey .
u" — 0 and *—>O as ¥ — —oo. (28)
z
Finally, the base state (16) becomes
=0 p*=0, cp=1 ci=K, =0 (29

Substituting for U and L from (17) and (18), respectively,
we are left with the dimensionless parameters

D k RT
Re = u, :—1, Ca= ﬂCbO’
" k2 00
ko2 D k
Daj = — " Day= 2 (30)
(RT newo)? RTcyo

together with the parameter 6.
For sodium chloride in water at room temperature [21], we
have the approximate parameter values

na 103 kgm~'s7!,
oo ~7x1072kgs™2, (31)

p ~10° kgm™3,
Dy, ~ 2 x 107° mzsfl,

while for water in a short-chain alcohol at room tempera-
ture [3,22,23], we have

o~ 8x 10> kgm3,
Dy~ 1077 m?s7!, oy ~2x 1072 kgs2. (32)

n~5x 1074 kgm’lsfl,
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In both cases, R ~ 8kgm?s2mol~' K~! and T ~ 300 K.
In addition, we take the surface thickness 1 ~ 10~° m [9].
The desorption rate constant k, is the parameter that can be
stated with least certainty, because of the well-established
difficulties in measuring kinetic parameters associated with
rapid adsorption and desorption [24]. A rough upper bound is
provided by the rate at which molecules or ions diffuse across
a distance n in the absence of potential barriers; this leads
to k» ~ Ds/n* and thus to an upper bound of k; &~ 1010 g1,
Because of this uncertainty we will consider a wide range
of values of k,, and we will demonstrate that its magnitude
does not generally have a critical effect on the stability of the
layer. Finally, in order to see a substantial effect of the solute
on surface tension, for sodium chloride in water we consider
the regime in which the base concentration is a substantial
fraction of the saturation concentration; we thus take ¢,y ~
5 x 10®> molm~3, corresponding to a mass concentration of
roughly 25% [21]. For water in alcohol, a similar value of
cpo ensures that the surface-tension—concentration relation
remains roughly linear [3]. Thus, for both situations we have,
to the nearest decimal order of magnitude,

Re~ 107, Ca=0.1, Da; <0.1, Da, <1. (33)
To simplify the analysis, we will henceforth take the limit
Re = 0. The parameters K and 6 are expected to be of order
unity.

B. Linear stability analysis

We define a perturbation parameter € < 1 and seek pertur-
bations to the base state (29) in the form

p* =ep1,
h*=¢eh;. (34

ut =eu;, w'=ew,

g =1+ec, ci=K+ecy,

In the usual manner, we now seek solutions of the form

wy = est*eikx* W(Z*),
Cpl = eSf*eikx*C(Z*),

hy = e e H, (35)

U = est elkx U(Z*),
ot* ikt
pl — e.& el X P(Z*),
Cs] = est elkx Cs»
where k > 01is the wave number of the perturbations and where

the growth rate s is to be determined.
The governing equations (20)—(22) become

ikU+ W' =0, (36)
ikP+k*U —U" =0, (37)
P +I*W —W" =0, (38)
sC+k*C—C" =0, (39)

while the surface concentration equation (23) reduces to the
boundary condition

sCs + KikU(0) + k2C, — Daj(KC(0) — C) = 0. (40)
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The surface boundary conditions (24)—(27) become
sH —W(@0)=0, 41
2W'(0) — P(0) + k*ovH = 0, (42)

U'(0) + ikW(0) — ik6(1 — K)C(0)

., (1 =60)1-K)

ik 7
K

C'(0) + Day(KC(0) — C,) = 0, (44)

C, =0, (43)

where for convenience we have defined the dimensionless base
surface tension as

Ca
Note that for 0 < K < 1 (antisurfactants), oy, > 0. However,
for K > 1 (surfactants) the linear dependence of o on ¢, must
break down at higher concentrations, and so the validity of our
model is restricted to initial concentrations such that 0 < K <

1+ 1/Ca.
The far-field conditions (28) become
U—-0, W—0, C —-0 as 7*— —o0. (46)

We can eliminate P and U from the hydrodynamic
equations (36)—(38) to obtain

1 1
P=—U"-kKU), U=——W, (47)
ik ik
and thus W satisfies
W@ —2k2W" + k*W = 0. (48)

The most general solution of (48) consistent with the far-field
conditions (46) is

W(z") = (A + Aaz")et, (49)

where A; and A, are arbitrary constants. Similarly, the
most general solution of (39) consistent with the far-field
conditions (46) is

C(z") = Asze*™, (50)

where Aj is an arbitrary constant and where & = ~/k2 + s (for
the usual definition of /- with a branch cut on the negative
real axis). To satisfy the far-field condition, we require that
Re(§) > O; this is automatically the case for unstable modes
with Re(s) > 0, and indeed it remains the case as long as k> +
s ¢ R_.If k> + s € R_ then there are no nontrivial solutions
to (39) that decay in the far field. This restriction reflects the
degeneracy discussed in the Appendix.
The surface boundary conditions (41)—(44) become

sH — W(0) =0, (51)
W (0) — 3k*W'(0) — k*o, H = 0, (52)

— W"(0) — k*W(0) + k*6(1 — K)C(0)

,(1=6)1-K)
+k —x C

C'(0) + Day(KC(0) — Cy) =0, (54)

=0, (53)
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while the surface concentration equation (40) becomes
£2Cy — KW'(0) — Da;(KC(0) — C,) = 0. (55)

Substituting the solutions (49) and (50) into (51)—(55)
produces a5 x 5 system for the coefficients A, A,, Az, Cs, and
H. Requiring nontrivial solutions then yields the solvability
conditions

k*on 4+ 2k’s =0 (56)
or

2% + 2D, KE2 + [(K — 1)(1 — 0)k + 2Da, J&
—Da,K(1 — K)k = 0. (57)

These two conditions correspond to two distinct eigensolutions
with different physical interpretations.

The condition (56) gives a growth rate s = — %abk, and
corresponds to eigensolutions of the form

W(Z*) = Jopk(kz* — DH ', C(z")=0, C;=0, (58)

so this mode represents classical levelling under constant
surface tension [25], with no variations in the concentration
either in the bulk or on the free surface.

In contrast, the eigensolutions corresponding to the condi-
tion (57) have the form

DaK + (1 — 6)¢ ke
2K (¢ +DaK) ’
DazCs

£+ DK *

W(z*) = k(1 — K)

H=0 C@"= =, (59)
where Cg # 0. This mode represents the evolution of the
system with an undeformed free surface in which the flow

is driven entirely by surface-tension gradients (cf. [19]).

C. Eigenmodes with an undeformed free surface

We now consider in more detail the modes corresponding
to (57) and (59), recalling that we require Re(£) > 0 to satisfy
the far-field condition, and that instability [i.e., Re(s) > 0]
corresponds to Re(£2) > k2.

It is straightforward to obtain numerical solutions to (57)
and thus to plot the perturbation growth rates s(k). Figure 1
illustrates the perturbation growth rates for various parameter
values, including three values of the parameter 6. In all
cases in which instability occurs, it does so at rather small
dimensionless wave numbers, while typical maximum growth
rates are of the order of s = 10~* to 1073; the corresponding
dimensional time scales L/(sU) for the instability to develop
are therefore of the order of 1073 to 107 s. Changing the value
of 6 does not qualitatively affect the growth rates, but changing
the ratio of the Damkohler numbers can alter the stability; we
will investigate this further below.

Guided by the numerical evidence that s € R, we may
postulate that the principle of the exchange of stabilities holds.
This allows us to obtain marginal stability curves for various
parameters simply by setting s = 0, and thus & = &, in (57),
and solving for the appropriate parameter. (We omit the details
here for brevity.) Figure 2 shows typical results, for reference
parameter values that correspond to the solid line in Fig. 1(b).
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a _ b c _
(m) %10 3 (q\) ( ) %10 4
15 T T T T 15 ui 1.5 T T T T
= 10} R = 1.0 g < 104 R
— - -
£ osp . £ 05 - £ 05 E
=3 13 =3
S o S 2 o0
o0 o0 =19)
§ —os} . g —osf . 5 —osf 1
+ - =
< < <
S —1.0f \ E S —1.0f g S —1.0f . 1
=1 . = 3
g —1.5 ! N ! RS E —15 L \ L L L g ~15 L L
& 0 0.03 006 0.09 012 015 & 0 001 002 003 004 005 g 0 0.01 0.04 0.05
k k k

FIG. 1. Perturbation growth rates s(k) for K = 0.5 together with Da, = 0.05, Da, = 0.5 (solid), Da; = 0.1, Da, = 0.5 (heavy dashed),
Da; = 0.1, Da, = 1 (light dashed), for (a) # =0, (b) 8 = 1, and (c) 6 = 2.

A key feature of Figs. 2(a)-2(d) is that in each case the
unstable region is largest when k = 0. In other words, the tran-
sition to instability first occurs for long-wave perturbations,
although within the unstable region the maximum growth
rate generally occurs for a nonzero wave number (Fig. 1).
We will use this result below to obtain an explicit stability
criterion. Small values of Da; favor instability [Fig. 2(a)], as
do large values of Da, [Fig. 2(b)]; in each case there is a
critical value of k& beyond which no instability is possible.

(a)

0.07 T T T T T T T
0.06 ]
0.05 | ]
0.04 | .
Da1
0.03 ]
oo2 | unstable ]
0.01 | .
o 1 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
k
c
( ) 1 T T T T
0.8 | ]
K 0.6 | .
unstable
0.4 —// -
0.2 ]
O 1 1 1 1
0 001 002 003 004 005
k

The situation for K [Fig. 2(c)] is more interesting: for a given
wave number k, only a finite band of values of K permit
instability. This is reasonable in physical terms: as K — 1 the
antisurfactant properties of the solute are lost, whereas when
K = 0 the solute is completely excluded from the free surface,
and so no surface advection is possible. We will see below
that surface advection is an essential part of the instability
mechanism. Finally, Fig. 2(d) indicates that larger values of
the parameter 6 tend to suppress instability for nonzero &, but

(b) 20 T T T T
15 .
Da2 10 -

unstable

0 0.05 0.1 015 02 025
k
d
( ) 10 T T T T
8 - -
6 - -
0 4l i
2 - -
unstable
2 ] ] ] ]
0 0.05 0.1 015 02 025
k

FIG. 2. Typical marginal curves in parameter space, for reference values Da; = 0.05, Da, = 0.5, K = 0.5, and 6 = 1. In each plot, one
parameter is varied while the others are held constant at their reference values.
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cs1 >0 cs1 <0 cs1 >0
0 — 2
-4 1.5
L1
= — -50 - 0.5
-4 0
=4 -0.5
P 4100 4 -1

L - -150

= - -200

L L L L
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FIG. 3. Structure of a typical unstable perturbation for the param-
eter values used to plot Fig. 1(b) with £ = 0.03, giving s &~ 0.000 11.
Gray scale shading represents the concentration perturbation cyy,
while the solid lines represent streamlines. The direction of flow
is denoted by C (clockwise) or A (anticlockwise).

as k — 0 no value of 9 is sufficient to suppress the instability
completely.

Equipped with these results we can now interpret Fig. 3,
which shows the structure of a typical unstable perturbation.
The bulk and surface concentration perturbations are in
phase, with the bulk concentration perturbation confined to
a boundary layer of thickness O(1/k). Since k is small, the
length scale is considerably larger than L, and so diffusion
is weak compared with advection. The flow along the free
surface is divergent in the center of the plot, where ¢, and ¢y
have maxima, and convergent at the edges of the plot, where
¢s and ¢p have minima.

We can understand the structure of the perturbation as
follows. Near the center of the plot, where the perturbations
to the surface and the bulk concentrations are negative, the
surface tension is lowered since 0 < K < 1 (antisurfactant
behavior); similarly, the surface tension is higher at the edges
of the plot. The resulting flow along the free surface is from
the center of the plot towards the edges, where the maxima of
¢s and ¢, occur. Surface concentration is advected outwards
by this surface flow, reinforcing the negative perturbation to
¢s; the coupling between ¢y and ¢, means that the perturbation
to ¢ induces a corresponding perturbation to c¢,. Thus the
perturbation reinforces itself and grows.

Opposing this positive feedback are the effects of diffusion
and viscosity, which tend to eliminate perturbations, and (more
subtly) the loss of solute from the surface. The instability
mechanism relies on a substantial quantity of solute being
present in the surface layer, because it is surface advection
that causes solute to accumulate in regions of high surface
tension; there is no mechanism by which advection in the
bulk can do so. All other things being equal, the flux between
bulk and surface will tend to reduce this accumulation over a
dimensionless time scale 1/Daj, and so higher values of Da,
will tend to inhibit the instability. On the other hand, higher
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values of Da, mean that the bulk concentration will respond
more rapidly to changes in the flux, and so higher values of Da,
will tend to assist the instability. This competition between the
effects of increasing the two Damkohler numbers can be seen
in Figs. 2(a) and 2(b), and explicitly in the long-wave stability
criterion (65) derived below.

1. Long-wave limit

Motivated by Fig. 2, and further supported by the small
range of k for which instability occurs in Fig. 1, we now
investigate the long-wave limit k — 0%, in which the task of
analyzing the condition (57) becomes somewhat easier.

When k& = 0, the condition (57) reduces to the conditions
£ =0or &2 4+ Da,K& + Da; = 0; the latter has no solutions
for which Re(£) > 0. Proceeding, we seek an asymptotic
expansion of the form & « k* for some o > 0, and it is
straightforward to show by balancing terms that « = 1. This
motivates the expansion

£ =&k + 5K+ 0K, (60)
where Re(&) > 0 so that the condition Re(¢) > 0 holds in this
limit.

Substituting the expansion (60) into the condition (57) leads
to

_ DaK(1 - K)
& = ~ oDa, (61)
and
(D2 ' 2 _
£ = _DazK(l K) (DazK + Da,; (0 1))' )

4Da}

When 0 < K < 1, the coefficient & is real and positive,
and so the expansion remains consistent with the condition
Re(¢) > 0. However, when K > 1 the expansion is no longer
consistent with this condition. We therefore consider only
the case 0 < K < 1, corresponding to antisurfactants. (The
Appendix discusses the case K > 1 in more detail.)

Using (60), the expansion for s = £ — k? becomes

DalK?(1 — K)?
5§ = <L2) — 1> k2
4Daj
DalK2(1—K)*(Da2K? + Da, (0 —1
_ 2 ( ) ( 24 1( ))k3 + O(k4)
4Daj
(63)
The instability criterion for long waves (k — 0%) is thus
DaZK?(1 — K)?
Lz) > 1, (64)
4Daj
which, recalling that 0 < K < 1, reduces to
D 2
2 (65)

_ >
Da; ~ K(1—K)

When &, > 0, we can also obtain an estimate for the typical
unstable wave number,

2(DajK?(1—K)* — 4Daj)Daj

= . (66
&1& Da;K2(1—K)3(DajK2 + Da; (0 —1)) (66)
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FIG. 4. (a) Perturbation growth rates s(k) for K = 0.5 and 8 = 0, with Da, /Da, = 0.2 and Da, = 1, 0.1, 0.01, and 0.001 (solid lines),
together with the asymptotic result (73) (dashed lines). (b) Scaled perturbation growth rates 5(k) for K = 0.5 and 6 = 1, with Da, /Da, = 0.1
and Da, = 1, 0.1, 0.01, 0.001, and 0.0001 (solid lines), together with the asymptotic result (77) (dashed lines). (c) Scaled perturbation growth
rates §(k) for K = 0.5 and @ = 2, with Da; /Da; = 0.1 and Da, = 1, 0.1, 0.01, and 0.001 (solid lines), together with the asymptotic result (75)
(dashed lines). The arrows show the direction of decreasing Da, in each case.

Numerically, for values of the parameters similar to those
given in (33), ki, is of the order of 0.04, corresponding to
dimensional wavelengths of the order of 27 L/k ~ 3 x 1078
m. This is small, but remains significantly larger than the
surface layer thickness n = 10~ m, so the distinction between
bulk and surface regions remains consistent.

We may rewrite the instability criterion (65) in terms of
dimensional quantities as

nAoy 2
> =,
,bLDb K

(67)

where we have written the difference between the surface
tension in the base state and the surface tension of pure solvent
as

AUb = RTﬂCbo(l — K) (68)

It is useful to rearrange this further, noting that in equilibrium
experiments bulk quantities rather than surface quantities are
measured, and to write (67) as

Aoy, do 2(1 — K)
_— >
RT/LDb dCb K

where in our linear model do/dc, = Aoy /chy. The left-hand
side of (69) now consists solely of experimentally measurable
quantities, while the right-hand side depends only on K, which
in practice must be determined as a fitting parameter along
with . Since the right-hand side is a monotonically decreasing
function of K, we conclude that the instability becomes easier
to trigger the closer the value of K becomes to K = 1. A final
but important point is that, since they enter (69) only through
their ratio K, it is the relative rather than the absolute values
of the adsorption and desorption rate constants k; and k, that
affect the stability.

, (69)

2. Limit of small Damkohler numbers

The Damkohler numbers used to plot Figs. 1-3 are not far
below unity, and correspond to the upper end of the range
of plausible values for the desorption rate constant k,. Since,
as previously discussed in Sec. Il A above, this rate constant
could be several orders of magnitude smaller than its upper
value, it is of interest to consider the predictions of the stability

analysis for 0 < K < 1 as the Damkohler numbers become
small.

Figures 4(a)-4(c) illustrate typical perturbation growth
rates for cases in which6 < 1,6 = 1, and 6 > 1, respectively.
[In Figs. 4(b) and 4(c), the growth rates and wave numbers
have been scaled in a manner that will be discussed below.] The
general behavior of the perturbation growth rates is similar, but
there is one difference, illustrated in Fig. 4(a): for 6 < 1, as
the Damkohler numbers become smaller the growth rate s can
become positive for intermediate wave numbers even in cases
where s remains negative for smaller wave numbers. We will
discuss this further below.

To obtain analytical results, we consider the asymptotic
limit in which both Damkohler numbers become small, while
their ratio remains of order unity. Accordingly, we write Da; =
8151 and Da, = Sﬁz and consider the limit § — 0 with 151 and
D, of order unity. Equation (57) becomes

26° + 28D, K% + [(K — D)(1 — 6)k + 28D J¢
—8D,K(1 — K)k = 0. (70)
We first consider a naive expansion, in which all quantities
other than é are of order unity. Seeking an expansion of the

form & = Qo + 18 + 0(8?), where Re(2y) > 0, we obtain
the leading-order equation

203 + (K — (1 — 0k = 0, (71)

and thus

_ad-ed-kK
2

Since 0 < K < 1, this is consistent if and only if 6 < 1, and
the corresponding asymptotic expansion for s = £2 — k? is

(1—6)1—K)
S=———
2

Figure 4(a) illustrates how well (73) captures the behavior of
s(k) as the Damkohler numbers become small. Although, with
the choice of Da;/Da, employed in this figure, the system
is always stable for small wave numbers, s(k) is positive for
intermediate wave numbers k &~ (1 — 0)(1 — K)/4 (which in
this case gives k =~ 0.125).

Q) (72)

k— k>4 0(3). (73)
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When 6 > 1, the naive expansion is not consistent with the
condition Re(§) > 0, so we need to seek alternative expansions
in this regime. Motivated by the small-k results (63) and (66),
we define rescaled variables via s = §2§ and k = 8/2, and thus
£ = 8, and we seek an expansion of the form & = & + £,6 +
0(8%). Substituting this expansion into (70), we obtain

- D,K(1 — K)k
T (K= D1 -6k +2D,

(74)

This expression for & remains finite for all & as long as (K —
1)(1 —6) > 0, and so since 0 < K < 1 this expansion can be
uniform in £ only if & > 1; it thus complements the naive
expansion described above. The corresponding expression for
§is

. [( D)K(1 —K)
(K — D)1 —0)k +2D,

2
) - 1]122+0(5). (75)

When 6 > 1, Eq. (75) successfully captures the behavior of
s, as illustrated in Fig. 4(c). In particular, for small kit
predicts instability precisely when (65) holds, and as k — oo
the growth rate decays as § ~ —k2.

However, when 6 = 1, Eq. (75) fails to capture the decay
terms which determine the position of the maximum of s,
and it is necessary to seek a different rescaling of £ and k.
Under any such scaling, the term in (70) proportional to &2
is asymptotically smaller than the term proportional to &; on
the other hand, to obtain a nontrivial dependence of & on
k it is necessary to include all three remaining terms. This
motivates the scaling & = §'/2£, s = 65, and k = §'/%k, and the
expansion £ = &) + £,6'/2 4+ O(8) then leads to the depressed
cubic equation

D,K(1 — K)]E

£+ D& —q =0, whereq= > 0. (76)

The real root may be found explicitly by Cardano’s method,
giving

13 173772
2 p3 2 pH3
5 — q__|__1_|_g — Kl G
4 27 2 4 27 2
— k>4 0(8'?). (77)

When 6 = 1, Eq. (77) successfully captures the behavior of s,
as illustrated in Fig. 4(b).

In summary, we find that in the limit in which both
Damkohler numbers become small while their ratio remains
of order unity, the stability depends on the parameter 6. For
6 < 1, so that the surface tension depends principally on the
surface concentration, instabilities occur at wave numbers k of
order unity, corresponding to preferred wavelengths roughly
an order of magnitude greater than the thickness n of the
surface layer, and can do so even when the system remains
stable as k — 0. In contrast, for & > 1 the preferred wave
numbers k decrease along with the Damkohler numbers; thus
the long-wave stability criterion (65) continues to capture
the behavior of the system, and the preferred wavelength of
instabilities becomes much larger than the thickness of the
surface layer.
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IV. SUMMARY AND CONCLUSIONS

We have described the construction of a new fluid-
dynamical model of coupled flow and solute transport which
naturally accommodates both classical surfactants and solutes
with antisurfactant properties. Under kinetic equilibrium be-
tween the free surface and the bulk, such models must agree
with the surface-tension—concentration relationship described
by the Gibbs isotherm (4) together with a suitable condition,
such as the Henry isotherm, relating the equilibrium bulk
and surface concentrations. When bulk-surface equilibrium
does not hold, there is, in principle, freedom to extend the
model in various ways. However, care must then be taken
to distinguish artifacts of the extension from genuine physical
phenomena, and in the model presented here we have included
the parameter 6, which allows this point to be investigated.

Considering the stability of an infinitely deep, initially
quiescent layer of fluid suggests that, in contrast to surfactant
solutions, antisurfactant solutions may experience an insta-
bility driven by the accumulation of solute in the surface
at points of surface flow convergence. The preferred spatial
scales of this instability are rather small, but are sufficiently
large relative to the thickness of the surface layer that the model
remains consistent. For fast bulk-surface kinetics, for which
the Damkohler numbers are of order unity, the parameter 6 is
irrelevant to the stability. For slower bulk-surface kinetics, 6
plays arole in setting the spatial scale of the instability, and the
version of the model for which surface tension depends solely
on surface concentration (corresponding to 6 = 0) predicts
the shortest preferred wavelengths. This demonstrates that the
precise formulation of the surface-tension law for antisurfac-
tants may have observable consequences, and deserves further
investigation. It is possible, for example, that measurements
using cantilever instruments could resolve the small-scale
variations associated with the instability, while nonequilibrium
surface-tension behavior may also become apparent in the
development of foams [26].

The existence of a linear instability naturally raises the ques-
tion of the state towards which the perturbed system evolves.
Since this instability is essentially driven by perturbations to
the concentration fields, we may speculate that the first variable
to evolve beyond the linear regime will be either the surface
or the bulk concentration. The instability could be restrained
by the breakdown of the linear bulk-surface flux or through
changes to the transport rates; ultimately, it could manifest
itself through precipitation of the solute in regions where the
perturbed concentration exceeds the saturation concentration
of the solute. One experimentally observable signature of
this instability, therefore, might be a tendency for solutes to
precipitate from solution in the vicinity of a free surface, under
conditions when the bulk concentration is somewhat lower
than its saturation value. An experimental investigation of this
possibility would be of considerable interest.

Finally, we note that although the model presented here
is consistent with the basic thermodynamics represented by
the Gibbs isotherm, it remains essentially an extension of the
established modeling framework for surfactants, and a gap
still exists between fluid-dynamical models such as ours and
more fundamental descriptions of salt solutions [12]. More
sophisticated models, which take account of distinct species
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and their electrochemical interactions as well as appropriate
nonequilibrium thermodynamics, may be required to bridge
this gap.
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APPENDIX: INFINITE-DEPTH LIMIT OF THE
FINITE-DEPTH STABILITY PROBLEM

In this Appendix we briefly discuss the finite-depth version
of the stability problem with an undeformed free surface,
focusing on the limit in which the depth of the fluid layer
becomes infinite. We will demonstrate that the finite-depth
problem is well posed for both surfactants and antisurfactants,
but that the only family of solutions available for surfactants
becomes degenerate as the depth tends to infinity. A full
investigation of finite-depth effects is ongoing.

The solvability condition becomes

PHYSICAL REVIEW E 93, 043121 (2016)

For a layer of dimensionless depth d*, the far-field condi-
tions (28) are replaced by

*

c
5—0 on
az*

In turn, the far-field conditions (46) are replaced by the
conditions

U(—d*) =0,

u"=0 and F = —d*. (A1)

W(=d*) =0, C'(—d*)=0, (A2

while the general solutions to (48) and (39) consistent with
these boundary conditions become

W) = <A1 + AZC%> sinh (k(z* + d*))
—kd*(A, — A2)<1 + 2—:) cosh (k(z* + d*)) (A3)
and
C(z) = Ascosh (£ (z* +dY)), (A4)

where, as before, we have written & = 4/k% + 5. Note that
we require that £ # 0, i.e., s # —k2, but impose no further
condition on &. Henceforth we drop the star on d* for brevity.

kd c(kd)— s(kd) —kd c(kd) 0 0
26%d c(kd) — W) () — 2k s(kd) kO(1—K)c(ed) — MeED) 0 AS)
0 0 Es(éd)+DazK c(éd) —Da, |~ 7
Ki2dstkd) — —KOHED gedy— Kk c(kd) —Da,K c(&d) £2+4Da,

where we have written s and c as shorthand for sinh and cosh, respectively.

Solving (A5) numerically in the parameter regime (33), we
typically find thatif 0 < K < 1 then instability is possible for
a range of small values of k, as in the infinite-depth problem,
whereas if K > 1 then no instability occurs. A detailed
discussion of the results for finite d lies beyond the scope of
this Appendix; instead, here we will seek asymptotic results as
d — o00. The form of the exponential terms in (AS5) makes it
natural to consider four distinguished limits, depending on the
combination of k, kd, &, and &d that is taken to remain finite
and nonzero in this limit; we consider them in turn.

Case (i): Re(&) and k remain finite and nonzero as
d — oo. This is the case implicitly considered in Sec. III
by postulating an infinitely deep body of fluid. In this limit
we may approximate all of the hyperbolic terms in (AS) by
exponentials. We must consider the cases Re(§) 2 0 separately
in order to discard the correct exponential terms; combining
the results we find that the solvability condition (A5) reduces
to

26%sgn(&) + 2D, K% + [(K — 1)(1 — 0)k + 2Day]
xsgn(£)& + Day Kk(K — 1) 4+ O(e 2kd o=2sen)kdy —
(A6)
where sgn(§) = £1 if Re(§) = 0.

If Re(¢) > O then, as we have seen in Sec. III C 1, only
the regime 0 < K < 1 permits consistent solutions for long

(

waves. Alternatively, if Re(§) < O then by defining &' = —&
we again find that there are consistent solutions for long waves
only when0 < K < 1. We conclude that when K > 1, in order
to find consistent solutions across all k& we must consider a
different distinguished limit.

Case (ii): Re(&) and kd remain finite and nonzero as
d — 0o. We now consider the possibility that & remains of
order unity [maintaining the possibility that s = O(1)] as
d — 00, but that this occurs only for very long waves. We thus
define k = kd andsetk = O(l)asd — oo. Again considering
Re(§) = 0 separately, we reduce the solvability condition (AS5)
to

(€3 + £2sgn(&)Day K + Da,&)(cosh(k) sinh(x) — k)

1
+0 (E,e—“g"@ﬁd) =0. (A7)

Since & # 0 by assumption and the factor cosh(x) sinh(k) —
k is strictly positive for k > 0, we conclude that £ must satisfy
the quadratic equation £2 + & sgn(£)Da, K + Da; = 0. Again
considering separately the cases sgn(§) = 1, we conclude
that there are no consistent solutions in this distinguished limit
for any positive value of K.

Case (iii): €d and k remain finite and nonzero as d —
0o. We now define E = £d, where E = O(1). Approximating
the hyperbolic terms in kd by exponentials, we reduce the

043121-10



FLUID-DYNAMICAL MODEL FOR ANTISURFACTANTS

solvability condition (AS5) to

[kd*(K — 1)(1 — 0) + 2Da;d* + 2E*] E sinh(E)
+DaKd[(K — 1)d*k 4+ 2E*] cosh(E) + O(e %) = 0.
(AB)

As d — o0, the dominant terms are those in d>, and so the
solvability condition reduces to cosh(E) = 0, with solutions
E=m+ %)m’ for n € Z. The solutions yield

5 1\> 72
s~ —k* — l’l-{-z E’ (A9)

which describe stable modes, independent of K and decaying
a little faster than the rate s = —k? set by the diffusion of a
vertically constant perturbation. Crucially, when we take the
limit of infinite depth, these modes collapse onto s = —k?. The
loss of these modes represents a degeneracy in the problem,
which is important only if no other modes exist.

Case (iv): £d and kd remain finite and nonzero as d — oo.
In this final case, we set E = £€d and k¥ = kd as before, and
the solvability condition (AS5) reduces to

Da, K (K — 1k (sinh?(k) — «?) cosh(E)

1
+ 2Da; (cosh(k) sinh(k) — k) E sinh(E) + 0(2> =0.

(A10)
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Rearranging then yields

Da,K(1 — K)  «(sinh?(k) — «2)
2Da, (cosh(k) sinh(k) — k)"

The function of x on the right-hand side is strictly positive for
k > 0, so the sign of the right-hand side is identical to the sign
of the factor | — K. Hence it can be shown that for0 < K < 1
we obtain modes with E € R, and thus s > —k2; these modes
persist as d — oo, although they occur at wavelengths that
scale with d, while the growth rates scale with 1/d 2 ForK >
1, we must seek imaginary solutions for E. We may write & =
i x so that the left-hand side becomes — x tan() ), and so we ob-
tain a spectrum of modes with s ~ —«2/d* — x2/d* < —k>.

The overall conclusion from this asymptotic analysis is
that although the finite-depth stability problem is well posed
for both surfactants and antisurfactants, the limit d — o0 is
degenerate. Only a particular family of modes survives in this
limit, and this family is available only for antisurfactants, 0 <
K < 1, for which it provides the dominant mode.

The modes that degenerate in the limit d — oo do so
because their spatial scale is naturally set by the depth of
the layer, and becomes ill-defined in this limit. In contrast, the
bulk concentration field for the nondegenerating modes has a
boundary-layer structure and the depth of the layer becomes
irrelevant. Since, from (39), the thickness of any concentration
boundary layer must scale as & = +/k? + s, boundary layers
can occur only when Re(s) > —k2,i.e., when the concentration
perturbation is not decaying as rapidly as it would by diffusion
alone. To resist this diffusive decay an instability mechanism
must act near or at the surface, and thus perturbations with this
structure are available only for antisurfactants.

E tanh(E) ~ (A11)
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