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Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow
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In Taylor’s theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a
diffusive behavior with a constant diffusivity KL, which depends empirically on the Reynolds number Re. We
show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate
connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict
different asymptotic scaling laws of KL(Re) depending on the different turbulent cascades in two-dimensional
turbulence. We also explore numerically the KL(Re) dependence in turbulent channel flows with smooth and
rough walls using a lattice Boltzmann method.
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I. INTRODUCTION

Wall-bounded turbulent flows enhance longitudinal disper-
sion of matter due to the combined effect of velocity fluctua-
tions and mean shear. In two seminal papers on longitudinal
dispersion of passive matter in laminar and turbulent pipe flows
[1,2], Taylor predicted that, on long time scales, longitudinal
spreading of matter in a straight pipe can be described by a
one-dimensional diffusive process with an effective diffusivity
coefficient that is many orders of magnitude larger than
the molecular one. In contrast to pair dispersion, which
is enhanced mostly by turbulent fluctuations such that on
inertial scales it behaves superdiffusively [3], longitudinal
(single-particle) dispersion is strongly influenced by the mean
flow properties. Therefore, wall shear and boundary layers play
a key role in the transport of matter. Despite numerous studies
on passive advection [4–7], the fact remains that there is a
lack of fundamental understanding of the dependence of the
longitudinal dispersion coefficient KL on the Reynolds number
Re, beyond empirical evidence [8–10]. Enhanced longitudinal
dispersion is a ubiquitous natural phenomenon and has an
immediate impact on estimation of flow rates and mixing in
long pipelines [8,11,12], as well as on transport and deposition
and sedimentation conditions in natural flows, e.g., [11], [13],
and [14].

In this paper, we aim to provide a more fundamental under-
standing of the observed scaling law of KL with Re number, by
relating it to the inertial scaling law of the turbulence energy
spectrum. Within Taylor’s theory, the longitudinal dispersion
coefficient KL is directly related to the wall frictional shear
stress, which is related to the friction factor, f [2]. This is a
remarkable connection between a measure of bulk transport
of matter and a measure of flow resistance by a shear stress
exerted on a wall. It implies that when Taylor’s theory of
dispersion applies, the transport properties of momentum and
matter are related to each other beyond Reynolds analogy. As
a consequence of this connection, we show that the spectral
link of the friction factor to the turbulent energy spectrum
originally proposed in Ref. [15] can be extended to scalar
dispersion. This means that a turbulent state characterized by
a given turbulent spectrum determines not only the properties
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of the wall friction, but also the dispersion of matter in the pipe.
The other way around, by accessing the dispersion and wall
friction properties, we can make inferences about the turbulent
state.

The rest of the paper is organized as follows. In Sec. II, using
Taylor’s approach we calculate the longitudinal dispersion
coefficient in a turbulent channel flow. Its connection to
the energy spectrum is discussed in Sec. III, followed by
a description of the numerical approach using the lattice
Boltzmann in Sec. IV. The results are discussed in the final
section, V.

II. DISPERSION IN TURBULENT CHANNEL FLOW

Following Taylor’s approach [2], we formulate the disper-
sion in two-dimensional (2D) wall-bounded turbulence and
include the boundary layer effect on the mean velocity profile,
hence on the dispersion law with Re number. Albeit, they
may be confined in thin regions near the walls, the boundary
layers tend to concentrate more tracer particles because of
the reduced mean velocity and, therefore, alter the global
dispersion [8–10].

We start with the scalar advection equation for the concen-
tration field c(x,y,t) of dispersed tracers

∂c

∂t
+ u · ∇c = 0, (1)

where u(x,y,t) denotes the incompressible turbulent fluid
velocity, and molecular diffusion is neglected compared to
advective transport.

On time scales longer than the integral scale, small-scale
turbulent fluctuations become statistically uncorrelated and
can be separated from the mean flow by Reynolds decom-
position. For a statistically stationary, but anisotropic and
inhomogeneous flow, the Reynolds decomposition is applied
in the comoving frame relative to the mean flow direction,
ξ = x − U0t , where U0 is the mean velocity obtained by space
and time averaging of u(x,y,t), hence u = U(y) + u′(ξ,y,t),
where the time-averaged velocity U(y) = U0 + Ux(y)ex has
a global average velocity U0 part and the steady-state mean
velocity profile in the comoving frame Ux(y). By analogy,
the particle concentration is split into a time-averaged part
and fluctuations c = C(y) + c′(ξ,y,t). Upon substitution and
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time-averaging, the advection equation becomes

Ux(y)
∂C

∂ξ
+ ∇ · (u′c′) = 0. (2)

To proceed further with Eq. (2), a closure assumption for the
turbulent flux u′c′ is needed. In Taylor’s theory of dispersion,
the Reynolds analogy between transport of momentum and
matter is used as the first assumption. For wall-bounded
turbulent flows, this assumption is valid in the “outer” layer,
i.e., outside the boundary layers where the flow is well mixed so
that the velocity and concentration profiles become universal.
Then the turbulent shear stress τ (y) and the Reynolds flux
terms (u′

xu
′
y and u′c′) are large compared with the molecular

diffusion through mean gradients and follow a Fickian law as

u′c′ = −ε(y)∇C, (3)

where the local diffusivity coefficient ε(y) is equal to the
momentum diffusivity

ρε(y) = − τ (y)

U ′
x(y)

, (4)

with U ′
x(y) = dUx/dy.

By inserting Eq. (3) into Eq. (2), we arrive at an equation
for the time-averaged concentration, which can be readily
integrated to a formal solution given as

C =
∫ y

0

dy ′

ε(y ′)

(∫ y ′

0
dy ′′Ux(y ′′)

)
∂C

∂ξ
+ ∂C

∂ξ
ξ, (5)

under the assumption that ∂C/∂ξ = constant. This means that
the mean concentration field has reached a steady-state profile
(with a linear decrease from the source) sufficiently far away
from the pipe’s inlet, where it was injected.

The longitudinal diffusivity can be calculated from the
advective flux averaged over the width of the pipe,

QL = −KL∂C/∂ξ = H−1
∫ H

0
dyUx(y)C(y,ξ ), (6)

or, equivalently, by using the mean concentration C(y,ξ ) from
Eq. (5), as

KL = − 1

H

∫ H

0
dyUx(y)

∫ y

0

dy ′

ε(y ′)

∫ y ′

0
dy ′′Ux(y ′′). (7)

Turbulent fluctuations also contribute to the diffusive flux
and the associated turbulent diffusivity is the average across
the width of the channel of the local turbulent diffusivity,
i.e., K turb = H−1

∫ H

0 dyε(y). However, it is known that
longitudinal dispersion by mean flow advection overcasts the
turbulent and the molecular dispersions [11], and it is this main
contribution that we attribute to the longitudinal dispersion.
Nonetheless, as seen from Eq. (7), turbulence affects KL

through its nontrivial dependence on the mean velocity profile
Ux(y) and the turbulent shear stress τ (y).

The other important ingredient in Taylor’s theory is the
assumption that the mean velocity Ux(y) and the turbulent
shear stress τ (y) can be expressed in terms of their universal
profiles in the outer layer. That is true in the asymptotic limit
of Re → ∞, and it means that, when measured in typical units

related to the wall friction velocity Uw and the width of the
channel H , these functions can be expressed as [2]

Ux(y) = U∞ − UwÛ (ŷ), (8)

τ (y) = ρU 2
wτ̂ (ŷ), (9)

where ŷ = y/H,U∞ is a reference velocity in the bulk,
ρ is the fluid density, and Û (ŷ) and τ̂ (ŷ) are universal,
dimensionless functions. As a consequence, the corresponding
change of variables in the integrals from Eq. (7) implies that
the longitudinal diffusivity is also measured in units of the
rescaling variables, KL = α∞UwH , up to a constant prefactor
α∞ given by

α∞ = −
∫ 1

0
dŷ�Ux(ŷ)

∫ ŷ

0
dŷ ′ Û

′(ŷ ′)
ε̂(ŷ ′)

∫ ŷ ′

0
dŷ ′′�Ux(ŷ ′′),

(10)

where �Ux(ŷ) = U∞/Uw − Ûx(ŷ). The numerical value of
α∞ thus depends on the actual shape of the universal profiles
for channel flow. From the dependence of the friction factor
on Re, i.e., f ∼ Re−β , we can then predict that, in this
asymptotic regime of Re → ∞, the diffusivity should scale
as KL ∼ Re−β/2. In the momentum transport theory [15], also
discussed in the next section, the scaling exponent β of the
friction factor is related to the Kolmorogov scaling exponent
of the turbulent energy spectrum.

Taylor’s theory of dispersion neglects the contribution from
the wall region and becomes valid for Re > 2 × 104, at least
for pipe flows [8–10]. In the region of the inner boundary
layers, the typical units change to the wall variables, the
frictional velocity Uw for the mean velocity and the viscous
length scale lw = ν/Uw = H/(Re

√
f ) for the distance to the

wall y using the friction factor f = U 2
w/U 2

0 . Then the universal
velocity and shear stress profiles written in the wall variables
read as

Ux(y) = UwŨ (ỹ), (11)

τ (y) = ρU 2
wτ̃ (ỹ), (12)

with ỹ = y/lw = yRe
√

f /H . The inner boundary layer
extends up to ỹc = ycRe

√
f /H , above which it crosses over

to the outer boundary layer scaling. The important point
here is that because the inner and outer boundary layers are
represented by different typical length scales, the uniform
change of variable in Eq. (7) for the integration domain is
now replaced with y → y/lw for y < yc and y → y/H for
y > yc, where the thickness of the wall region yc is taken as a
scale parameter. Hence, the longitudinal diffusivity measured
in units of U0H is given by

KL

HU0
=

√
f α

(
ỹc

Re
√

f

)
+ 1

Re
g1

(
ỹc

Re
√

f
,ỹc

)

+ 1

Re2
√

f
g2(ỹc), (13)

where the scaling functions α, g1, and g2 are

α(λ) = −
∫ 1

λ

dŷ�Û (ŷ)
∫ ŷ

λ

dŷ ′ Û
′(ŷ ′)

τ̂ (ŷ ′)

∫ ŷ ′

λ

dŷ ′′�Û (ŷ ′′),

(14)
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where λ = yc/H = ỹc/(Re
√

f ). We see that in the limit of
high Re numbers, λ → 0 and α(λ) → α∞,

g1(λ,ỹc) =
∫ 1

λ

dŷ�Û (ŷ)
∫ ỹc

0
dỹ ′ Ũ

′(ỹ ′)
τ̃ (ỹ ′)

∫ ỹ ′′

0
dỹ ′′Ũ (ỹ ′′)

−
∫ 1

λ

dŷ�Û (ŷ)
∫ ŷ

λ

dŷ ′ Û
′(ŷ ′)

τ̂ (ŷ ′)

∫ ŷc

0
dỹ ′′Ũ (ỹ ′′),

(15)

and

g2(ỹc) =
∫ ỹc

0
dỹŨ (ỹ)

∫ ỹc

0
dỹ ′ Ũ

′(ỹ ′)
τ̃ (ỹ ′)

∫ ỹ ′′

0
dỹ ′′Ũ (ỹ ′′). (16)

From Eq. (13), we note that the first term is always going to
dominate for large Re numbers, and we recover Taylor’s origi-
nal asymptotic scaling KL ∼ Re−β/2. However, at intermediate
Re numbers the other scaling behavior due to boundary layer
effects comes into play and we may see a crossover to a
different scaling regime as the Re number is lowered.

Owing to the direct connection between the friction factor
and the longitudinal diffusivity, we expect different asymptotic
scaling laws of KL with Re number, corresponding to different
turbulent cascades.

III. CONNECTION TO THE ENERGY SPECTRUM

The momentum transfer model for the friction factor
proposed in Ref. [15] links the asymptotic scaling laws of
the friction factor with the Re and the wall roughness with
the turbulent energy spectrum. The idea is that the momentum
transfer from the bulk to the wall is mostly enabled by eddies
of sizes comparable to a typical length scale s, determined by
the Kolmogorov length scale and the typical size of the wall
roughness. To extract the scaling with the Re number, the limit
of zero wall roughness is taken, where s is determined by the
Kolmogorov scale. From a sea of turbulent eddies, those that
are straddled near the wall and of size s contribute most to
the wall shear stress τw, hence τw ∼ ρU0us , where us is the
typical swirling velocity of an eddy of size s and estimated by
integrating the kinetic energy up to that scale or, equivalently,

us ∼
(∫ ∞

s−1
dkE(k)

)1/2

. (17)

Since the friction factor is a dimensionless form of the wall
shear stress, f = τw/ρU 2

0 , then

f ∼ U−1
0

(∫ ∞

s−1
dkE(k)

)1/2

, (18)

and its scaling with the Re number emerges from s(Re). In
the inverse energy cascade we have that E(k) ∼ k−5/3 and the
Kolmogorov length scale s/H ∼ Re−3/4, which implies that
f ∼ Re−1/4. However, in the enstrophy cascade regime, where
E(k) ∼ k−3 and s/H ∼ Re−1/2, the model predicts that the
friction factor scales instead as f ∼ Re−1/2, e.g., [16]. These
scaling laws have been measured both numerically [15] and
in soap film experiments [17]. The relationship between KL

and f from Eq. (13) implies that the asymptotic (Re → ∞)
scaling behavior of KL(Re) with Re is connected with the
turbulent energy spectrum, i.e., KL ∼ Re−1/8 in the energy

cascade regime and KL ∼ Re−1/4 in the enstrophy cascade
regime.

IV. LATTICE BOLTZMANN SIMULATIONS

To check these scaling laws is rather challenging for several
computational and theoretical reasons. Numerically, it is diffi-
cult to simulate statistically stationary turbulent flows at very
high Re numbers due to the drag on the wall. Theoretically,
the mechanism of generating single or coexisting inertial
cascades in wall-bounded turbulence is not fully understood
[18]. Nonetheless, soap film experiments [19,20] accompanied
by a few numerical simulations [20] show evidence that 2D
turbulence can be excited by wall roughness such that an
inverse energy cascade coexists with a forward enstrophy
cascade. This is different from the grid-generated turbulence
bounded by smooth walls, where a single cascade of enstrophy
is developed [21]. A turbulent spectrum with a single inverse
energy cascade has been measured in experiments where the
soap film is pierced at the inlet with a cylindrical rod and flows
between two wires, one of which is made rough [22].

We use direct numerical simulations of a turbulent channel
flow using the 2D incompressible formulation of the lattice
Boltzmann model type LBGK (D2Q9) [23]. Periodic condi-
tions are applied at the inlet and outlet, and no-slip walls on the
long sides of the channel are implemented via the bounce-back
rule [23]. Numerical stability and the flow incompressibility
depend on the grid resolution, which is Re number dependent
as discussed in, e.g., Ref. [24]. More details on the numerical
lattice Boltzmann model can be found in Refs. [25] and
[26]. For the turbulent flow induced by wall roughness, five
semicircular asperities of equal size are randomly distributed
along the top and bottom walls of the pipe. In the case of the
grid turbulence, five circular asperities of size r/H = 0.04
are uniformly spaced across the pipe at a given distance
from the inlet [27]. As the initial condition, we start with a
laminar flow profile. During the time evolution, the laminar
velocity field gets perturbed either by the wall asperities or by
the transverse grid, until turbulent fluctuations take over. All
statistical analysis is done after this transitory time. The no-slip
condition generates a wall shear stress or drag, which causes
a gradual dissipation of fluid flow. We, however, measured
that the total kinetic energy decays with time as 1/t , and in
this case the scaling properties of transport and dispersion in
a steady-state flow should also remain valid for the decaying
turbulence when the time dependence is scaled away [28].

We calculate the statistics of single-particle dispersion
using passive tracers advected with the local fluid velocity,
ẋ(i) = u(x(i),t), for i = 1, . . . ,N , where we have N = 104

total number of particles. The local velocities at the particles
locations are determined using a second-order interpolation
of the lattice velocity field, and the Lagrangian advection is
performed by the forward Euler’s scheme.

V. DISCUSSION AND CONCLUSIONS

We compute the mean square displacement from the
particles positions. Alternatively, it can also be estimated from
the spread of the number of particles at a given location along
the channel. This is shown in Fig. 1, where the concentration
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FIG. 1. Longitudinal concentration of tracers in the comoving
frame. Gaussian fit of the core distribution.

of particles averaged over the width of the channel is plotted
at different times as a function of the position along the
channel. We note that the longitudinal concentration can be
approximated by a Gaussian distribution with the variance
given by the mean square displacement. However, there are
deviations in the tail distribution that may be related to
a decaying turbulence and a time-dependent mean velocity
U0(t).

Time-dependent longitudinal diffusivity is computed as the
time derivative of the mean square longitudinal displacement,
d

2dt
〈(x − 〈x〉)2〉. To eliminate the effect of the decaying turbu-

lence, we rescale it by typical units U0(t)H . Figure 2 shows
the temporal dependence of this rescaled diffusivity different
Re numbers in roughness-induced turbulent [Fig. 2(a)] and the
grid-generated turbulence [Fig. 2(b)]. In the long-time limit,
it fluctuates about a constant value given by the dimensionless
diffusion coefficient,

KL

U0H
= 1

2U0H
lim
t→∞

d

dt
〈(x − 〈x〉)2〉. (19)

Turbulent cascades in 2D turbulence can be inferred from the
scaling behavior of the energy spectrum across the inertial
scales. With lattice Boltzmann simulations, we are able to
compute the Eulerian �E(ω) and Lagrangian �L(ω) frequency
spectra (presented in Fig. 3) from the temporal signal of the
transverse velocity with zero mean, which gives us a proxy
of turbulent fluctuations without the effect of the mean flow.
The Lagrangian frequency spectrum �L(ω) is given by the
power spectrum of the transverse velocity along the particles
trajectories, whereas the Eulerian frequency spectrum �E(ω)
is calculated as the power spectrum of the temporal velocity
signal at a fixed measurement point in space. We find that, at
sufficiently high Re numbers, different scaling behaviors of the
frequency spectra emerge corresponding to different turbulent
cascades developed in the roughness-generated turbulence
and the grid-generated turbulence. This is also shown in
Fig. 3.

FIG. 2. Time-dependence of the rescaled longitudinal diffusivity
measured from the mean-squared displacement of passive tracers at
different Re numbers measured in a turbulent flow generated (a) from
wall roughness, and (b) behind a grid.

The scaling regime �L(ω) ∼ ω−2 is consistent with the
E(k) ∼ k−5/3 law for an inverse energy cascade [29]. On
dimensional analysis grounds and based on the statistical
independence of the small-scale turbulence from the large-
scale structures, this follows from the relation of the eddy wave
number k to its typical turnover frequency, ω ∼ ε1/3k2/3, where
ε is the constant energy dissipation rate, and by expressing
the kinetic energy contained in an eddy in equivalent ways
kE(k) = ω�L(ω). We find that this scaling is dominant in the
roughness-induced turbulence for large Re numbers as shown
in Fig. 3(a). At large ω’s, there is a crossover to a power
spectrum steeper than −2, suggesting a coexisting enstrophy
cascade [19]. For the Eulerian spectra �E(ω) ∼ ω−5/3 is
consistent with the −5/3’s law using the “random sweeping”
hypothesis of the small-scale eddies by the large-scale eddies
[30].

For the enstrophy cascade, we lack a simple dimensional
prediction since the turnover frequency depends solely on the
enstrophy dissipation rate η as ω ∼ η1/3, hence an invariant
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FIG. 3. Lagrangian frequency spectrum �L(ω) and Eulerian
frequency spectrum �E(ω) of the transverse velocity fluctuations
in a turbulent flow at Re = 30 000 that develops (a) from the wall
roughness and (b) behind a grid.

across the inertial eddies. However, based on previous studies
of 2D turbulence [16,19], we expect a direct enstrophy
cascade to dominate the energy spectrum in the turbulence
developed behind a grid. �L at high Re numbers, as shown in
Fig. 3(b), scales with an exponent steeper than −2, approach-
ing �L(ω) ∼ ω−5 at large ω’s, consistent with other studies of
Lagrangian statistics in homogeneous 2D turbulence [31,32].
�E(ω) scales similarly to the wave-number spectrum E(k),
with a ω−3 scaling at large ω’s corresponding to an enstrophy
cascade. We invoke the random sweeping hypothesis for this
scaling similarity, although this is not fully understood. We
note that both frequency spectra for the grid turbulence develop
a ω−1 scaling at lower frequencies, where a cascade develops
and turbulent fluctuations are represented by well-separated
vortices that move in the velocity field induced by each other,
without merging or splitting [33].

The constant diffusivity KL/(U0H ), measured in the typical
units U0H , varies with the Re number in a fundamentally
different manner depending on the dominating turbulent
energy spectrum. In Fig. 4, we present the scaling laws of
the longitudinal diffusivity consistent with our predictions,
although the range is very restricted. The longitudinal diffu-
sivity in a turbulent flow with rough walls is computed as a

FIG. 4. Longitudinal diffusivity KL with Re numbers for the grid-
and rough-wall-induced turbulence.

function of Re for three values of wall roughness, i.e., r/H =
0.05, 0.15, and 0.1. Even though we are computationally
limited to exploring very large Re numbers, we observe that
for Re > 104, the asymptotic scaling law KL/(U0H ) ∼ Re−1/8

predicted from an inverse energy cascade becomes apparent.
Admittedly, the presence of this scaling law with a small
exponent and in a narrow range is debatable and needs to
be explored further both experimentally and numerically. At
intermediate Re < 104, a different scaling regime is observed
consistent with our predictions in Eq. (13) when the boundary
layers are included. For grid-generated turbulence dominated
by an enstrophy cascade, the turbulent fluctuations are stronger
and the boundary layer effect is not as evident. In fact,
we see that the asymptotic scaling law with Re number
KL/(U0H ) ∼ Re−1/4 is already present for Re below 104 as
long as the turbulent flow is developed.

In summary, we have shown that, in the Reynolds analogy
between mass and momentum transfer, a spectral link is
manifested for the dispersion of matter. This dependence on
the turbulent cascades determines the asymptotic scaling law
of KL(Re) and remains to be validated in future pipe and
channel flow experiments. There is an intimate connection
between turbulent spectral transport and large-scale properties
in wall-bounded turbulence, such as frictional drag and mean
flow, that only recently was discovered and has begun to be
understood. Also, the spectral link in wall-bounded turbulence
goes both ways, and the different regimes in the energy
spectrum are also dependent on the laws of the mean velocity
profile as shown in Ref. [34]. It will be interesting to show how
this dependence influences the scaling of KL with Re number.
This work, hence, extends this spectral link also to large-scale
advective transport by turbulence.
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