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Compressible turbulent mixing: Effects of compressibility
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We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary
compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing
was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed
the k−5/3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number
showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness
and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar
derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4)
an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range.
Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency
parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed
that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while
in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of
rarefaction and compression.
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I. INTRODUCTION

Turbulent mixing is the process that includes the generation
of scalar fluctuations, distortion of scalar interfaces, and
creation of scalar gradients at small scales. For incompressible
flows, the classical picture of scalar transport is that the
scalar fluctuations are generated at large scales and transported
through successive breakdowns into smaller scales; the pro-
cess proceeds until the scalar fluctuations are homogenized
and dissipated by molecular diffusion at the smallest scale.
Compressible turbulent motion is of fundamental importance
in many natural phenomena and industrial applications.
Therefore, an understanding of passive scalar physics in
compressible flows is crucial in many fields, including the
scattering of interstellar materials in galaxies, dispersion of
air pollutants in the atmosphere, and combustion of chemical
reactions in an aircraft engine [1–6]. Hereafter, we omit
the term “passive” where there is no ambiguity. Previous
simulations [7] computed the time scale of the scalar variance
decaying in an interstellar turbulence, but did not provide a
detailed discussion of turbulent mixing. Other simulations
based on the piecewise-parabolic method [8,9] showed that,
for velocity, the compressive component is less efficient than
the solenoidal component in enhancing mixing. The cascade
of scalar is similar to that of velocity, as long as the time scales
of scalar and velocity dissipations are comparable. Moreover,
the scaling of scalar structure function corresponds well to
the SL94 model [10]. Our recent studies on scalar mixing
in compressible turbulence [11–13] found that (1) the scalar
spectrum follows a k−5/3 power law in the inertial-convective
range. At high and low Schmidt numbers, it also defers to a k−1

power law in the viscous-convective range and a k−17/3 power
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law in the inertial-diffusive range, respectively, where k is
the wave number; (2) for the scalar transport, the advection
and dissipation terms follow the Kolmogorov picture; (3)
the cascade of passive scalar is mainly determined by the
solenoidal component of velocity, while that of active scalar is
dominated by the compressive component of velocity; and (4)
when the degree of compressibility is sufficiently strong, an
inverse cascade develops for the passive scalar at large scales.

On the other hand, previous studies of compressible
turbulence demonstrated that the degree of compressibility
is controlled by two factors [8,9,14]: one is the Mach number
and the other is the forcing scheme. In detail, the degree of
compressibility is enhanced by the growth of the Mach number.
For the same Mach number, a flow driven by a compressive
mode of forcing usually provides more compressibility than
that driven by a solenoidal mode of forcing. Nevertheless, the
same variation of compressibility caused by the above two
factors may have different effects on the scalar statistics. In
this paper, we performed numerical studies for compressible
turbulent mixing, using a novel computational approach [15].
To examine the effects of compressibility on the scalar trans-
port in turbulence, both incompressible and compressible flows
were solved, and the range of the turbulent Mach number (Mt )
was 0.23 ∼ 1.02. These flows were driven by the large-scale
solenoidal mode of forcing [12,16]. Simultaneously, we also
performed two compressible flows driven by both the large-
scale solenoidal and compressive modes of forcing [11,14],
where the values of Mt were fixed at 0.6. This paper is part
of a systematic investigation of the effects of basic parameters
on compressible turbulent mixing. In a companion paper [11],
we have carefully examined the Schmidt number effects.

The rest of this paper is organized as follows: the governing
equations and simulated parameters are described in Sec. II.
In Sec. III we analyze the effects of compressibility from the
change in the Mach number, and that caused by the difference
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in the forcing scheme is reported in Sec. IV. The summary and
conclusions regarding this paper are given in Sec. V.

II. GOVERNING EQUATIONS AND SIMULATED
PARAMETERS

We consider a statistically stationary system of passive
scalar transport in the compressible turbulence of an ideal gas.
The velocity and scalar fields are driven and maintained by
large-scale, random forcing. The accumulated internal energy
at small scales is removed by a cooling function added at
large scales. Based on the basic scales of L for length, ρ0 for
density, U for velocity, T0 for temperature, and φ for scalar,
the governing equations and the state equation of ideal gas, in
dimensionless form, are written as

∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (2.1)

∂(ρui)

∂t
+ ∂[ρuiuj + pδij /γM2]

∂xj

= 1

Re

∂σij

∂xj

+ ρFi , (2.2)

∂E
∂t

+ ∂[(E + p/γM2)uj ]

∂xj

= 1

α

∂

∂xj

(
κ

∂T

∂xj

)

+ 1

Re

∂(σijui)

∂xj

− 
 + ρFjuj , (2.3)

∂(ρφ)

∂t
+ ∂[(ρφ)uj ]

∂xj

= 1

β

∂

∂xj

(
ρχ

∂φ

∂xj

)
+ ρS, (2.4)

p = ρT . (2.5)

The primary variables are the density ρ, velocity vector u,
pressure p, temperature T , and scalar φ. The nondimen-
sional parameters α and β are α = Pr Re(γ − 1)M2 and β =
Sc Re(γ − 1)γ . Fj is the dimensionless large-scale velocity
forcing:

Fj =
2∑

l=1

F̂j (kl) exp(iklx) + c.c., (2.6)

where F̂j is the Fourier amplitude, which may have the
solenoidal and compressive modes perpendicular and parallel
to kl , respectively. kl is the wave number vector in Cartesian
coordinate, and a growth of the index l indicates an increase in
wave number. Similarly, the dimensionless large-scale scalar
forcing S is written as

S =
2∑

l=1

Ŝ(kl) exp(iklx) + c.c., (2.7)

where the Fourier amplitude Ŝ is perpendicular to kl . A
detailed discussion of the cooling function 
 can be found
in Ref. [15]. The expressions for the viscous stress σij and the
total energy per unit volume E are

σij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
μθδij , (2.8)

E = p

(γ − 1)γM2
+ 1

2
ρ(ujuj ). (2.9)

Here θ = ∂uk/∂xk is the velocity divergence or dilatation.
M ≡ U/c0 is the reference Mach number, c0 ≡ √

γRT0 is the

reference sound speed, and γ ≡ Cp/Cv is the ratio of specific
heat at constant pressure to that at constant volume. We shall
assume that both specific heats are independent of temperature,
which is a reasonable assumption for the air temperature in the
simulations within the current Mach number range [15]. Three
additional basic parameters are the reference Reynolds number
Re ≡ ρ0UL/μ0, the reference Prandtl number Pr ≡ μ0Cp/κ0,
and the reference Schmidt number Sc ≡ ν0/χ0, where ν0 ≡
μ0/ρ0 is the reference kinematic viscosity. In this study, the
values of γ , Pr, and Sc are set as 1.4, 0.7, and 1.0, respectively.
Thus, there remain two independent parameters of M and Re to
control the system. For completion, we employ the Sutherland
law [17] to specify the temperature-dependent dynamical
viscosity, thermal conductivity, and molecular diffusivity as

μ,κ,χ = 1.4042T 1.5

T + 0.4042
. (2.10)

The system is solved numerically in a cubic box with
periodic boundary conditions, by adopting a new computa-
tional method. This method utilizes a seventh-order weighted
essentially nonoscillatory (WENO) scheme [18] for shock
regions, and an eighth-order compact central finite difference
(CCFD) scheme [19] for smooth regions outside shocks. A
flux-based conservative formulation is employed to optimize
the interface between the two regions and thus improve the
computational efficiency. The details of the computational
method can be found in Ref. [15]. Furthermore, in simu-
lation computations it is usual to use the turbulent Mach
number Mt ≡ Mu′/〈√T 〉 and the Taylor microscale Reynolds
number Reλ ≡ Re u′λ〈ρ〉/√3〈μ〉 rather than the reference
Mach number and the reference Reynolds number to describe
the flow, where u′ is the root-mean-square (r.m.s.) velocity
magnitude (defined below) and λ ≡ u′/

√〈(∂uj/∂xj )2〉 is the
Taylor microscale.

Table I presents the major simulated parameters. The
simulations are conducted on a N3 = 5123 grid and are divided
into two groups according to the source of compressibility. The
first group, including R1S, R2S, R3S, and R4S, is used to study
the variation of compressibility caused by the change in the
Mach number, where Mt increases from zero to unity. Note that
the incompressible flow (R1S) is also solved numerically in a
cubic box with periodic boundary conditions but by adopting a
different computational method of pseudo spectral scheme. In
the second group, R3S, R3Ca, and R3Cb, Mt is fixed at around
0.6; we study the variation of compressibility because of the
difference in the forcing scheme. In R3S the Fourier amplitude
of the forcing function has only the solenoidal mode, while in
R3Ca and R3Cb, it additionally has the compressive mode. The
ratios of solenoidal to compressive modes are 1.00 in R3Ca
and 0.05 in R3Cb, respectively. Moreover, in the above six
simulation cases, the values of Reλ are around 180, and those
of the Kolmogorov scale η ≡ [〈μ/(Reρ)〉3/ < ε/ρ >]1/4 are
0.01, where ε ≡ σijSij /Re is the kinetic energy dissipation
rate. In addition, we introduce the quantity � to measure
compressibility, which is defined as [20]

� ≡
〈(

∂ui

∂xi

)2〉
〈(

∂ui

∂xj

)2〉 . (2.11)
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TABLE I. Flow statistics in the simulations.

Case Mt Reλ η u′ φ′ ρ ′ EK Eφ 〈ε〉 〈εφ〉 �

R1S 0 179 0.01 2.30 2.34 0 2.66 2.74 0.78 1.62 0
R2S 0.23 181 0.01 2.28 2.29 0.02 2.58 2.63 0.73 1.70 0.003
R3S 0.62 183 0.01 2.32 2.28 0.12 2.62 2.60 0.75 1.63 0.02
R4S 1.02 178 0.01 2.21 2.25 0.29 2.31 2.48 0.56 1.45 0.11
R5S 0.02 186 0.01 2.29 2.32 0.0005 2.59 2.69 0.76 1.75 0.0002
R3Ca 0.60 179 0.01 2.22 2.28 0.30 2.39 2.62 0.69 1.42 0.18
R3Cb 0.61 180 0.01 2.17 2.23 0.44 2.36 2.55 0.71 1.18 0.35

For the first group, � increases as Mt increases. In the low Mt

flow, i.e., R2S, the value of � is very small. In contrast, for the
second group, Mt significantly increases when the compressive
mode of the forcing increases. This indicates that � is better
than Mt to parametrize the compressibility of compressible
turbulence.

The remainder of the simulated parameters in Table I show
that the r.m.s. magnitude of scalar (φ′ ≡

√
〈φ2〉) and the scalar

variance per unit volume (Eφ ≡ 〈ρφ2〉/2) decrease when Mt

increases from zero to unity. In contrast, the r.m.s. magnitude of

velocity (u′ ≡
√

〈u2
j 〉) and the kinetic energy per unit volume

(EK ≡ 〈ρu2
j 〉/2) decrease when the compressive mode of the

forcing increases. The r.m.s. magnitude of density fluctuations
[ρ ′ ≡

√
〈(ρ − 〈ρ〉)2〉] increases when Mt increases from zero

to unity and increases significantly when the compressive
mode of forcing increases. This indicates that the intensity of
density fluctuations sensitively increases as the degree of com-
pressibility grows. Here the sign 〈·〉 denotes ensemble average,
and the repetition on subscript denotes the Einstein summation.
The ensemble average of the scalar dissipation rate [εφ ≡
χ (∂φ/∂xj )2] is found to decrease as the compressive mode of
the forcing increases. This implies that the compressive mode
is less efficient than the solenoidal mode in enhancing scalar
dissipation.

III. EFFECTS OF COMPRESSIBILITY: CHANGE IN THE
MACH NUMBER

A. Fundamental statistics

In this section we focus on the effects of compressibility
on compressible turbulent mixing caused by the change in the
Mach number. The Kolmogorov theory is a milestone in tur-
bulence research [21,22]. It predicts that, in the inertial range
of L−1

f � k � η−1, the energy spectrum of incompressible
turbulence is

E(k) = CK〈ε〉2/3k−5/3, (3.1)

where Lf is the integral length scale of velocity, CK is the
Kolmogorov constant, and the typical values are 1.5–2.0 [23].
For compressible turbulence, an operational definition of the
inertial range can be constructed in a similar way, and the
compensated energy spectra according to the Kolmogorov
variables at different Mt are shown in Fig. 1. Obviously, for
the energy spectra, plateaus appear in the inertial range of
5 � k � 20, and the values of CK are about 2.07. Throughout
the entire wave number range, the energy spectra from the four
simulation cases overlap, except that at high wave numbers

the energy content in R4S decays a bit faster. It reveals that, in
our simulations, the change in the Mach number brings little
contribution to the energy spectrum.

By applying the Kolmogorov theory to the scalar transport
in an incompressible flow, Obukhov [24] and Corrsin [25]
derived a scalar spectrum in the inertial range satisfying L−1

φ �
k � η−1:

Eφ(k) = Cφ〈εφ〉〈ε〉−1/3k−5/3, (3.2)

where Lφ is the integral length scale of scalar, Cφ is the
Obukhov-Corrsin (OC) constant, and the typical values are
0.75–0.92 in experiments [26] and 0.87 ± 0.10 in simula-
tions [27], respectively. Figure 2 shows the compensated scalar
spectra according to the OC variables at different Mt . For
the scalar spectra of compressible flows, the plateaus appear
in the same inertial range of 5 � k � 20, and the values of
COC are about 0.83. In contrast, for the scalar spectrum of
incompressible flow, the inertial-range plateau is found in the
higher wave number range of 12 � k � 30, and COC is about
1.15, significantly larger. In addition, the scalar spectra of
compressible flows almost overlap, except that at high wave
numbers the energy content in R4S decays a bit faster. In
contrast, in the incompressible flow, the spectral bump at high
wave numbers is quite conspicuous, causing the energy content
to decay more slowly in the dissipative range.

In order to prove that, in this study, the transition
from incompressible to compressible turbulence is smooth,
we provide a supplementary simulation case, R5S, where

k

E(
k)

<ε
>-2

/3
k5/

3

100 101 10210-4

10-3

10-2

10-1

100

101

R2S
R1S

R4S
R3S

FIG. 1. Compensated spectrum of kinetic energy according to the
Kolmogorov variables.
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FIG. 2. Compensated spectrum of scalar according to the
Obukhov-Corrsin variables.

Mt = 0.02 and Reλ = 186. In Figs. 3(a) and 3(b) we plot
the compensated energy and scalar spectra from R1S, R2S,
and R5S, respectively. In the entire wave number range,
the energy spectra from the three simulation cases almost
overlap, indicating that the transition from incompressible to

k
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(a)

k
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3

100 101 10210-5
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R2S
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(b)

FIG. 3. (a) Compensated spectrum of kinetic energy according
to the Kolmogorov variables, from cases of R1S, R2S, and R5S. (b)
Compensated spectrum of scalar according to the Obukhov-Corrsin
variables, from cases of R1S, R2S, and R5S.

compressible flows is smooth. In contrast, we observe several
differences in the scalar spectra from the three simulation
cases. For R1S and R5S, the spectra are close to each other in
the inertial range and separate from each other in the dissipative
range. For R2S and R5S, the spectra almost overlap in the
dissipative range, exhibiting universal features in that range.
Compared with energy spectrum, in weakly compressible
turbulence, the relatively stronger response of scalar to the
compressibility is attributed to the stronger intermittency of
scalar.

Instead of the three-dimensional (3D) scalar spectrum, in
experiments one always measures the one-dimensional (1D)
counterpart, which for isotropic turbulence is written as

E1φ(k) = −
∞∫

k

Eφ(k)

k
dk. (3.3)

In Fig. 4 we plot the 1D compensated scalar spectra at different
Mt . We have taken averages over three coordinate directions.
The spectral bump, which is a precursor to the k−1 part of
the scalar spectrum, has been found in previous studies of
incompressible turbulent mixing. Here we also observe it in
the 1D scalar spectrum from compressible turbulent mixing.
Furthermore, the 1D OC constant (C1φ) can be obtained using
Eq. (3.3), and it is connected with the 3D OC constant at
C1φ = 3Cφ/5. Figure 4 shows that this relation is satisfied in
our simulations.

The equivalence of the scalar spectrum in physical space is
the second-order structure function of scalar increment, which
is defined as

Sφ2(r) ≡ 〈(δrφ)2〉, (3.4)

where δrφ = φ(x + r) − φ(x) is the scalar increment. In Fig. 5
we plot Sφ2(r) normalized by the OC variables, as suggested
in Eq. (3.2), as function of the normalized separation distance
r/η. The figure shows that, in the inertial range of 30 � r/η �
150, plateaus appear with finite widths. The values of the
scaling constant computed from plateaus are defined as

Cs = Sφ2(r)

r2/3〈ε〉−1/3〈εφ〉 (3.5)

k

E 1φ
(k

)<
ε>

1/
3 <ε

φ>
-1
k5/

3

100 101 10210-5

10-4

10-3

10-2

10-1

100

R4S

R1S
R2S
R3S

FIG. 4. One-dimensional compensated spectrum of scalar ac-
cording to the Obukhov-Corrsin variables.
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r/η

S φ2
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r2/

3 <ε
>-1
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<ε

φ>
)
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R4S

R1S
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R3S

FIG. 5. Obukhov-Corrsin scaling of second-order structure func-
tion of scalar.

and are 0.20, 0.16, 0.17, and 0.15 from R1S through R4S,
respectively. It reveals that the second-order structure function
of scalar increment is insensitive to the current change in the
Mach number, except for the transition from incompressible
to compressible flows.

The mixed third-order structure function is defined as

Sm3(r) ≡ 〈δru(δrφ)2〉, (3.6)

where δru = u(x + r) − u(x) is the longitudinal velocity
increment, and plays a more fundamental role in the similarity
scaling. In incompressible turbulence, Yaglom [28] derived the
following exact result for the range of Sc−1/2η � r � Lφ :

〈δru(δrφ)2〉 = − 4
3 〈εφ〉r. (3.7)

In this study, the value of the Schmidt number (Sc) is set as
unity. Figure 6 presents the minus of Sm3(r) normalized by the
Yaglom variables. It is found that, for each simulated flow, a
flat region appears with finite width. At large scales, −Sm3(r)
drops and approaches zero, while at small scales, it behaves
approximately as r2 according to the Taylor expansion. We

r/η

-S
m

3(r
)/(

r<
ε φ>

)

100 101 10210-3

10-2

10-1

100

101

R4S

R1S
R2S
R3S

FIG. 6. Yaglom scaling of mixed third-order velocity-scalar
structure function.

compute the scaling constant of Sm3(r) as

Cm = − Sm3

r〈εφ〉 . (3.8)

Our results show that, in flat regions, the values of Cm are
1.31, 1.10, 1.19, and 1.37 from R1S through R4S, respectively.
Since the mixed third-order velocity-scalar structure function
corresponds to the scalar flux in physical space, it is concluded
in two aspects: (1) the transition from incompressible to
compressible flows leads the transfer of scalar flux to being
reduced and (2) for compressible flow, the transfer of scalar
flux is enhanced as the Mach number increases.

At the end of this subsection, the two-dimensional (2D)
isocontour lines of scalar fields in the z = π/2 plane from R1S
and R4S are depicted in Fig. 7. Obviously, the scalar field from
the incompressible flow is full of the small-scale “ramp-cliff”
structures. For the Mt = 1.02 compressible flow, although

x

y

0 2 4 6
0

2

4

6 (a)

x

y

0 2 4 6
0

2

4

6 (b)

FIG. 7. Two-dimensional isocontour lines of scalar field from
(a) R1S and (b) R4S, in z = π/2.
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there are small-scale “ramp-cliff” structures, the scalar field is
globally divided into the large-scale regions of rarefaction and
compression.

B. Higher-order statistics

For higher-order statistics, the skewness and flatness of
scalar increment, displaying the change of the distribution of
scalar field, are defined as

K3(r) ≡ 〈(δrφ)3〉
〈(δrφ)2〉3/2

, (3.9)

K4(r) ≡ 〈(δrφ)4〉
〈(δrφ)2〉2

. (3.10)

In Fig. 8 we plot the skewness (top) and flatness (bottom) of
δrφ against the normalized separation distance r/η. At small
scales, the skewness from incompressible flow is positive,
while that from compressible flows is negative. When scale
increases, the magnitude of skewness falls and approaches
zero. At large scales, the skewness oscillates around zero. In
addition, throughout scale ranges, the magnitude of skewness
from the high Mt flow is always larger than that from the low
Mt flow. However, the magnitude of skewness from the middle
Mt flow is first larger and then smaller than that from the
low Mt flow. In terms of flatness, it is close to each other

r/η

K
3(r

)

100 101 102-0.16

-0.08
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0.08
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R3S

(a)

r/η

K
4(r

)

100 101 1020

3

6

9

12

15

R2S
R1S

R4S
R3S

(b)

FIG. 8. (a) Skewness of scalar increment as a function of r/η.
(b) Flatness of scalar increment as a function of r/η.

TABLE II. Skewness and flatness in the simulations.

Case Su Sφ Suφ Fu Fφ Fuφ

R1S − 0.13 0.17 − 0.49 14.7 15.6 1.9
R2S − 0.51 − 0.03 − 0.49 5.8 13.7 1.9
R3S − 0.52 − 0.09 − 0.45 5.9 14.2 1.9
R4S − 1.72 − 0.11 − 0.36 21.8 14.9 1.8
R3Ca − 4.70 − 0.13 − 0.39 97.3 16.4 1.8
R3Cb − 11.66 − 0.19 − 0.31 274.1 18.2 1.7

at small scales, and decreases and approaches 3.0 as scale
increases. Note that the 3.0 value stands for the Gaussian
distribution without intermittency.

We now compute the skewness and flatness of scalar
derivative as

Sφ ≡
[〈∑j

(
∂φ

∂xj

)3〉]/3[〈∑j

(
∂φ

∂xj

)2〉/3
]3/2 , Fφ ≡

[〈∑j

(
∂φ

∂xj

)4〉]/3[〈∑j

(
∂φ

∂xj

)2〉/3
]2 .

(3.11)
Also, the mixed skewness and flatness of velocity-scalar
derivatives are defined as

Suφ ≡
[〈∑j

∂uj

∂xj

(
∂φ

∂xj

)2〉]/3[〈∑j

( ∂uj

∂xj

)2〉/3
]1/2[〈∑j

(
∂φ

∂xj

)2〉/3
] , (3.12)

Fuφ ≡
[〈∑j

( ∂uj

∂xj

)2( ∂φ

∂xj

)2〉]/3[〈∑j

( ∂uj

∂xj

)2〉/3
][〈∑j

(
∂φ

∂xj

)2〉/3
] , (3.13)

where j = 1, 2, and 3. Table II lists the values of Sφ , Suφ , Fφ ,
and Fuφ . Here we also present the values of Su and Fu. Their
definitions are similar to those of Sφ and Fφ . These values
show that the skewness of scalar derivative changes from
positive to negative when the flow transits from incompressible
to compressible. More importantly, when the degree of
compressibility grows, the magnitudes of the skewness and
flatness of scalar derivative increase, but those of the mixed
skewness and flatness of velocity-scalar derivatives decrease.
For each compressible flow, the magnitude of the skewness of
velocity derivative is always larger than that of the skewness of
scalar derivative. The comparison between Fφ and Fu shows
that, for the flow with a low degree of compressibility, the
intermittency of scalar is stronger than that of velocity. This
relation reverses if the degree of compressibility continuously
grows.

The structure functions for the scalar increment and the
mixed velocity-scalar increments are defined as

Sp(r) ≡ 〈|δrφ|p〉, (3.14)

Smp(r) ≡ 〈|δru(δrφ)2|p/3〉, (3.15)

where p is the order number. For simplicity, in Eq. (3.15) we
have assumed isotropy and dropped any possible dependency
on the velocity component. Given the values of the Reynolds
number in our simulations, it is better to study the relative
scaling properties using a procedure known as extended self-
similarity (ESS) [29]. In Fig. 9 we plot the ESS type Sp(r) (top)
and Smp(r) (bottom) against the normalized separation distance

043116-6



COMPRESSIBLE TURBULENT MIXING: EFFECTS OF . . . PHYSICAL REVIEW E 93, 043116 (2016)

r/η

S p(r
)/S

3(r
)

100 101 10210-1

100

101

102

103

104

105

106 (a)

r/η

S m
p(r

)/S
m

3(r
)

100 101 10210-3

10-2

10-1

100

101

102

103

104

105

106 (b)

FIG. 9. (a) ESS structure functions of scalar from R1S (dashed
lines) and R4S (solid lines), where the symbols of deltas, gradients,
circles, squares, and diamonds are for p = 2, 4, 6, 8, and 10,
respectively. (b) ESS mixed structure functions of velocity scalar
from R1S (dashed lines) and R4S (solid lines), where the symbols of
gradients, circles, and squares are for p = 6, 9, and 12, respectively.

r/η, at p = 2, 4, 6, 8, 10, and p = 6, 9, 12, respectively.
When p grows, the difference of Sp(r)/S3(r) between the
incompressible flow and the Mt = 1.02 compressible flow
increases. At every p, the inertial-range slope of Sp(r)/S3(r)
from the incompressible flow is smaller than that from the
Mt = 1.02 compressible flow. For Smp(r)/Sm3(r), it displays
behavior similar to Sp(r)/S3(r).

The scaling exponents of Sp(r), which are computed by
taking averages of the local scaling exponents

ζp(r) ≡ d log[Sp(r)]

d log(r/η)
, (3.16)

are depicted in Fig. 10, as a function of the order number
p. For comparison, we present the scaling exponents from
the isothermal compressible flows [9] and incompressible
flow [30]. It shows that at large order numbers: (1) for
incompressible flow, ζ (p) from R1S is significantly smaller
than that from Ref. [30], while for compressible flow, ζ (p)
from R4S, where Mt = 1.02, is a bit larger than that from the
Mt = 0.9 isothermal case; and (2) ζ (p) from Ref. [30] and
the Mt = 6.1 isothermal case have the largest and smallest
values, respectively, while ζ (p) from R1S collapses between

p

ζ(
p)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
R1S

Mt=0.9, Pan

Watanabe
Mt=6.1, Pan

R4S

FIG. 10. Scaling exponents of structure function of scalar against
the order number p.

those from R4S and the Mt = 0.9 isothermal case. Figure 11
shows the scaling exponents of Smp(r), which are computed
by taking averages of the local scaling exponents

ζmp(r) ≡ d log[Smp(r)]

d log(r/η)
. (3.17)

At large order numbers, ζm(p) from R4S and the Mt =
6.1 isothermal case have the largest and smallest values,
respectively, and ζm(p) from R1S collapses between those
from R4S and the Mt = 0.9 isothermal case. The above results
show that, in this study, for the inertial range, the intermittency
of scalar in the incompressible flow is stronger than that in the
Mt = 1.02 compressible flow, which is also confirmed by the
values of the flatness of scalar derivative listed in Table II.

C. Dissipation and mixing time scale

In a turbulent flow, the scalar dissipation fluctuates in
space. These fluctuations are regarded as the exhibition of
the intermittency of scalar. Thus, it is valuable to study the
spatial structure of scalar dissipation. In Fig. 12 we depict the
2D contours of the logarithms of the scalar dissipation rate in

p

ζ m
(p

)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Mt=0.9, Pan

R1S

Mt=6.1, Pan

R4S

FIG. 11. Scaling exponents of mixed structure function of veloc-
ity scalar against the order number p.
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FIG. 12. Two-dimensional contours of logarithm of scalar dis-
sipation rate from (a) R1S and (b) R4S, in z = π/2, where the
logarithmic base is 10.

the z = π/2 plane from R1S and R4S, where the color scale
is determined as

ψ = log10(D/D′). (3.18)

Here D = χ (∂φ/∂xj )2/β, and D′ =
√

〈(D − 〈D〉)2〉 is the
r.m.s. magnitude of D. The color changes from blue to red as
dissipation increases. In the incompressible flow, the scalar
dissipation field is full of the small-scale, high-dissipation
structures, which are very sharp and highly convoluted,
and are displayed as random distribution. In the Mt = 1.02
compressible flow, although the high-dissipation structures
are highly convoluted, they are larger in scale and width and
are displayed as rare random distribution. This indicates that
the shocklet structures enhance the scalar dissipation in the
convoluted regions. Moreover, the magnitude of the smooth,

εφ/εφ′

PD
F

30 35 40 45 50

R4S

R1S
R2S
R3S

2×10-4

1×10-4

FIG. 13. The one-point PDF of the normalized scalar dissipation
rate.

low-dissipation regions from the Mt = 1.02 compressible flow
is smaller than that from the incompressible flow.

Figure 13 shows the probability distribution function
(PDF) of the normalized scalar dissipation rate, where ε′

φ =√〈(εφ − 〈εφ〉)2〉 is the r.m.s. magnitude of εφ . It is found
that the increase in the Mach number enhances the scalar
dissipation occurring at large amplitudes, especially for the
compressible flows.

A commonly used method for quantifying the intermittency
of scalar in the dissipative range is the so-called intermittency
parameter, μφ , through the autocorrelation of the scalar
dissipation rate, namely,

〈εφ(x)εφ(x + r)〉 ∼ r−μφ . (3.19)

Figure 14 presents a log-log plot of the autocorrelations of
the scalar dissipation rate, as functions of the normalized
separation distance r/η, where the logarithmic bases for both
horizontal and vertical axes are 10. In the rough range of
2 � r/η � 8, the values of μφ are 0.63, 0.71, 0.73, and 0.76
from R1S through R4S, respectively. This means that, in the
dissipative range, the intermittency of scalar becomes stronger
as the Mach number increases.

log10(r/η)

lo
g 10

[ε
φ(x

)ε
φ(x

+r
)/ε

φ2 ]

0 0.5 1 1.5 2 2.50

0.3

0.6

0.9

1.2

R4S

R1S
R2S
R3S

FIG. 14. Autocorrelation of scalar dissipation rate, as a function
of r/η.
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τ m
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FIG. 15. Mixing time scale of scalar as a function of the turbulent
Mach number. R1S: delta, R2S: gradient, R3S: circle, R4S: square,
R3Ca: right-pointing triangle, and R3Cb: left-pointing triangle.

At the end of this subsection, we explore the dependency
of the mixing time scale, τm, on the compressibility in Fig. 15,
where τm is defined as

τm ≡ Eφ

〈εφ〉 . (3.20)

It shows that, for the flows driven by the solenoidal mode of
forcing, the change in the Mach number makes the mixing time
scale vary slightly. In contrast, for the Mt ≈ 0.6 compressible
flows, the increase in the compressive mode of forcing leads the
mixing time scale to increase significantly. This indicates that,
compared with the solenoidal mode, the compressive mode is
less efficient in enhancing scalar mixing.

IV. EFFECTS OF COMPRESSIBILITY: DIFFERENCE IN
THE FORCING SCHEME

In this section, we discuss the effects of compressibility
on compressible turbulent mixing caused by the difference in
the forcing scheme. We first apply the Helmholtz decomposi-
tion [12] to the velocity field

ui = ui,s + ui,c, (4.1)

where ui,s is the solenoidal component satisfying
∂ui,s/∂xi = 0, ui,c is the compressive component satisfying
εijk∂uk,c/∂xj = 0, and εijk is the Levi-Civita symbol. Table III
shows that the r.m.s. magnitudes of the solenoidal (u′

s)
and compressive (u′

c) components of velocity, respectively,
decreases and increases when the compressive mode of forcing
increases. Therefore, the ratio of u′

c to u′
s , grows significantly

TABLE III. Helmholtz decomposition in cases R3S, R3Ca, and
R3Cb.

Case ρ ′ u′ u′
s u′

c u′
c/u

′
s 〈ε〉 〈εs〉 〈εc〉 〈εm〉

R3S 0.12 2.32 2.30 0.30 0.13 0.75 0.73 0.02 0.00
R3Ca 0.30 2.22 1.95 1.06 0.54 0.69 0.53 0.17 −0.01
R3Cb 0.44 2.17 1.25 1.77 1.42 0.71 0.38 0.36 −0.03

k

E φ(k
)<

ε φ>
1/

3 <ε
>-1

k5/
3

100 101 10210-5

10-4

10-3

10-2

10-1

100

101

R3Cb

R3S
R3Ca

FIG. 16. Compensated spectrum of scalar according to the
Obukhov-Corrsin variables, from cases of R3S, R3Ca, and R3Cb.

over the compressive mode of forcing. Furthermore, the kinetic
energy dissipation rate can be divided into three parts [31]:
the solenoidal dissipation rate εs = (μ/Re)ωiωi , the dilatation
dissipation rate εc = (4/3)(μ/Re)θ2, and the mixed dissi-
pation rate εm = (2μ/Re)[(∂ui/∂xj )(∂uj/∂xi) − θ2], which
represents the contribution to the dissipation rate from the
nonhomogeneous component of compressible flow. Here ωi

is the vorticity. It shows that when the compressive mode
of forcing increases, the ensemble averages of the solenoidal
and dilatation parts decreases and increases, respectively. The
ensemble average of the mixed part is zero in R3S and becomes
negative in R3Ca and R3Cb.

In Fig. 16 we plot the compensated scalar spectra according
to the OC variables from R3S, R3Ca, and R3Cb. Similar
to those shown in Fig. 2, the plateaus appear in the inertial
range of 5 � k � 20, and the values of COC are about 0.83.
Throughout the entire wave number range, the scalar spectra
from R3S and R3Ca overlap. In contrast, the scalar spectrum
from R3Cb is higher at large scales and decays more slowly
at small scales. It again proves that the compressive mode of
forcing reduces the mixing of scalar in the dissipative range.

The second-order structure function of scalar increment is
shown in Fig. 17, which corresponds to the scalar spectrum
in wave number space. The values of the scaling constant
computed from the plateaus appearing in the inertial range of
30 � r/η � 150 are 0.17, 0.18, and 0.21 from R3S through
R3Cb, respectively. This reveals that the growth of the
compressive mode of forcing increases the scalar content,
which is in agreement with the conclusion derived from the
study of scalar spectrum.

Given there are density fluctuations in compressible tur-
bulent mixing, we introduce the density weighted scalar
� = √

ρφ. Then the governing equation of scalar variance
is obtained as [11]

∂

∂t

(
�2

2

)
= −uj

∂

∂xj

(
�2

2

)
− 2θ

(
�2

2

)
− χ

β

(
∂φ

∂xj

)2

+ χ

β

1√
ρ

∂2

∂x2
j

(
�2

2

)
. (4.2)
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FIG. 17. Obukhov-Corrsin scaling of second-order structure
function of scalar, from the cases of R3S, R3Ca, and R3Cb.

Here the terms on the right-hand-side of Eq. (4.2) are, from
left to right, the advection, scalar dilatation, dissipation, and
diffusion terms. In statistically homogeneous turbulence, the
global average makes the diffusion term vanish. In Fig. 18
we plot the 2D contours of the scalar dilatation terms in the
z = π/2 plane from R3S and R3Cb. It shows that, for R3S, the
positive and negative couplings are concentrated in small-scale
regions and are distributed randomly. For R3Cb, the positive
coupling occupies the whole visualization domain, while the
negative coupling only arises in the vicinity of the large-scale
shock waves.

The 2D contours of the logarithms of the scalar dissipation
rate for the same flows shown in Fig. 19 are rather different.
For R3S, the outlook of the scalar dissipation field is between
those for R1S and R4S visualized in Fig. 12. In contrast, for
R3Cb, the motions of rarefaction and compression caused
by the large-scale shock wave lead the scalar dissipation
field to lack the small-scale structures. In other words,
there are only the large-scale regions for low and high
dissipations.

Finally, in Fig. 20 we compute the intermittency param-
eter by the autocorrelation of the scalar dissipation rate.
In the rough range of 2.5 � r/η � 6.5, the values of the
intermittency parameter are μφ = 0.73, 0.62, and 0.59 from
R3S through R3Cb, respectively. This indicates that, in the
dissipative range, the intermittency of scalar becomes weaker
when the compressive mode of forcing increases, which is
opposite to the change of the intermittency parameter caused
by the growth of the Mach number.

V. SUMMARY AND CONCLUSIONS

In this paper, we described our systematic investigation
of the effects of compressibility on passive scalar transport
in compressible turbulence. The simulations were solved
numerically by adopting a hybrid method of a seventh-
order WENO scheme for shock regions and an eighth-order
CCFD scheme for smooth regions outside shocks. Large-scale,
random forcing was added to the velocity field for achieving
and maintaining a statistically stationary state. The simulated
flows were divided into two groups. One group was used to

FIG. 18. Two-dimensional contours of scalar-dilatation coupling
term of the scalar variance equation from (a) R3S and (b) R3Cb, in
z = π/2.

study the effects of compressibility because of the change
in the Mach number, where the turbulent Mach number was
varied from zero to unity, and the flows were driven by the
solenoidal mode of forcing. The other group was used to
explore the effects of compressibility due to the difference
in the forcing scheme, where the turbulent Mach number
was fixed at around 0.6, and the ratio of the compressive
to solenoidal modes of forcing was varied from zero to 20.
Our results show that, the scalar variance decreases when
the Mach number increases, and the ensemble average of the
scalar dissipation rate decreases when the compressive mode
of forcing increases. In contrast, the r.m.s. magnitude of density
fluctuations always increases as the degree of compressibility
grows.
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FIG. 19. Two-dimensional contours of logarithm of the dissipa-
tion term of the scalar variance equation from (a) R3S and (b) R3Cb,
in z = π/2, where the logarithmic base is 10.

In the inertial range, the scalar spectrum follows the k−5/3

power law. The effect of compressibility brings negligible
contributions to the scalar spectrum and the second-order
structure function of scalar increment, except for the transition
zone between incompressible and compressible flows. For
the mixed third-order structure function of velocity-scalar
increments, our results show that the transfer of scalar flux is
reduced by the transition from incompressible to compressible
flows, but is enhanced by the increase in the Mach number
in compressible flows. At large order numbers, the scaling
exponents for the scalar and mixed velocity-scalar structure
functions from the incompressible flow collapse between those
from the Mt = 1.02 compressible flow and the Mt = 0.9
isothermal compressible flow [9].

log10(r/η)

lo
g 10
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)ε
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1.2
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FIG. 20. Autocorrelation of scalar dissipation rate, as a function
of r/η, from the cases of R3S, R3Ca, and R3Cb.

As the degree of compressibility grows, in magnitude, the
skewness and flatness of scalar derivative increase, while the
mixed skewness and flatness of velocity-scalar derivatives
decrease. Moreover, a comparison on flatness shows that, at
low degree of compressibility, the intermittency of scalar is
stronger than that of velocity. However, a reversal occurs as
the degree of compressibility continuously grows. The inter-
mittency parameter, which is used to measure the intermittency
of scalar in the dissipative range, increases by the growth of the
Mach number and decreases by the growth of the compressive
mode of forcing. The dependency of the mixing time scale
on the compressibility shows that, for the driven forcing, the
compressive mode is less efficient than the solenoidal mode in
enhancing scalar mixing.

Finally, the 2D contour shows that, in the flow driven by
the solenoidal mode of forcing, the scalar dissipation field is
filled with the small-scale, highly convoluted structures, which
are randomly distributed. However, in the flow driven by the
compressive mode of forcing, the scalar dissipation field lacks
the small-scale structures. Instead, the large-scale regions for
low and high dissipations are dominated by the large-scale
motions of rarefaction and compression.

In summary, the above findings reveal that the effects of
compressibility, including the change in the Mach number
and the difference in the forcing scheme, have pronounced
influence on the small-scale statistics and field structure of
passive scalar in compressible turbulence. Here, we stress
that the contributions from the Mach number and the forc-
ing scheme may be quite different. A deeper investigation
on the compressible turbulent mixing with higher Mach,
Reynolds, and Schmidt numbers will be carried out in the near
future.
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