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Rayleigh-Bénard convection with two-frequency temperature modulation
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The response of Rayleigh-Bénard convection in a horizontal fluid layer to time-periodic heating of its horizontal
boundaries with a mixture of two frequencies is analyzed numerically. The ratio of the two forcing frequencies
and the mixing angle of the amplitudes of modulation provide a control on the instability of the system. In
addition to the existence of well-known harmonic and subharmonic instability responses under modulation, the
time-periodic oscillation of the boundary temperatures of the fluid-layer with two frequencies results in more
bicritical states in comparison to the single-frequency excitation. The onset of instability depends strongly on the
modulation parameters and the Prandtl number of the fluid.
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I. INTRODUCTION

Rayleigh-Bénard convection (hereafter referred to as RBC)
in a horizontal layer of fluid has become a paradigm among
the studies concerning instability phenomena. The study of
RBC under different conditions has left a deep imprint on the
development of the theory of pattern formation in systems
driven away from equilibrium. RBC has great utility in
explaining the convection phenomena in diverse areas such
as astrophysics, geophysics, engineering, and atmospheric
sciences [1,2].

If the fluid layer is parametrically excited by an external
time-periodic forcing or the boundary conditions are time-
periodic, the instability appears in the form of time-periodic
oscillations. The fluid pattern may oscillate either with the
forcing frequency or with a frequency that is a submultiple of
the forcing frequency. In the former case the oscillations are
called harmonic oscillations, whereas in the latter case they
are called subharmonic oscillations.

The parametric excitation of the fluid layer via mechanical
vibration results in Faraday instability, which was discovered
experimentally by Faraday in 1831. For a quick review on
Faraday instability, the reader may refer to the work of Miles
and Henderson [3].

The time-periodic heating of the boundaries of the hori-
zontal fluid layer results in a time-periodic basic state. The
instability of the time-periodic basic state also arises in the
form of harmonic or subharmonic oscillations, depending upon
the control parameters. This instability is called temperature-
modulated Rayleigh-Bénard convection (hereafter referred to
as TMRBC) [2,4–12].

Both the Faraday instability as well as TMRBC are well-
understood instability phenomena, which have been studied
theoretically and observed experimentally for decades. Both
share identical harmonic and subharmonic oscillatory patterns,
which usually occur in the form of rolls, triangles, squares,
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and hexagons. These patterns have rotational and translational
symmetries.

In Faraday instability and RBC under gravity modula-
tion [13], the quasiperiodic patterns are known to exist near the
bicritical state when the two frequency modes with different
wave numbers become simultaneously unstable [3,14–18].

Quasiperiodic patterns are those planer patterns that have
rotational symmetry but do not possess translational in-
variance. These patterns oscillate time periodically and are
spatially quasiperiodic. They occur due to an interaction
between the subharmonic and the harmonic modes of the
instability [19,20]. The quasiperiodic patterns are found to
occur in hydrodynamics, metallic solids, plane-tiling, liquid
crystals, optics, etc., and they are objects of mathematical
studies as well [21–23].

Unlike Faraday instability and RBC under gravity modula-
tion, TMRBC has not been explored for the quasiperiodic pat-
terns except in the recent numerical work of Singh et al. [24],
which focused on the existence of a bicritical state in TMRBC
as an intermediate state through which the transition between
the critical harmonic and subharmonic responses occurs.

The quasiperiodic patterns in Faraday instability can be
easily produced numerically as well as experimentally by
generalizing the conventional sinusoidal forcing from one
forcing frequency to a mixture of two different forcing
frequencies [15,25–27]. Likewise, TMRBC is also expected
to exhibit quasiperiodic patterns [24]. So, to analyze TMRBC
for such quasicrystalline [28] behavior, it becomes important to
generalize the conventional forcing in TMRBC to a mixture of
two frequencies, which serves as the objective of our present
work. Although Faraday instability and RBC under gravity
modulation are well-studied problems for quasiperiodic be-
havior in hydrodynamics, an exploration of TMRBC for the
quasipatterns may be helpful to make a more strict comparison
of the theory with the experiments, since TMRBC is free from
the mechanical vibrations.

The present research is a continuation of the previous work
of the authors on TMRBC [24]. Apart from the search of bicrit-
ical states, the present work also aims at a detailed linear insta-
bility analysis of the problem for different frequency ratios, and
other parameters within the range of experimental verification.
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FIG. 1. Diagram showing the time periodically temperature
modulated fluid layer confined between the two rigid horizontal
planes z = 0, d , where f is defined in (1). The fluid layer is assumed
to be laterally unbounded.

The paper is planned as follows. Section II describes the
problem, where the basic transient state is obtained. In Sec. III,
the linear instability analysis of the basic state is done via
perturbation analysis supplemented with the Fourier-Floquet
analysis, which allows us to search for the periodic states of
the instability. The numerical results are presented in Sec. IV.
The Prandtl number dependence of the instability is discussed
in Sec. V. Finally, the possible conclusions drawn from the
numerical results are presented in Sec. VI.

II. THE SYSTEM AND THE BASIC EQUATIONS

We consider a viscous, incompressible, Newtonian fluid,
which is also assumed to obey the Boussinesq approximation.
The geometrical description of the problem is given in Fig. 1,
where the horizontal fluid layer is confined between the two
rigid planes z = 0, d, d > 0.

The temperatures of the horizontal, lower, and upper
planes are modulated about their mean values T1 > 0 and
T2 � 0 (T2 < T1) in the form T1 − ε∗ft,χ,φ(ω∗,m,n) and
T2 + ε∗ft,χ,φ(ω∗,m,n), respectively, where

ft,χ,φ(ω∗,m,n) = cos χ cos{mω∗t + φ} + sin χ cos{nω∗t}.
(1)

The symbol ε∗ > 0 denotes the amplitude of modulation;
ω∗

1 = mω∗ and ω∗
2 = nω∗, ω > 0 are the two frequencies of

modulation, where m and n are coprime positive integers. The
parameter χ � 0◦ denotes the mixing angle, which controls
the relative amplitudes of modulation corresponding to the
two frequencies. For χ = 0◦, there is pure ω1 forcing, and for
χ = 90◦, there is pure ω2 forcing. The scalar φ � 0◦ denotes
the phase shift between the two forcing frequencies. The phase
φ lies between 0◦ and 180◦, where φ = 0◦ means that ω1

forcing and ω2 forcing are in phase.
Let the symbols κ and ρ0 denote the thermal diffusivity and

reference density of the fluid, respectively. To work with the
dimensionless quantities, we define the width of the fluid layer
d and d2/κ as the scales for the distance and time, respectively.
We use the difference T1 − T2 to scale the temperature. While
making the governing equations [10] dimensionless, we obtain
the Rayleigh number Ra, the Prandtl number σ , the modulation
amplitude ε, and the modulating frequency parameter ω as the

dimensionless parameters, which are defined by

Ra = αd3ρ0g(T1 − T2)

κη
, σ = η

ρ0κ
,

ε = ε∗

T1 − T2
, ω = ω∗d2

κ
,

where g and η in the expression for Ra denote the gravitational
acceleration and the coefficient of viscosity of the fluid,
respectively. The two dimensionless frequencies of modulation
are ω1 = mω and ω2 = nω, respectively.

The dimensionless system admits the basic state, which
can be put in the form (u,P ,T ) = (u0,P 0,T 0), where the
symbols u, P , and T denote the velocity, the pressure, and
the temperature of the fluid, respectively, such that

u0 = 0, T 0(z,t) = c − z + ε R{h(z,t)},
(2)

P 0 = P (0) +
∫ z

0

[
d3g

κ2
− σ Ra(ε R{h(z,t)} − z)

]
dz.

R in (2) denotes the real part of the quantity, and c = T1
T1−T2

.
The modulation of the boundary temperatures results in the
unsteady basic state of the system with the appearance of the
following function:

h(z,t) = cos χh1(z,t) + sin χh2(z,t), (3)

where for each j = 1,2,

hj (z,t) = sinh{λj (z − 1)} + sinh{λjz}
sinh λj

eλ2
j t+ι(2−j )φ, (4)

such that λj = √
ιωj . Observe from (2)–(4) that the basic-

temperature profile has the following symmetry:

T 0(1 − z,t) − c + 1/2 = −[T 0(z,t) − c + 1/2]. (5)

To study the linear instability response of the basic state (2),
we impose infinitesimal perturbation on it in the form

u = u0 + (u,v,w), T = T 0 + θ, P = P 0 + p, (6)

where u, v, w, θ , and p are smooth functions of the space and
time variables.

The perturbed state (6) satisfies the equation of continuity
and the linearized forms of the Navier-Stokes equations and the
energy equation of fluid mechanics, which after simplification
reduce to the following linear PDEs:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (7a)

∂u

∂t
= −∂p

∂x
+ σ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
, (7b)

∂v

∂t
= −∂p

∂y
+ σ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
, (7c)

∂w

∂t
= −∂p

∂z
+ σ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
+ σ Raθ, (7d)

and

∂θ

∂t
+ w

∂T 0

∂z
= ∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂2θ

∂z2
, (7e)

respectively, where (x,y,z) ∈ � = R2 × [0,1].
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The boundary conditions for the perturbations at the
horizontal rigid planes bounding the fluid layer are given by

(u,v,w,θ ) = (0,0,0,0) on ∂�. (8)

III. LINEAR INSTABILITY ANALYSIS

The linear system (7a)–(7e) is homogeneous along the
horizontal and is periodic in t . Also, w and θ are bounded
on �. Therefore, the Fourier-Floquet analysis of the system
can be done [10,15,29,30], which we outline here in brief.
Eliminating u, v, and p from (7a) to (7e), the resulting system
of equations involves only w and θ . Taking into consideration
the boundary conditions (8), the perturbations w and θ are
expanded in the following Fourier-Floquet form:

(
w

θ

)
=

N∑
�=1

L∑
q=−L

(
w�qψ�(z)√

2θ�q sin(�πz)

)
eιk·xe(s+ιqω)t , (9)

where k = (k1x,k2y) and x = (x,y). The positive integers N

and L are chosen large enough in order to meet the numerical
convergence. For each �, ψ� denotes the Chandrasekhar func-
tion [1]. The parameter s in (9) is the Floquet exponent. The
instability response is harmonic for s = 0 and subharmonic of
order 1/2 for s = ιω/2. Using expansions for w and θ from (9)
in the aforementioned linear system of PDEs, multiplying
throughout by ψj and sin{jπz} (1 � j � N ) appropriately,
and integrating with respect to z on interval [0,1], we obtain
the following set of linear algebraic equations:

(Aq − RaB)ζq = ε cos χ{H1ζq−m + H1ζq+m}
+ ε sin χ{H2ζq−n + H2ζq+n} (10)

for each q = −L, − L + 1, . . . ,L − 1,L, where

ζq = (w1qw2q · · ·wNqθ1qθ2q · · · θNq)′, (11)

Aq =
(

Aq
11 o

−b′ Aq

22

)
, B = −k2

(
o b
o o

)
, (12)

such that the matrix b is defined by

bj� =
√

2
∫ 1

0
sin {�πz}ψjdz, 1 � �, j � N. (13a)

The entries of the matrices Aq

11 and Aq

22 are given by

(
Aq

11

)
j�

= 1

σ
(aj� − k2δ�j )(s + ιωq)

− (k4 + μ4)δ�j + 2k2aj�, (13b)(
Aq

22

)
j�

= {s + ιωq + k2 + �2π2}δj�, oj� = 0, (13c)

where δj� is the Kronecker delta, and k =
√

k2
1 + k2

2 is the
wave number of the perturbations. The other coefficients are
as follows:

aj� =
∫ 1

0
ψj

∂2ψ�

∂z2
dz, (13d)

and for each i = 1,2,

Hi = −1

2

(
o o

(ci + di) o

)
eι(2−i)φ, (13e)

where the matrices ci and di are defined by

ci
j� =

√
2λi

sinh λi

∫ 1

0
cosh {λi(z − 1)} sin {�πz}ψjdz (13f)

and

di
j� =

√
2λi

sinh λi

∫ 1

0
cosh {λiz} sin {�πz}ψjdz, (13g)

respectively. The overhead bar in Hi in (10) denotes the
complex conjugate of Hi . The system (10) can be reduced to
an eigenvalue problem of the form

SZ = RaUZ, (14)

where S and U are banded square matrices of order 2N

(2L + 1), and Z is the 2N (2L + 1) × 1 matrix of the unknown
coefficients w�q and θ�q . The matrix S is nonsingular, and
Ra−1 is the eigenvalue of the matrix S−1U , from which Ra is
computed numerically, for a given set of fixed values of the
parameters ε, ω, m, n, σ , χ , φ, and k. The numerical compu-
tation of (14) has been done using MATLAB programming to
obtain the critical curves.

For the present calculations, we have observed that the
method converges for N in the range 5–8 and L in the range
41–80 within a relative error not exceeding 1%, for various
values of ε,ω,m,n,σ,χ,φ, and the range of Ra considered.

IV. RESULTS AND DISCUSSION

The numerical results correspond to the Prandtl number of
air, i.e., σ = 0.71 unless otherwise specified. We have taken
the parameter ε = 1. With this, the amplitudes of modulation
are cos χ and sin χ . We have used m/n = 1/2 in most of the
numerical calculations. The effect of the frequency ratio has
also been observed.

For a set of fixed parametric values of ε, ω, m, n, χ , φ, σ ,
and a trial value of k, (14) is solved numerically for Ra. The
calculation is repeated for other values of k in the range 2–8.
The critical Rayleigh number Rac for the onset of instability
is defined by

Rac = inf
k

{Ra(ε,ω,m,n,σ,χ,φ,k)}, (15)

where the critical wave number kc is the value of k at which
Rac is achieved.

Figure 2 shows the variation of
√

Rac with the mixing angle
χ ∈ [0,90◦] for the onset of TMRBC for two values of φ = 0◦
and 90◦. The fixed parametric values are taken as σ = 0.71,
m/n = 1/2, and ε = 1. The solid (red and black) curves
correspond to ω = 5, and the dashed (blue and green) curves
correspond to ω = 7. The critical curves for the in-phase
modulation (φ = 0◦) and the modulation with the phase shift
of φ = 90◦ in Fig. 2 are explained separately as follows.

A. Case I: φ = 0◦

We first explain the curve corresponding to ω = 5 and
φ = 0◦ of Fig. 2, which consists of alternate harmonic (thicker)
and subharmonic (thinner) parts. The point of intersection
of the harmonic and subharmonic parts corresponds to a
bicritical state. For χ = 0◦, only the first frequency ω1 = ω is
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FIG. 2. Critical instability curves in the (χ,Rac) plane for σ =
0.71, m/n = 1/2, and ε = 1. Each of the curves consists of a
harmonic (thicker) and a subharmonic (thinner) part. The solid (red
and black) and dashed (blue and green) curves correspond to ω = 5
and 7, respectively.

present in the modulation, and the critical instability response
is observed to be subharmonic. As χ increases from 0◦, the
second frequency ω2 = 2ω also contributes to the modulation.
For χ small, the dominant frequency is ω1. Therefore, the
terms containing the weaker frequency ω2 serve as small
perturbations in the terms containing the frequency ω1. Thus,
the effect of these perturbations is found to be lower down
Rac. The effect continues with an increase in χ until χ ≈ 35◦,
when the effect of the second frequency ω2 becomes apparent.
With a further increase in χ , Rac starts rising. The first
bicritical state appears for χ ≈ 39.87◦, where the critical
harmonic and subharmonic wave numbers are kH

c = 2.71 and
kSH
c = 3.58, respectively, with Rac ≈ 1914. The symbols kH

c

and kSH
c denote the critical wave numbers for the harmonic

and subharmonic responses, respectively. On increasing χ

beyond 39.87◦, the critical instability response is harmonic,
and Rac also falls down with an increase in χ up to χ ≈ 52.2◦,
where Rac ≈ 1857. Thereafter, a sharp increase in Rac with χ

is observed up to χ ≈ 74.66◦, when a second bicritical state
occurs. Now the effect of the second frequency ω2 is dominant,
which results in another bicritical state for χ ≈ 85.422◦. Upon
further incrementing χ beyond 85.422◦, the critical instability
response is harmonic, and Rac decreases until χ = 90◦. At
χ = 90◦, only the second frequency ω2 contributes to the
modulation. The details of the bicritical states are given in
Table I.

TABLE I. Bicritical states for various values of χ and fixed
parametric values of Fig. 2.

φ ω χ kH
c kSH

c Rac

0◦ 5 39.87◦ 2.71 3.58 1914.0
74.66◦ 2.78 3.58 2451.2
85.422◦ 2.67 3.53 2365.8

7 64.46◦ 3.66 2.59 2113.3
79.294◦ 3.36 2.44 2637.1

90◦ 5 19.39◦ 2.72 3.56 3127.9

0 30 60 90
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3.2

3.4

3.6

3.8

χ(degrees)

k
c

ω = 5
ω = 7

φ = 90◦

φ = 0◦

φ = 0◦φ = 90◦

φ = 0◦

FIG. 3. kc vs χ for σ = 0.71, m/n = 1/2, and ε = 1. The thicker
(red and blue) and thinner (black and green) curves correspond to kH

c

and kSH
c , respectively. The solid and dashed curves are drawn for

ω = 5 and 7, respectively.

A similar variation of Rac with χ can be observed for
ω = 7 and φ = 0◦, except that the critical instability response
for χ = 0◦ and 90◦ is the harmonic response, and the number
of bicritical states is less in comparison to the case ω = 5.
The local minima and local maxima on the curve for ω = 7
occur for smaller and higher values of

√
Rac, respectively, if

compared to the curve for ω = 5.

B. Case II: φ = 90◦

The variation of Rac with χ for φ = 90◦ in Fig. 2 is different
from the case of φ = 0◦ for both ω = 5 as well as ω = 7. Here,
for ω = 5, the instability response is subharmonic when χ =
0◦. The critical value Rac increases rapidly with an increase in
χ until the bicritical state appears at about χ ≈ 19.39◦. Beyond
the bicritical state, the instability response is harmonic, and Rac

increases slightly with an increase in χ until a maximum is
reached at about χ = 20.16◦. Thereafter, Rac decreases with
a further increase in χ . Similar variation for ω = 7 (φ = 90◦)
can be observed, but the instability response remains harmonic
for all χ . Thus, a 90◦ phase shift between ω1 and ω2 can
result in a significant rise of Rac in comparison to the in-
phase modulation, which is further controlled by the other
modulation parameters. However, Fig. 2 suggests that the in-
phase modulation should be preferred to produce the bicritical
states in TMRBC.

To understand the effect of χ on kc, Fig. 3 has been
obtained in the (χ,kc) plane for the fixed parametric values
as in Fig. 2. The solid and dashed curves are drawn for ω = 5
and 7, respectively. The variation is dramatic, where for ω = 5,
2.67 � kH

c � 3.24 and 3.40 � kSH
c � 3.58, while for ω = 7,

3.27 � kH
c � 3.68 and 2.47 � kSH

c � 2.80. Also, observe that
kH
c < kSH

c for ω = 5, and kH
c > kSH

c for ω = 7 for all χ .
These observations together indicate that the harmonic and
subharmonic wave numbers for the onset of TMRBC strongly
depend upon ω, χ , and φ.

For more on the effect of change in the phase shift φ

between the two modulation frequencies on the onset of
TMRBC, we have obtained Fig. 4, which shows the marginal
curves in the (k,

√
Ra) plane for σ = 0.71, m/n = 1/2, ε = 1,
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FIG. 4. Instability tongues in the (k,
√

Ra) plane for σ = 0.71,
m/n = 1/2, ε = 1, and χ = 45◦. The red (thicker) and black (thinner)
parts in each subfigure correspond to harmonic and subharmonic
instability responses, respectively. The black mark • corresponds to
a local minimum value of

√
Ra.

ω = 5, and χ = 45◦. For a fixed φ, the marginal-stability curve
consists of alternate harmonic red (thicker) and subharmonic
black (thinner) parts. The black dot • in each part of the
marginal curve corresponds to the minimum value of

√
Ra. The

global minima in each subfigure defines the critical instability
response. The first subfigure φ = 0◦ represents a state near a
bicritical state. With an increase in φ, the marginal curves shift
toward higher values of

√
Ra when a bicritical state appears

for φ ≈ 76.294◦. With a further increase in φ, the first two
curves of the subfigure φ ≈ 76.294◦ move upward while the
remaining third curve moves downward in the (k,Ra) plane,
which results in another bicritical state for φ ≈ 80.678◦. Upon
increasing φ beyond 80.678◦, the marginal curves move toward
the right and downward in the (k,Ra) plane, and the critical
instability response remains harmonic up to φ = 98◦, when the
harmonic and subharmonic curves start moving upward and
downward, respectively, resulting in yet another bicritical state
for 99.542◦. The bicritical states for φ = 80.678◦ and 99.542◦
are approximately the same. Upon increasing φ from 99.542◦,
the harmonic curve moves upward whereas the subharmonic
curves move downward in the (k,Ra) plane, where a critical
state occurs near φ = 102, with two distinct subharmonic wave
numbers. A further movement of the curves upon increasing
φ results in a bicritical state for φ = 103.929◦, which is found
to be the same as the one that occurred for φ = 76.294. Upon
a further increase in φ, the marginal curves move downward
in the (k,Ra) plane until φ = 180◦. Thus, a change in φ may
change the nature of instability, the onset of instability, and it
may also result in the appearance of bicritical states in TMRBC
under two-frequency modulation.

C. Effect of ω

Figure 5 shows the variation of
√

Rac with ω for different
values of χ and fixed values of σ = 0.71, m/n = 1/2, ε = 1,
and φ = 0◦.

For a fixed value of χ , the critical curve is composed
of alternate harmonic (red, thicker) and subharmonic (black,

5 10 15 20 25
40

45

50

55

ω

√
R

a c

χ = 15◦

χ = 0◦

χ = 39.87◦

χ = 45◦

FIG. 5.
√

Rac vs ω for σ = 0.71, m/n = 1/2, ε = 1, and φ = 0◦.
Each of the critical curves consists of a harmonic (red, thicker) and a
subharmonic (black, thinner) part.

thinner) parts. The extent of the harmonic and subharmonic
parts increases with an increase in ω, where the increase
is significant after ω ≈ 9. Also, the alternation of

√
Rac

between harmonic- and subharmonic-type situations can result
in advancement or delay in the onset of TMRBC. However, for
a fixed value of χ , an increase in ω causes the appearance of
bicritical states at a relatively higher Rayleigh number. So, to
observe several bicritical states in TMRBC, it will be better to
keep ω between 3 and 9. An increase in χ from 0◦ to 45◦ shifts
the critical curve downward in the (ω,

√
Rac) plane, which

shows an advancement of the onset of the instability. Thus,
for the Prandtl number of air, i.e., σ = 0.71, a mixture of two
forcing frequencies has more control on the onset of TMRBC
than that of the single forcing frequency.

When the nature of the instability at the onset changes
from harmonic to subharmonic for (χ,ω) = (39.87◦,3.578),√

Rac ≈ 43.45, and kc changes discontinuously from 3.50 to
2.79. Similarly, when the nature of the instability changes from
subharmonic to harmonic for (χ,ω) = (39.87◦,5),

√
Rac ≈

43.75, and kc jumps from 2.71 to 3.58. The three bicritical
states of Fig. 5 corresponding to χ = 39.87◦ occur for
(ω,

√
Ra) ≈ (3.578,43.45), (5,43.75), and (8.33,44.72) with

the wave numbers (kH
c ,kSH

c ) = (3.50,2.79), (2.71,3.58), and
(3.71,2.56), respectively.

D. Effect of frequency ratio

Figure 6 depicts the variation of
√

Rac with ω for four
values of m/n = 1/2, 2/3, 4/5, and 9/10, and fixed parametric
values of σ = 0.71, ε = 1, χ = 39.87◦, and φ = 0◦. We have
taken χ = 39.87◦ since it represents a bicritical state for
m/n = 1/2 and ω = 5. Moreover, the value χ = 39.87◦ is
near to the value χ = 45◦, where both of the modulation
frequencies contribute equally. With an increase in m/n from
1/2 to the other three values in Fig. 6, the bicritical states
are observed to appear at comparatively higher values of√

Rac. For a fixed value of m/n,
√

Rac can rise or fall,
depending upon ω. Note that for m/n = 1/2, a high degree of
stabilization in TMRBC can be achieved near ω = 25. Also,
it seems as if the critical curve tends to shift toward the left
in the (ω,

√
Rac) plane on incrementing m/n. The number of
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FIG. 6.
√

Rac vs ω for σ = 0.71, ε = 1, χ = 39.87◦, and φ = 0◦.
Each of the critical curves consists of a harmonic (red, thicker) and a
subharmonic (black, thinner) part.

bicritical states in the (ω,
√

Rac) plane also tends to decrease
upon increasing m/n. For m/n = 9/10, Rac|ω=25 ≈ 1708.8,
which is very close to the value corresponding to the onset
of RBC. Thus, for sufficiently large values of ω1 and ω2,
the harmonic oscillations set in at Rac equal to that for the
classical RBC.

The critical curve for m/n = 4/5 (Fig. 6) is different from
the other three curves in the sense that it has two consecutive
local minima in the subharmonic segment. Here (m/n = 4/5),
as ω is increased from 0, the critical response is subharmonic,
and Rac increases with ω until w ≈ 5.93, where Rac = 2678.8
with two different values of the critical wave numbers kSH

c =
2.68 and 4.02, as is evident from Fig. 7. A further increase in
ω favors the onset of the instability by decreasing Rac (Fig. 6)
until a local minimum is attained at around Rac = 2505.41 and
ω = 6.7. The critical Rayleigh number again increases with ω

until a bicritical state occurs at ω ≈ 7.44. Upon increasing ω

beyond 7.44, the critical instability response is harmonic, and
Rac decreases with ω, where Rac|ω=25 ≈ 1722.
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FIG. 7. Instability tongues in the (k,
√

Ra) plane for σ = 0.71,
ε = 1, χ = 39.87◦, φ = 0◦, ω = 5.93, and m/n = 4/5. The red
(thicker) and black (thinner) points correspond to harmonic and
subharmonic instability responses, respectively. The two black marks
• correspond to the overall minimum value of

√
Ra.
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FIG. 8.
√

Rac vs m/n for σ = 0.71, ε = 1, ω = 5, χ = 45◦, and
φ = 0◦. The larger (red) and smaller (black) points correspond to the
harmonic and subharmonic responses, respectively, which are labeled
by the corresponding value of m/n. The points are joined by dashed
(green) lines in increasing order of m/n. The point marked ◦ is for
the bicritical state, which is found to occur for m/n = 5/8.

To understand the effect of change of m/n on TMRBC
for a fixed value of ω, we have obtained Fig. 8, which
shows the variation of

√
Rac with m/n for σ = 0.71, ε = 1,

ω = 5, χ = 45◦, and φ = 0◦. The larger (red) and smaller
(black) points correspond to the harmonic and subharmonic
responses, respectively, which are labeled by the correspond-
ing frequency ratio m

n
. The points are joined by dashed (green)

lines in increasing order of m/n. It is clear from Fig. 8 that
Rac may rise or fall in the range 1876–2825 when m/n is
varied between 1/10 and 1/1. The onset of instability can be
obtained in the form of harmonic or subharmonic oscillations
by changing m/n. A bicritical state is also found to occur
for m/n = 5/8, and it has been marked by ◦ in Fig. 8. The
variation of Rac with m/n for the considered values is sharp,
because, with the change of m and n, the values of ω1 and ω2

also change simultaneously. We observe that for ω = 5 and
χ = 45◦, the instability is advanced to the maximum extent
for the ratio 1/2, whereas the instability is delayed to the
maximum extent for the ratio 4/9.

E. Time profiles

To see the time evolution of the profiles, we have drawn
Fig. 9, which shows the variation of T − T1/(T1 − T2) and w

with t for the fixed parametric values of σ = 0.71, m/n = 1/2,
ε = 1, χ = 39.87◦, and φ = 0◦. The detail of the curves can
be read from the caption of Fig. 9. A homotopic deformation
of the basic temperature and vertical-velocity profiles into the
profiles corresponding to the bicritical state is evident. At the
onset of instability, the temperature profile loses the symmetry
of the basic state given by (5), and the vertical velocity is
observed to satisfy w(1 − z,t) ≈ w(z,t) for all z ∈ (0,1) and
t � 0.

V. PRANDTL NUMBER DEPENDENCE

The effect of variation of the Prandtl number σ on the
onset of TMRBC can be depicted from Fig. 10, which shows
the critical instability curve in the (σ,

√
Rac) plane for fixed
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FIG. 9. Time profiles of T -c and w for the bicritical state cor-
responding to the fixed parametric values of σ = 0.71, m/n = 1/2,
ε = 1, χ = 39.87◦, and φ = 0◦. The seven curves in each subfigure
correspond to z = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1, respectively. The
arrowhead shows the direction of increase of z. The dotted curves
have been drawn for z = 0.6, 0.8, and 1 taken in order.

parametric values of m/n = 1/2, ε = 1, ω = 5, and φ = 0◦.
The solid (harmonic red and subharmonic black) curves have
been drawn for χ = 39.87◦, and the dashed (harmonic blue
and subharmonic brown) curves correspond to χ = 0◦. Here
also, for a fixed χ , the critical curve is found to consist of
alternate harmonic (thicker) and subharmonic (thinner) parts,
which intersect in bicritical states. In each of the two critical
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FIG. 10. Variation of
√

Rac with Prandtl number σ for m/n =
1/2, ε = 1, ω = 5, and φ = 0◦. The thicker and thinner curves
correspond to harmonic and subharmonic responses, respectively.
The solid and dashed curves have been drawn for χ = 39.87◦ and 0◦,
respectively. For χ = 39.87◦, the bicritical states correspond to the
fluids with σ ≈ 0.0693, 0.265, 0.71, 1.82, 3.5, and 4.63. For χ = 0◦,
the bicritical states occur for σ = 0.098, 0.2425, and 3.09.

TABLE II. Bicritical states for different Prandtl numbers and
fixed parametric values of m/n = 1/2, ε = 1, ω = 5, and φ = 0◦.

χ = 39.87◦ χ = 0◦

σ kH
c kSH

c Rac σ kH
c kSH

c Rac

0.0693 4.65 2.87 3186.3 0.098 4.48 2.79 3242.9
0.265 3.50 2.39 2121.0 0.2425 3.42 2.33 2731.0
0.71 2.71 3.58 1914.0 3.09 2.98 3.44 2957.3
1.82 3.61 2.97 2131.0
3.5 3.58 3.07 2492.3
4.63 2.23 3.40 2648.8

curves, for σ = 10−4, Rac ≈ 1708, which corresponds to the
onset of classical RBC.

We first explain the critical curve corresponding to χ =
39.87◦. With an increase in σ beyond 10−4,

√
Rac rises until

σ ≈ 0.0693, where a bicritical state appears. The instability
response is subharmonic for 0.0693 < σ < 0.265. The other
bicritical states are found to occur for the fluids with Prandtl
numbers σ ≈ 0.0693, 0.265, 0.71, 1.82, 3.5, and 4.63, and
the details are given in Table II.

Also, for the onset of TMRBC,
√

Rac can rise or fall with
an increase in σ , where

√
Rac increases almost linearly with

σ in the range 1 � σ � 4.63, approximately.
For χ = 0◦, starting from the value 1708 at σ = 10−4, Rac

increases with σ until σ ≈ 0.098 in a manner similar to the
case χ = 39.87◦. Here,

√
Rac occurs at a value higher than

the value of the one that occurs for χ = 39.87◦ in the range
0.098 � σ � 3.62. On the other hand, for σ > 3.62, the onset
of instability occurs at a comparatively low value of

√
Rac. In

this case, the other bicritical states occur for the fluids with
σ = 0.2425 and 3.09, which have been listed in Table II. Note
from this table that the number of bicritical states for the case
χ = 39.87◦ is more than that of the case χ = 0◦.

Finally, we have checked numerically that Rac|σ=102 ≈
1714 and Rac|σ=103 ≈ 1708.6. These observations indicate
that

lim
σ→∞ Rac = 1708, (16)

which is the case of the onset of RBC without modulation.
We have further observed numerically that for all χ and ω,
the modulation effects are negligible in TMRBC for the fluids
of very high and very low Prandtl numbers. Similar variation
of

√
Rac with σ occurs for the other values of χ , φ, and

m/n, so we have omitted the corresponding calculations. The
observations indicate that under modulation, the nature of the
onset of TMRBC depends strongly upon the Prandtl number
of the fluid under consideration.

VI. CONCLUDING REMARKS

The present work has focused on the investigation of
TMRBC in a horizontal fluid layer under time-periodic heating
of the two horizontal rigid planes bounding the layer. The
time-periodic heating is done via a mixture of two forcing
frequencies instead of the single forcing frequency. The linear
instability analysis of the underlying dynamical system has
been done using the Fourier-Floquet method. Most of the

043111-7



PUNEET KAUR, JITENDER SINGH, AND RENU BAJAJ PHYSICAL REVIEW E 93, 043111 (2016)

numerical results are presented for the Prandtl number of
air, and the effect of the Prandtl number on the onset of the
instability is discussed separately.

With proper tuning of the parameters χ , m/n, ω, and φ, the
onset of instability in TMRBC can be delayed or advanced as
desired. Moreover, the instability may be obtained in the form
of harmonic and subharmonic oscillations. Even the bicritical
states in TMRBC can be obtained, where the harmonic and
the subharmonic oscillations may take place simultaneously.

The critical onset of the instability corresponds to an
alternation between the harmonic and the subharmonic re-
sponses, which occurs through an intermediate bicritical state,
depending upon the modulation parameters. Similar results on
the existence of bicritical states have been obtained by Singh
et al. [24] for TMRBC under single-frequency modulation.
However, in the present work, the parameter space for such
bicritical states is much wider, i.e., one of the parameters
may be varied while fixing the rest of the parameters in order
to observe the bicritical states to facilitate experiments on
TMRBC. Moreover, for a combination of parameter values
such as that for Fig. 7, a critical instability state in TMRBC
has been identified, which oscillates with the coexistence of
two distinct subharmonic wave numbers.

So, at the onset of TMRBC under two-frequency modula-
tion, the fluid layer may oscillate time periodically with (a) one

harmonic wave number or (b) one subharmonic wave number
or (c) one harmonic and one subharmonic wave number or (d)
two distinct subharmonic wave numbers, depending upon the
modulation parameters.

Based on the present numerical calculations, the in-phase
modulation in the frequency range 3–8, the mixing angle near
45◦, and the frequency ratio of 1/2 are recommendable to
excite TMRBC in the air for the bicritical states with a Rayleigh
number of about 1900. The modulation effects in TMRBC are
significant only for the fluids such as air, which do not have a
very high or very low Prandtl number.

TMRBC is expected to exhibit quasiperiodic patterns just
like the Faraday problem and RBC under gravity modulation.
To observe these patterns explicitly, nonlinear analysis is
required. The present numerical work invites experiments on
the existence of quasiperiodic patterns in TMRBC near the
bicriticality, which is free from mechanical oscillations.
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