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Swimming speeds of filaments in viscous fluids with resistance

Nguyenho Ho* and Sarah D. Olson†

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road Worcester, Massachusetts 01609, USA

Karin Leiderman‡

Applied Mathematics Unit, University of California Merced, 5200 N Lake Road, Merced, California 95343, USA
(Received 12 June 2015; revised manuscript received 23 December 2015; published 7 April 2016)

Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers.
To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder
or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The
mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating
lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced
due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder
in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder
in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions
with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length
filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly
with added resistance. The comparisons between the asymptotic analysis and computation give insight on the
effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall
performance of planar and helical swimmers.
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I. INTRODUCTION

The self-propulsion of microorganisms that utilize flagellar
propulsion has been the topic of a vast number of analytical,
experimental, and computational studies for many years (re-
viewed in Ref. [1]). Many species of spermatozoa and bacteria
are able to swim by propagating lateral or spiral waves along
their cylindrical flagella [2–4]. Similarly, larger organisms,
such as Caenorhabditis elegans (nematodes), are also able to
make forward progression through soil via undulatory locomo-
tion [5]. The native environment in which these organisms live
varies greatly. For example, spermatozoa encounter different
fluid environments in the female reproductive tract that include
swimming through or around mucus, cells, hormones, and
other large proteins [6–8]. Bacteria are also able to swim in
the mucus layer that coats the stomach and move in biofilms
with extracellular polymeric substances [2,9,10].

One may wonder how the swimming speed or mode of
swimming changes in these different environments. Early
experiments showed that Leptospira, a slender helical bac-
terium, is able to swim faster in methylcellulose (MC), a gel
with chains of long polymers [11]. Another study showed
that swimming speeds of seven different types of bacteria
were enhanced in higher-viscosity solutions of MC and
polyvinylpyrollidone (PVP) [12]; beyond a certain viscosity
or polymer concentration, this enhancement was no longer ob-
served. Recent experiments have shown that the nonmonotonic
swimming speed of Escherichia coli is due to local changes in
viscosity rather than moving through regions void of polymer
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[13]. Experiments of sperm in MC and polyacrylamide (PA)
gels showed that swimming speeds, beat frequency, and
amplitude of undulation vary as the viscosity and concentration
of the gels are varied [14,15]. Caenorhabditis elegans have also
been observed to swim faster in polymer networks [5].

Since the length scale of these swimmers is small, they live
in a viscosity-dominated environment where inertia can be
neglected. Many studies have focused on analyzing idealized
swimmers in viscous fluids at zero Reynolds number. Seminal
work by G. I. Taylor examined swimming speeds of an infinite
sheet in two dimensions (2D) and an infinite cylinder with
circular cross section of small radius in 3D, propagating lateral
displacement waves [16,17]. In these studies, it was shown that
the second-order swimming speed scales quadratically with
amplitude and linearly with frequency for small amplitude
bending. This analysis has been extended for several different
cases, including swimming speeds for cylinders with non-
circular cross sections [18], as well as improvements to the
perturbation series [19].

Since the fluid that these swimmers are moving through
contains different amounts of proteins or other structures,
more complex fluid models have been proposed and analyzed.
For the case of a swimming sheet, studies have looked at
the asymptotic swimming speeds in a gel represented as a
two-phase fluid (elastic polymer network and viscous fluid)
where enhancement in propulsion was observed for stiff and
compressible networks [20]. In contrast, a two-fluid model
(with intermixed fluids) exhibited a decreased swimming
speed relative to the case of a fluid with a single viscosity in
both asymptotics and numerical simulations [21]. In another
model, Magariyama et al. [22] looked at a fluid governed by
two viscosities using a modified resistive force theory and
found that there is an enhancement in propulsion efficiency
when the viscosity of the polymer solution increases and the
other fluid viscosity is held constant. Swimming in a shear
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thinning fluid has also been studied; locomotion of finite-
length swimmers is enhanced (2D numerical simulations) [23]
and infinite undulating sheets exhibit a decrease in swimming
speed relative to the Stokes case [24].

Since the proteins or polymer chains in gels may cause a
fluid to exhibit a nonlinear strain response (frequency depen-
dent), viscoelastic fluid models have also been considered.
Through asymptotic analysis, it has been shown that the
swimming speed of infinite sheets and cylinders in viscoelastic
fluids decreases relative to the speed in a purely viscous
fluid [25–27]. Simulations of finite-length swimmers in a
viscoelastic fluid at zero Reynolds number governed by the
Oldroyd B equation revealed that enhancement in swimming
speeds can be observed when asymmetrical beatforms and
swimmer elasticity work together [28,29]. Specifically, in-
creases in swimming speeds were observed in a viscoelastic
fluid when the beat frequency of the swimmer is on the same
time scale as the polymer relaxation time [28]; when the
polymer relaxation time is fast, other models may be more
appropriate to understand swimming speeds.

Another approach is to think of the fluid with an embedded
polymer network as a porous medium. Darcy’s law has been
used to describe the fluid flow in porous media, where average
velocity is proportional to the gradient in pressure. This law is
not able to capture contributions of the viscous stress tensor
and it is only valid on the macroscopic scale where the domain
is large and boundary effects can be neglected [30,31]. To
overcome these disadvantages, the incompressible Brinkman
flow equation has an additional diffusion term [30],

∇p = μ�u − μ

γ
u, ∇ · u = 0, (1)

where p is the pressure, u is the velocity of the fluid, γ is the
permeability of the porous medium, and the effective viscosity
is μ. This equation represents the effective flow through a
network of stationary obstacles with small volume fraction
[30,32–34]. In order to consider a microorganism swimming
in this environment, we assume that the obstacles are at a low-
enough volume fraction such that the distance between fibers
is larger than the radius of the microorganism. The resistance
due to the obstacles is characterized by μ/γ . Note that the
incompressible Stokes equations are recovered in the limit as
γ → ∞, and when γ → 0, Eq. (1) will behave like Darcy’s
law. Another characteristic of a Brinkman fluid is the Brinkman
screening length,

√
γ , which marks the approximate length

over which a disturbance to the velocity would decay. For
comparison, in 3D, the flow due to a point force in Stokes
flow decays as 1/r , whereas the flow due to a point force in a
Brinkman flow decays like γ /r3 [35,36].

In the case of a two-phase fluid composed of a polymer
network and solvent, if the polymer is stationary, then we
obtain the Brinkman equation. In this limiting case of a
two-phase fluid, an infinite-length sheet exhibits an enhance-
ment in swimming speed [20]. Previously, Leshansky [36]
derived the asymptotic swimming speed for an infinite sheet
propagating waves of lateral bending in a fluid governed by
the Brinkman equation. They observed that swimming speeds
scaled similarly to those of Stokes, scaling quadratically with
amplitude. In addition to the Stokesian swimming speed,
there is an extra factor that depends on the permeability

and is monotonically increasing for decreasing permeability
(increasing the resistance in the fluid).

In this paper, we focus on calculating the asymptotic swim-
ming speed for a waving cylindrical tail that exhibits lateral
displacement waves in a Brinkman fluid. A second-order
asymptotic swimming speed is derived for planar bending
and we find that swimming speeds are enhanced, comparable
to the 2D case for an infinite sheet. Swimming speeds are
also calculated for cylindrical tails with spiral displacement
waves, showing that fluid resistance enhances swimming
speed. These results shed insight on how added fluid resistance
changes propulsion of cylindrical tails when the kinematics
are prescribed. In addition, as the resistance approaches zero,
we recover the swimming speed, work, and torque for an
infinite-length cylinder in a fluid governed by the Stokes
equation. Through our analysis, we also find the range of
enhancement in swimming speeds for the infinite cylinder in a
Brinkman fluid and the relation to permeability, cylinder thick-
ness, and wave number. To validate our asymptotic results,
we solve for the Brinkman flow driven by regularized forces
to study the swimming speeds of finite-length swimmers. We
find that the theoretical swimming speed of filaments with
planar bending waves matches up well with the simulation
data and that the asymptotics overestimate swimming speeds
for shorter-length cylindrical swimmers. In the helical bending
wave case, we calculate the external torque exerted on
the filament by the surrounding fluid. We observe that the
numerical and the asymptotic findings may not consistently
agree with one another; the asymptotics overestimate the
torque of finite-length helical swimmers.

II. SWIMMING SPEEDS FOR A CYLINDER
WITH PLANAR BENDING

A. Cylinder with lateral displacement waves

We consider a cylinder of constant cross section, bending
with small amplitude in the x direction, immersed in a fluid.
The cylinder is bending in the xy direction with

x = b sin[k(z + Ut)], y = 0,

where b is the amplitude, U is the velocity of the propagating
wave, and k is the wave number, defined as k = 2π/λ, where
λ is the wavelength. With this, the velocity components of the
cylinder have the form ux = bkU cos[k(z + Ut)] and uy =
0. To simplify, we let s = k(z + Ut) and convert the above
equations into cylindrical coordinates to obtain the boundary
conditions on the surface of the cylinder,

ur = bkU cos θ cos s, uθ = −bkU sin θ cos s, uz = 0. (2)

From this point, we will regard the velocity components in
cylindrical coordinates as ur = u,uθ = v and uz = w.

The time-dependent position of the cylinder at any given
point on the surface is given as

r2 = a2 + b2 sin2 s + 2ab sin s cos θ ′, (3)

as shown in Fig. 1 for θ ′ = θ + ξ . As detailed in Appendix 1,
we can show that

r = a + b sin s cos θ (4)

in the first order of b/a.
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FIG. 1. Current configuration (deformed state) of the cylinder
propagating bending waves is shown with the solid circle. O ′ is the
origin for the current configuration and O is the center of the original
(nondeformed) state that is shown with the dashed circle.

B. Fluid model

The 3D Brinkman equation in cylindrical coordinates is as
follows:

1

μ

∂p

∂r
= ∂

∂r

[
1

r

∂

∂r
(ru)

]
+ 1

r2

∂2u

∂θ2
− 2

r2

∂v

∂θ
+ ∂2u

∂z2
− 1

γ
u,

(5)

1

μr

∂p

∂θ
= ∂

∂r

[
1

r

∂

∂r
(rv)

]
+ 1

r2

∂2v

∂θ2
+ 2

r2

∂u

∂θ
+ ∂2v

∂z2
− 1

γ
v,

(6)

1

μ

∂p

∂z
= 1

r

∂

∂r

(
r
∂w

∂r

)
+ 1

r2

∂2w

∂θ2
+ ∂2w

∂z2
− 1

γ
w. (7)

where u, v, and w are the velocity components in the direction
of r , θ , and z, respectively. The continuity equation for the
incompressible flow is given by

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
+ ∂w

∂z
= 0. (8)

Taking the divergence of Eq. (5) and using Eq. (8) to simplify,
we find that the pressure satisfies ∇2p = 0.

Let ζ = kr and recall s = k(z + Ut). The general solution
for the pressure is thus

p = μknAmnKm(nζ ) cos(mθ ) cos(ns), (9)

where Km is the mth-order modified Bessel function of the
second kind and Amn is a constant which is evaluated using
the boundary conditions [37]. Based on the pressure in Eq. (9),
we assume the velocity components can be described as

u = umn cos mθ cos ns, v = vmn sin mθ cos ns, and

w = wmn cos mθ sin ns. (10)

Note that umn, vmn, and wmn are functions with respect to ζ

only. Substituting u,v,w, and p from Eqs. (9) and (10) into

Eqs. (5) and (6) and using the relations s = k(z + Ut) and
ζ = kr , we obtain the following system of equations:[

∂2

∂ζ 2
+ 1

ζ

∂

∂ζ
− (m + 1)2

ζ 2
−

(
n2 + α2

k2

)]
(umn + vmn)

= −n2AmnKm+1(nζ ), (11)[
∂2

∂ζ 2
+ 1

ζ

∂

∂ζ
− (m − 1)2

ζ 2
−

(
n2 + α2

k2

)]
(umn − vmn)

= −n2AmnKm−1(nζ ), (12)

with α2 = 1/γ (where γ is the Darcy permeability). The
parameter α is known as the hydrodynamic resistance of the
porous medium and has units of inverse length. In addition, α

is proportional to the ratio of the diameter of the fiber over the
spacing within the network. This ratio is usually characterized
as the mesh spacing [35]. We note that the Brinkman equation
represents a heterogeneous viscous fluid with stationary
polymer chains or fibers whose spacing is larger than the radius
of the microorganism swimming through the fluid.

The homogeneous solutions for Eqs. (11) and (12) include
the modified Bessel function of the first kind, which will di-
verge as ζ → ∞. Thus, we eliminate this solution to maintain
finite values for the velocities. The particular solutions are

(umn + vmn)p = Amn

β2
n2Km+1(nζ ) and

(umn − vmn)p = Amn

β2
n2Km−1(nζ ), (13)

where β = α/k is the scaled resistance, a nondimensional con-
stant that characterizes the relationship between the resistance
or average mesh size and the wavelength of the swimmer. After
simplifying, the general solutions to Eqs. (11) and (12) are

umn + vmn = BmnKm+1(χζ ) + Amn

β2
n2Km+1(nζ ), (14)

umn − vmn = CmnKm−1(χζ ) + Amn

β2
n2Km−1(nζ ), (15)

for χ =
√

n2 + β2. The constants Bmn and Cmn are determined
by the boundary conditions of the cylindrical tail. The radial
and tangential velocity components satisfy the following
equations:

2umn = BmnKm+1(χζ ) + CmnKm−1(χζ )

+Amnn
2

β2
[Km+1(nζ ) + Km−1(nζ )], (16)

2vmn = BmnKm+1(χζ ) − CmnKm−1(χζ ) + 2Amn

β2ζ
mnKm(nζ ).

(17)

The axial component of the velocity is determined using the
continuity condition given in Eq. (8),

nwmn = −
[
∂umn

∂ζ
+ 1

ζ
(umn + mvmn)

]

= Amnn
3

β2
Km(nζ ) + 1

2
(Bmn + Cmn)χKm(χζ ). (18)
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Since our goal is to determine the swimming speed of the
cylinder, we will have to determine the first- and second-order
solutions, using the condition that the disturbance caused by
the cylinder body should vanish at infinity [17].

C. First-order solution

As detailed in Appendix 2, the velocity components are
expanded about ζ = ζ1 = ka. To the first order, when m =
1 and n = 1, the boundary conditions are u1 = bkU, v1 =
−bkU , and w1 = 0. Plugging into Eqs. (14), (15), and (18),
we obtain:

u1 + v1 = BK2(χζ1) + A

β2
K2(ζ1) = 0, (19)

u1 − v1 = CK0(χζ1) + A

β2
K0(ζ1) = 2bkU, (20)

w1 = A

β2
K1(ζ1) + 1

2
(B + C)χK1(χζ1) = 0, (21)

for χ =
√

1 + β2. From Eqs. (19)–(21), the constants are

A

β2
= − 1

φ(ζ1)

2bkU

K0(χζ1)
, (22)

B = 1

φ(ζ1)

2bkU

K0(χζ1)

K2(ζ1)

K2(χζ1)
, (23)

C = 2bkU

K0(χζ1)

[
1 + 1

φ(ζ1)

K0(ζ1)

K0(χζ1)

]
, (24)

where

φ(ζ1) = 2

χ

K1(ζ1)

K1(χζ1)
− K0(ζ1)

K0(χζ1)
− K2(ζ1)

K2(χζ1)
. (25)

To determine the velocity of the cylinder, we have that
Eqs. (A4)–(A6) in Appendix 2 will vanish at infinity [17].
Thus, there is no contribution to the swimming speed of the
cylinder in the first-order expansion.

D. Second-order solution

The second-order expansions and boundary conditions are
detailed in Appendix A 2. Using the same argument for the
velocity of the filament at infinity,

U∞ = 1
4bk(w′

1)ζ=ζ1=ka,

where w′
1 is the first derivative of the axial velocity component

given in Eq. (18) with respect to ζ (for m = 1,n = 1). Using
the first-order solution, and evaluating w′

1 at the boundary,
ζ = ζ1 = ka,

w′
1 = 2bkU

φ(ζ1)

[
K0(ζ1)

K0(χζ1)
− χ

K1(ζ1)

K1(χζ1)

]
. (26)

The swimming speed U∞ up to second-order expansion is thus

U∞ = 1

2
b2k2U

1

φ(ζ1)

[
K0(ζ1)

K0(χζ1)
− χ

K1(ζ1)

K1(χζ1)

]
. (27)

The asymptotic velocity for an infinite-length cylinder that is
propagating planar bending waves in a Brinkman fluid is given

above in Eq. (27) and depends on the scaled resistance α/k

through χ .
In the limiting case when ζ1 = ka � 1, the limit forms of

the Bessel functions are [38]:

K1(ζ1) = 1

ζ1
+ O(ζ1), K1(χζ1) = 1

χζ1
+ O(χζ1),

K2(ζ1) = 2

ζ 2
1

+ O
(
ζ 2

1

)
, K2(χζ1) = 2

χ2ζ 2
1

+ O
(
χ2ζ 2

1

)
,

K0(ζ1) = − ln ζ1 + ln 2 − γe + O
(
ζ 2

1

)
,

K0(χζ1) = − ln ζ1 + ln 2 − γe − ln χ + O
(
χ2ζ 2

1

)
,

where γe is the Euler-Mascheroni constant. Thus, for ζ1 =
ka � 1, we can rewrite φ(ζ1) as

φ(ζ1) = 2 − χ2 − K0(ζ1)

K0(ζ1) − ln χ
.

To second order, the nondimensional swimming speed,
U∞/U , in the case of a cylinder propagating lateral bending
waves is

U∞
U

= 1

2
b2k2

[
(1 − χ2)K0(ζ1) + χ2 ln χ

(1 − χ2)K0(ζ1) − (2 − χ2) ln χ

]
, (28)

for ka � 1. This swimming speed scales quadratically with
the amplitude of bending b and depends on the resistance α

through the parameter χ . The swimming speeds are shown
in Fig. 2 for several permeability values γ . For comparison,
we also plot the swimming speed of the same infinite-length
cylinder propagating planar bending in a fluid governed by
the incompressible Stokes equation, as derived by Taylor [17].
In Fig. 2, as α → 0 (or γ → ∞), we approach the Stokes
swimming speed. In the next section, we will study this case
further.

E. Comparison of swimming speeds

The Brinkman equation is characterized by the Darcy
permeability γ . In the case of γ → ∞ (or resistance α → 0),
we recover the Stokes equation. To understand what happens
to the swimming speed of the infinite-length cylinder (with
ka � 1) as α → 0, we will work with Eq. (28) to obtain the
following expression:

U∞
U

= 1

2
b2k2

⎡
⎣K0(ζ1) − 1

2 ln
(
1 + α2

k2

) k2

α2 − 1
2 ln

(
1 + α2

k2

)
K0(ζ1) + 1

2 ln
(
1 + α2

k2

) k2

α2 − 1
2 ln

(
1 + α2

k2

)
⎤
⎦.

(29)

We note the following limits as α → 0:

lim
α→0

ln

(
1 + α2

k2

) k2

α2

= 1, lim
α→0

ln

(
1 + α2

k2

)
= 0. (30)

Thus, the second-order asymptotic velocity of a cylinder with
ζ1 = ka � 1 in a Brinkman fluid becomes

UStokes

U
= 1

2
b2k2

[
K0(ζ1) − 1

2

K0(ζ1) + 1
2

]
.
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(a) (b)

FIG. 2. (a) The nondimensional swimming speed of a cylinder with planar undulations, calculated from Eq. (28), is shown for several
permeability values γ for fixed wavelength λ = 24 and a = 0.05. The Stokes case is also plotted for comparison. (b) Uratio (solid line), defined
in Eq. (32), is in the range of 0.15–0.8 and corresponds to the ratio of the swimming speed for an infinite cylinder in a Brinkman fluid and
that of the corresponding sheet. Un (dashed line) is in the range of 1–1.25 and corresponds to the ratio of the Brinkman and Stokes swimming
speeds for the infinite-length cylinder. The scaled resistance α/k is on the x axis and wave number is set to k = 2π/24.

This is precisely the asymptotic velocity of the same cylinder
immersed in a fluid governed by the Stokes equations as
derived by Taylor [17]. The swimming speed of an infinite
cylinder with planar bending in a Brinkman and Stokes
fluid is compared using the following normalization, Un =
U∞/UStokes. In Fig. 2(b), Un is shown with the dashed line and
is an increasing function, bounded below by 1 as α/k → 0. As
α/k increases, the ratio is greater than 1, showing enhancement
relative to the Stokes case.

Next, we study the swimming speed of the infinite-length
3D cylinder in comparison to the 2D sheet, where both are
propagating planar bending waves. The propulsion of an
undulating planar sheet was studied by Leshansky [36] and
the swimming speed ULes was found to be

ULes

U
= 1

2
b2k2

√
1 + α2/k2, (31)

for α2 = 1/γ . The ratio of Eq. (29) and (31) is

Uratio = U∞
ULes

=
[

K0(ζ1) − 1
2

(
k2

α2 + 1
)

ln
(
1 + α2

k2

)
K0(ζ1) + 1

2

(
k2

α2 − 1
)

ln
(
1 + α2

k2

)
]

1√
1 + α2

k2

.

(32)

We plot Uratio versus the scaled resistance α/k in Fig. 2(b)
(solid line). The ratio decreases as α increases, implying that
the 3D infinite-length cylinder swims slower than the 2D sheet
in a fluid with the same Darcy permeability. When α/k → 0,
we see that the ratio approaches

Uratio = K0(ζ1) − 1/2

K0(ζ1) + 1/2
,

for a fixed ζ1. This is the ratio of the swimming speeds of the
infinite-length 3D cylinder and 2D sheet in a fluid governed
by the Stokes equation.

III. ENERGY TO MAINTAIN PLANAR BENDING

The force on the surface is calculated as F = σ · n, where
σ is the stress tensor and n is the normal vector. The
velocity components of u at the boundary r = a are given
in Eq. (2). The stress tensor components are given by Ref. [30]
as σrr = −p + 2μ∂u

∂r
and σrθ = μ( ∂v

∂r
− v

r
+ 1

r
∂u
∂θ

). Following
the detailed derivation of the stress tensor in Appendix 3,

(σrr )ζ=ζ1
= μk[−AK1(ζ1)] cos θ cos s,

(σrθ )ζ=ζ1
= μk

(
∂v1

∂ζ

)
ζ=ζ1

sin θ cos s,

where r = ζ/k. Since we consider a fluid with a low volume
fraction of stationary and randomly oriented fibers, the total
stress applied to the filament is assumed to be entirely due to
the fluid and not influenced by the fibers. This assumption is
valid since the distance between the fibers is large compared
to the radius of the filament. There is further discussion of this
in Sec. VI.

The rate of work done to maintain planar bending is
calculated as follows:

dW = −F · u

= μbk2U

[
AK1(ζ1) cos2 θ +

(
∂v1

∂ζ

)
ζ=ζ1

sin2 θ

]
cos2 s.

(33)

Using Eq. (17), the derivative of v1 is

∂v1

∂ζ
= 1

2
(−B + C)χK1(χζ ) − 1

ζ

[
A

β2
K2(ζ ) + BK2(χζ )

]
,

(34)

where A
β2 ,B,C are from Eqs. (22)–(24).
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FIG. 3. The nondimensional rate of mean work done to maintain
planar bending along the infinite-length cylinder, calculated from Eq.
(35) for several permeabilities γ , where λ = 24 and a = 0.05. The
Stokes case is also plotted for comparison.

The mean value of the rate of work to maintain the filament
motion is denoted by dW and is thus

dW = 1

4
μbk2U

{
2bkU

ζ1φ(ζ1)

[
− β2

K0(χζ1)

− χ2

2K0(χζ1)
+ 1

2

φ(ζ1)

K0(χζ1)
+ 1

2

K0(ζ1)

K2
0 (χζ1)

]}
.

For a cylinder immersed in a Brinkman fluid, the mean
value of the total rate of work per unit length (λ) along the
surface of the cylinder (r = a) is

W = μπb2k2U 2

K0(ζ1) + 1
2

(
k2

α2 − 1
)

ln
(
1 + α2

k2

) , (35)

where φ(ζ1) = 2 − χ2 − K0(ζ1)
K0(χζ1) when ζ1 is small, and χ =√

1 + β2. When the permeability approaches infinity, the
Brinkman fluid behaves like Stokes flow. Thus, when γ → ∞
(or α → 0) and using Eq. (30),

W = μπb2k2U 2

K0(ζ1) + 1/2
.

This is exactly the same energy contribution to maintain the
flagellum in motion in Stokes flow [17]. The nondimensional
rate of work is shown in Fig. 3 for several different
permeabilities γ and as γ gets large, it approaches the work
done in a Stokesian fluid. In this analysis, as the permeability
decreases, there are small changes in the swimming speed
[shown in Fig. 2(a)], but the work done increases greatly
(shown in Fig. 3). The mathematical analysis for this
observation is detailed in Appendix 5. The physical meaning
of this phenomenon can be explained as follows. For a small
permeability, there is a large added resistance present in the
fluid, preventing the swimmer from propelling itself forward.
Therefore, it requires more work to move with the same
prescribed kinematics. The rate of work of the swimming
sheet has been previously calculated and is also an increasing
function of resistance α [36].

FIG. 4. Model geometry for a cylinder propagating spiral bending
waves. The circle is the cross section of the deformed cylinder (current
configuration) which is centered at O ′. The undeformed cylinder is
centered at O.

IV. CYLINDER WITH SPIRAL BENDING

Next, we consider an infinite-length cylinder propagating
spiral waves, motivated by experiments where sperm flagella
are able to exhibit helical bending [3]. Thus, it is compelling to
consider the rotational movements of a cylinder propagating
spiral bending waves (helical bending waves with constant
radius). One can verify from Fig. 4 that to the first order of
b/a,

r = a + b cos(θ − s), (36)

where details can be found in Appendix 4 and s = k(z + Ut).
Equation (36) corresponds to a cylinder that will achieve the
form of a right-handed helix about its axis with angular velocity
kU in the direction of increasing θ . The formulation for the
cylinder is

x = b cos s, y = b sin s, z = bs,

and the velocity components become

ux = −bkU sin s, uy = bkU cos s, uz = 0.

Converting the above equations to cylindrical coordinates,

u = bkU sin(θ − s), v = bkU cos(θ − s), w = 0. (37)

The motion of the helix includes the contributions of two
orthogonal planar motions that are perpendicular to the z axis,
namely the xz plane and yz plane. The analysis for each
plane proceeds in a similar fashion to that of the planar case,
satisfying the boundary conditions in Eq. (37). As previous
analysis has shown, the second-order solution can only be
determined through first-order expansions (see Refs. [17,18]).
The second-order velocity components at the boundary are

u22 = − 1
2bk(u′

1)ζ=ζ1 , v22 = − 1
2bk(v′

1)ζ=ζ1 ,

w22 = − 1
2bk(w′

1)ζ=ζ1 . (38)

Let Vs be the propulsion velocity of the helix in the opposite
direction of the propagating spiral bending waves. With this,
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similarly to Ref. [17], we have

Vs = 1
2bk(w′

1)ζ=ζ1 ,

where w′
1 is the same as in Eq. (26). Scaling by U gives

Vs

U
= b2k2 K0(ζ1) − χ2K0(χζ1)

(2 − χ2)K0(χζ1) − K0(ζ1)
. (39)

The results are equivalent to those obtained for the planar case
and differ by a factor of 2. When α → 0, we recover the speed
Vs in the incompressible Stokes equations,

Vs

U
= b2k2 K0(ζ1) − 1/2

K0(ζ1) + 1/2
.

Thus, the swimming speed of a spiral bending wave is double
that of a planar bending wave with the same kinematics.
Modified resistive force theory (RFT) calculations have also
been used to determine expressions for the swimming speed
of a spiral bending wave in a Brinkman fluid [36]. Our results
compare well with the RFT calculations for small resistance
and are less than that predicted by RFT for moderate to larger
values of resistance.

In addition to determining the asymptotic swimming speed
from spiral bending, we can find the expression for the torque
exerted on the cylinder by the surrounding fluid. Since the
fluid in this case flows in a circular motion, the radial and
axial velocity components are zero and only tangential velocity
plays a role in this calculation. That is,

u = 0, v = �

r
= �k

ζ
, w = 0,

where � is the angular velocity of the helix. With this, we
simplify the expression for mean torque per unit length applied
on the filament by the fluid, T∞ = 2πr2σrθ , to

T∞ = −4πμ�. (40)

To solve for �, we use the boundary condition for v22 in
Eq. (38) to obtain

�k

ζ1
= −1

2
bk(v′

1)ζ=ζ1 . (41)

Substituting Eq. (41) into Eq. (40) and using Eq. (34) for v′
1

and Eqs. (22)–(24) to simplify, we have

T∞ = 4πμb2kU

K0(ζ1) + 1
2

(
k2

α2 − 1
)

ln
(
1 + α2

k2

) . (42)

In the limit as α → 0, the torque exerted on the cylinder
reduces to

T∞ = 4πμb2kU

K0(ζ1) + 1/2
,

which is the same torque calculated for the Stokes regime
by Drummond [39]. Note that this derivation differs from the
work of Taylor [17] (where w′

1 was used instead of v′
1).

V. RANGE OF PARAMETERS THAT LEAD TO SWIMMING
SPEED ENHANCEMENT

To identify the range of parameter values that lead to en-
hancement in swimming speeds of the infinite-length cylinder
with planar waves, we rearrange Eq. (29) as follows:

U∞
U

= 1

2
b2k2 K0(ζ1) − 1

2

K0(ζ1) + 1
2

{
1+ K0(ζ1)− 1

2 ln
(
1 + α2

k2

) − K0(ζ1) k2

α2 ln
(
1 + α2

k2

)
[
K0(ζ1) − 1

2

][
K0(ζ1) + 1

2

(
k2

α2 − 1
)

ln
(
1 + α2

k2

)]
}

. (43)

Note that Eq. (43) illustrates the velocity behavior in the spi-
ral bending wave case when the constant 1/2 is removed. For
any fixed permeability, the swimming speed is enhanced rela-
tive to the Stokes case when the following inequalities hold:

K0(ζ1) >

1
2

α2

k2 ln
(
1 + α2

k2

)
α2

k2 − ln
(
1 + α2

k2

) , (44)

ζ1 = ka <
2

eγe
exp

{
−

1
2

α2

k2 ln
(
1 + α2

k2

)
α2

k2 − ln
(
1 + α2

k2

)
}

= h

(
α

k

)
. (45)

In Fig. 5, we plot the right-hand side of Eq. (45), h(α/k), to
show that it is, in fact, decreasing in a manner that is dependent
on the scaled resistance. This means that if the permeability is
reduced, then ka must also be reduced to observe swimming
enhancement in a Brinkman fluid. Hence, the cylinder radius
and/or wave number must decrease in order to observe an in-
crease in swimming speed. This finding makes sense since the
mesh size decreases as the permeability decreases, thus there is
less room for the swimmer to move. We note that in addition to
an enhancement in swimming speed, an increase in torque and
rate of work will also be observed when Eq. (45) is satisfied.

VI. RANGE OF PERMEABILITY AND SWIMMING
ENHANCEMENT

Our assumption is that the effective fluid environment can
be modeled as a viscous fluid moving through a porous, static
network of fibers via the Brinkman equation. For small volume

FIG. 5. The plot of the function on the right-hand side of Eq. (45).
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fractions of fibers, this assumption is thought to be a valid
one [32]. Further, for randomly oriented fibers, Spielman and
Goren [34] have derived a relationship among the volume
fraction φ, the permeability γ , and the radius of the fiber af as

a2
f

γ
= 4φ

[
1

3

a2
f

γ
+ 5

6

af√
γ

K1(af /
√

γ )

K0(af /
√

γ )

]
. (46)

Since the Brinkman model assumes that the fiber network is
static, we must have that the distance between the fibers (or the
interfiber spacing) is large enough for the swimmer to move
through with little or no interaction with the fibers. To estimate
the ratio of interfiber spacing and the fiber radius, we use the
following equation [36]:

D

af

≈ 2

(
1

2

√
3π

φ
− 1

)
, (47)

where D is interfiber spacing. In the case where this ratio is
large, there are little or no interactions between a stationary
network of fibers and the swimmer. Thus, it is assumed that
the fibers do not impart any additional stress onto the filament.

In Table I, we report a few parameter ranges in which we
see enhancement of swimming speed. In particular, we report
ranges of the cylinder radius a, with a fixed wavelength of λ =
25 μm. To find these ranges, we use fiber volume fractions and
radii from the literature [40], together with our own computed
values of permeability from Eq. (46) and average separation
from Eq. (47).

The radii of the principal piece of human, bull, and ram
sperm are 0.5 μm, 0.29 μm, and 0.15 μm, respectively
[41–43]. The flagellar radius decreases along the length of
the flagellum from the principal piece (closer to cell body) to
the end piece. Thus, swimmers will experience enhancement
when placed in a collagen gel. However, there will be no
enhancement for the three swimmers when they are put in
cervical mucus at a volume fraction of φ = 0.015. Further, it
is well known that the composition of the cervical and vaginal
fluid varies greatly through the menstrual or estrous cycle
[7,44], and this experimental value of φ = 0.015 is taken at one
time point in the cycle [40]. For instance, around the time of
ovulation, the interfiber spacing D may reach up to 25 μm [7].
Using this interfiber spacing and a given fiber radius af = 15
nm, we can further estimate the volume fraction φ = 0.00033
from Eq. (47) and the permeability γ = 0.868 (μm2) from
Eq. (46). Then, the cylinder radii for which enhancement is
seen is a < 0.765 μm when the wavelength λ is 25 μm. At this
volume fraction, all three spermatozoa species will experience
an enhancement in swimming speed in cervical fluid.

VII. NUMERICAL STUDIES

A. Background

In this section, we verify our asymptotic solutions and
explore aspects of finite-length swimmers using regularized
fundamental solutions to solve for the Brinkman flow [45].
This method is an extension of the method of regularized
Stokeslets developed by Cortez [46,47] for use with the
Stokes equations. The general idea is to compute regularized
fundamental solutions by replacing singular point forces with

smooth approximations to them. With this, the resulting equa-
tions can be solved exactly to obtain nonsingular fundamental
solutions. The smooth approximations to a δ distribution, often
called “blob” functions, are characterized by a small parameter
ε that controls their width. The singular solutions are recovered
by letting ε → 0. The Brinkmanlet is the fundamental solution
to the singularly forced Brinkman equation

∇p = μ�u − μ

γ
u + f0δ(x − x0), (48)

where x is any point in the fluid, x0 is the point where the
force is applied, and δ(·) is the δ distribution. The pressure and
velocity are in the form [45]:

p = f0 · ∇G(x − x0), (49)

μu = f0 · ∇∇B(x − x0) − f0�B(x − x0), (50)

where G(r) is the Green’s function and B(r) is related to
G(r) by the nonhomogeneous Helmholtz differential equation
(� − α2)B(r) = G(r) for r = ‖x − x0‖ and α2 = 1/γ . The
solutions of G(r) and B(r) are well known [45,48]:

G(r) = − 1

4πr
, B(r) = 1 − e−αr

4πα2r
, (51)

and, thus, the Brinkmanlet velocity in Eq. (50) becomes

μu(x) = f0H1(r) + [f0 · (x − x0)](x − x0)H2(r), (52)

where H1(r) and H2(r) are functions of G(r),B(r), and
their derivatives. To regularize the fundamental solution, the
expression for B(r) is rewritten as

Bε(r) = 1 − e−αR

4πα2R
,

where R2 = r2 + ε2 so the singularity is removed. From
Ref. [45], the regularized Brinkmanlet velocity is

μu(x) = f0H
ε
1 (r) + [f0 · (x − x0)](x − x0)Hε

2 (r), (53)

where

Hε
2 (r) = 3

4πα2R5
− e−αR

4πR3

(
3

α3R3
+ 3

αR
+ 1

)
, (54)

Hε
1 (r) = − 1

4πα2R3
+ e−αR

4πR

(
1

α2R2
+ 1

αR
+ 1

)
+ ε2Hε

2 (r).

(55)

In the case where the fluid flow is generated due to N point
forces, the linearity of the Brinkman equation allows the
resulting flow to be written as

μu(x) =
N∑

k=1

Mε(x − xk)fk, (56)

where k = 1, . . . ,N and Mε(x̂k) = Hε
1 I + x̂k x̂kH

ε
2 for x̂k =

x − xk and identity matrix I. Note that x = (x,y,z) is a point
in the fluid and force fk is located at xk . Equation (56) is
compactly written from Eq. (53) and determines the velocity
field on the fluid domain at any given point x. Explicitly,
fk = (f x

k ,f
y

k ,f z
k ) where the force components are the forces

in the x, y, and z directions, respectively.
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TABLE I. The calculated permeability γ using the given volume fractions φ and fiber radii af . The range of cylinder radius a where an
enhancement in swimming speed is observed is reported.

Media φ af (nm) D (nm) γ (μm2) Eq. (45), λ = 25 μm

Collagen gels [40] 0.00074 75 8314 8.6 a < 1.337 (μm)
Cervical mucus [40] 0.015 15 346 0.0085 a < 0.102 (μm)

B. Test cases

For all test cases, the number of discretization points N

depends on the length L of the swimmer. Additionally, for
a cylinder of larger radius a, each cross section along the
length is discretized with mb points at a distance of �s =
2a sin(π/mb) apart. The distance between each cross section
is also imposed to be �s. For a cylinder of small radius a � 1,
a centerline approximation to the cylinder is used where there
are only N = 1 + L/�s points along the length.

1. Planar bending

We first compare the numerical data obtained from the
Method of regularized Brinkmanlets (MRB) with the asymp-
totic swimming speed for the case of planar bending. Consider
an undulating cylinder parametrized by the following space
curve equation as

x(s,t) = s, y(s,t) = b sin(ks − ωt) + a cos(θ ),

z(s,t) = a sin(θ ), (57)

for 0 � θ � 2π and 0 < s < L, where s is a parameter
initialized as arclength. The wave number is k = 2π/λ for
wavelength λ, the bending amplitude is b, and ω is the constant
angular speed. In the case of a � 1, we set a = 0 in Eq. (57)
and approximate the cylinder with a centerline, representing a
filament. At any given time t � 0, the velocity of the flagellum
is calculated by

ux(s,t) = 0, uy(s,t) = −bω cos(ks − ωt), uz(s,t) = 0,

(58)

where ux, uy , and uz are the velocity components of x, y,
and z, respectively. Note that we are in the frame of the
swimmer. Figure 6(a) shows a sinusoidal swimmer of small
radius with the velocity fields along the centerline of the
swimmer in the xy plane. The total velocity includes the
velocity from the sinusoidal wave us(x) = (ux,uy,uz), the
translation U0 = (Ux

0 ,U
y

0 ,Uz
0 ), and the rotation of the filament

�0 = (�x
0,�

y

0,�
z
0) as:

V = us(x) + U0 + �0 × xk, (59)

where V is defined similarly to Eq. (56) and, for simplicity,
we choose μ = 1. Unless specified, the superscripts in trans-
lational and rotational velocity components are of the x, y,
and z components, not the partial derivatives. We note that
fk,U0, and �0 are constants at each time point, which can be
found by coupling Eq. (59) with the force-free and torque-free
conditions. That is,

V − U0 − �0 × xk = us(xk), (60)

N∑
k=1

fk = 0, (61)

N∑
k=1

fk × xk = 0. (62)

In Eq. (60), for each value of k,Mε is a 3N × 3N matrix while
the coefficients for U0 and �0 will form 3 × 3N matrices. The
coefficient matrices in Eqs. (61) and (62) are (3N + 6) × 3.
To determine U0,�0, and f, we solve Eqs. (60)–(62). We
can then compute pressure using the regularized version of
Eq. (49). In Fig. 6(b), the pressure in the xy plane is shown
where larger variations in pressure close to the filament. The
asymptotic swimming speed U∞ derived in Eq. (29) will be
used to compare to the numerical results for the translational
velocity, the first component of U0. Hereinafter, we set t = 2π

and ω = 2π . We first study the case of a finite-length filament
satisfying b � a, i.e., the cylinder radius is larger than the
amplitude. We discretize the cylinder with mb = 10 points
on each cross section and fix the radius at a = 0.4 and vary
amplitude b from 0.01 to 0.05. In Fig. 7(a), we observe
that for γ = 1 and ε = 0.01, the numerical data (marker
points) have good agreement with the asymptotic analysis
(dashed line) with a longer length (L = 40). Similar results are

FIG. 6. Numerical results shown in the xy plane for an undulating filament (centerline approximation) in a Brinkman fluid with γ = 10,b =
0.5,L = 5,λ = 2, and ω = 2π . (a) The velocity field is shown along the filament. (b) The corresponding pressure map of the fluid domain.
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(a) (b) (c)

FIG. 7. Cylinder swimming speeds: The comparison between the asymptotic swimming speed of the thick cylinder with a = 0.4 (dashed
line) with the numerical data (marker points) for different amplitudes with permeability γ = 1 when (a) λ = 5 and ε = 0.01 and (b) λ = 20
and ε = 0.12. (c) The resulting swimming speed of the cylinder as radius a is varied for γ = 1 and λ = 5 with ε = 0.01.

observed as γ is varied. In Fig. 7(b), the finite-length swimmer
has a wavelength of λ = 20 or ka ≈ 0.1 with ε = 0.12 and
the numerical data also matches up well to the asymptotic
solutions. In addition, the radius of the circular cross section
also affects the overall performance of the swimmer. As shown
in Fig. 7(c), the asymptotic swimming speed decreases as
the radius a increases. The numerical results are able to
capture this trend and agree with the analytical solutions
for radii a = 0.2,0.3,0.4 with L = 40,γ = 1,ε = 0.01, and
λ = 5. Most microorganisms do not satisfy b � a and we
wish to understand how well the asymptotic swimming speed
approximates the actual swimming speed of organisms with
small radius a. For these simulations, since a � 1, we use
a centerline approximation of the filament. In Fig. 8(a) the
numerical data (marker points) also have good agreement
with the asymptotic analysis (solid line) with a longer length
(L = 50). In Fig. 8(b), we also plot the difference between
the asymptotic values with the numerical values, |U∞ − Uo|,
where Uo is the x component of the velocity vector Uo. For the
case γ = 10 in Fig. 8(b), as the length increases, the difference
|U∞ − Uo| decreases. This shows that finite-length swimmers

will swim slower than the asymptotic predictions and this
difference decreases for smaller amplitude b (with fixed ω

and λ). We note that the error is slightly larger for smaller
permeability. Thus, the infinite-length cylinder swimming
speed captures the swimming speed of a finite-length swimmer
with more accuracy for larger permeability. We also calculated
the the angular velocity using a centerline approximation
and assuming small radius, while varying bending amplitude
and permeability. Figure 9(a) shows that the angular velocity
when L = 5 increases linearly as the amplitude increases. We
capture the same behavior for longer swimmers [at L = 10
in Fig. 9(b) and L = 50 in Fig. 9(c)]. The angular velocity is
much larger in the case of small length; in order for a swimmer
of shorter length to achieve a prescribed amplitude, the angular
velocity must increase.

2. Helical bending waves

For this test case, we calculate the external torque exerted
on the filament by the surrounding fluid. Consider the right-
handed helix where the configuration is parameterized by the

(a) (b)

FIG. 8. Filament swimming speeds (centerline approximation): (a) The swimming speed of the filament (a � 1) for γ = 1 where numerical
data is given with marker points and the asymptotic speed is shown with a solid line. (b) The difference between the asymptotic values with
the numerical results for different amplitudes and different lengths for γ = 10.
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(a) (b) (c)

FIG. 9. Angular velocity for swimmers (centerline approximations) for five different permeabilities γ = 0.01,0.1,1,10,100 with different
amplitudes b = 0.05,0.075,0.1,0.125,0.15. (a) L = 5, (b) L = 10, and (c) L = 50.

3D space curve as

x(s,t) = r1 cos(ks + ωt) + a cos(θ ),

y(s,t) = r1 sin(ks + ωt) + a sin(θ ),

z(s,t) = r2s + U t,

for s,k,θ,ω defined as above, r1 is the radius of the helix
(or the amplitude), r2 is a constant defined as r2 = cos θ =√

1 − k2r2
1 , where θ is the pitch angle, and U is the constant

propulsion velocity. The prescribed helical configuration, in
the frame of the swimmer, results in helical velocity

u(s,t) = −r1ω sin(ks + ωt),

v(s,t) = r1ω cos(ks + ωt), (63)

w(s,t) = U .

The centerline of a helix when a = 0 is shown in Fig. 10 where
the velocity is shown on marker points in two planes and is
calculated using Eq. (59) and us is prescribed by Eq. (63). The
torque is calculated as [49]

T =
∫

�

gk × xkds, (64)

FIG. 10. Centerline for a right-handed helix immersed in a
Brinkman fluid with, r1 = 0.25,L = 20, and λ = 5. The flow field
is shown at z = 0 and z = 10.

where � is the helix (surface of the spiral cylinder or centerline
of the flagella) and gk is the surface force (traction) applied on
the filament.

The torque is numerically approximated by

T =
N∑

k=1

(gk × xk)�s, (65)

which we compare to the analytical solution T∞ in Eq. (42).
In Fig. 11(a), we present results for a thick cylinder with

a = 0.4 and b � a. For this case, we discretize the surface
of the cylinder with mb = 10 points on each cross section. In
Fig. 11(a), the asymptotic value for the torque is shown with a
dashed line and the marker points are the simulation results for
three different cylinder lengths using γ = 10 and ε = 0.12. As
the length and amplitude increase, there is an increase in torque
and better agreement between the asymptotic and the numeri-
cal results. Similar agreement is observed when permeability γ

is varied. In Fig. 11(b), at permeability γ = 0.01 and ε = 0.01,
the torque for a thin cylinder (a � 1) using a centerline
approximation compares well to the asymptotic results for
a cylinder of radius a = 0.05 for longer lengths. Comparable
to the swimming speeds for the case of planar bending, the
asymptotics greatly overestimate the torque for shorter length
filaments. For the cases of γ = 1 and γ = 10, the analytical
results for an infinite-length spiral cylinder also overestimate
the torque for the finite-length spiral filament of small radius.
Previous computational studies using the MRB have observed
that the optimal numerical regularization parameter ε varies
for each γ and can be sensitive for torque calculations [45]. We
also observed this sensitivity and decreased the regularization
parameter as permeability increased.

VIII. DISCUSSION

In this paper, we have analyzed an infinite-length cylinder
undergoing periodic bending in a fluid governed by the
Brinkman equation, which is a model for flow through a porous
medium. Motivated by organisms that exhibit undulatory
locomotion such as spermatozoa, we focus on the case where
the radius of the cylinder is small in comparison to the fiber
spacing. We find that propulsion in the case of planar and
spiral bending is enhanced with larger fluid resistance for
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(a) (b)

FIG. 11. The comparison between the asymptotic velocity (dashed line) and the numerical data (marker points) for λ = 5. (a) Total torque
on the surface of a cylinder with a = 0.4 and γ = 10, where b is varied from 0.06 to 0.1 for ε = 0.01. (b) Total torque using a centerline
approximation when a = 0.05 � 1 and γ = 0.01 with b between 0.05 and 0.15 for ε = 0.12.

specific combinations of wave number, cylinder radius, and
permeability. In Sec. VI, we show that for a sufficiently
small volume fraction of fibers, mammalian spermatozoa will
observe an enhancement in swimming speed. Our calculations
show that the mesh spacing is several orders of magnitude
larger than the cylinder thickness, allowing room for the
swimmer to navigate between stationary fibers. This analysis
provides insight into the sperm thickness and wavelength that
we observe in nature; perhaps they have been optimized to
provide enhanced swimming speeds in oviductal fluids.

The observed enhancement in swimming speed for the
infinite-length cylinder with planar bending is similar to the
case for a swimming sheet in a Brinkman fluid [36]. We note
that in both the 2D and 3D cases, as the resistance is reduced to
zero, the corresponding swimming speeds in a Stokes fluid are
recovered. For a fixed amplitude, wave number, and cylinder
thickness, the ratio between the swimming speeds of the
infinite-length cylinder and sheet is approximately 0.8 in a
Stokes fluid [using Eq. (32)]. We observe that the ratio of the
asymptotic swimming speeds of the 3D infinite-length cylinder
and 2D sheet in a Brinkman fluid vary greatly as the scaled
resistance increases, decreasing from 0.8 to 0.1. Thus, as the
scaled resistance increases, potential rotational effects may
play a large role in decreasing the swimming speed of the
3D infinite-length cylinder (in comparison to the 2D sheet).
This highlights the importance of the analysis presented here
for the 3D infinite-length swimmer, especially when trying to
understand the role of larger resistance on swimming speeds.

Relative to the Stokes case, the infinite-length sheet and
cylinder swim slower in a viscoelastic fluid [25–27]. However,
the results reported here for an infinite-length cylinder and
previous work for the sheet [36] show that added fluid
resistance enhances swimming speeds relative to the Stokes
case. Thus, a potential enhancement in swimming speed can
be observed when a low volume fraction of obstructions do
not have a frequency-dependent response. In contrast to a
viscoelastic fluid, the Brinkman model assumes that the sparse
network of fibers or polymers in the fluid are stationary and
represents the effective flow through this network. We note that

steric interactions between the swimmer and obstacles are not
accounted for in the asymptotic analysis and numerical method
presented here since this is the effective flow. Jabbarzadeh
et al. [50] recently studied a swimmer near stationary obstacles
modeled as point forces in a Stokes fluid. Their results showed
that network heterogeneity induced velocity fluctuations in
the swimmer. In the Brinkman model studied here, the fiber
orientation is represented through the permeability, where
the parameters in Table I correspond to the assumption of
randomly oriented fibers. Explorations are warranted to study
a Brinkman model with additional obstacles (modeled as point
forces) to understand the role of local heterogeneity.

Through a detailed mathematical analysis, we have derived
the work for planar waves. We observed that larger resistance
(smaller permeability) results in a large increase in work. This
increase in work will occur when the cylinder thickness satis-
fies the inequality in Eq. (45). We note that in the asymptotic
derivation, we have assumed prescribed kinematics. Thus, as
the resistance increases, it requires more work to maintain
planar bending with the same amplitude and wave number.
When building artificial microswimmers, one must consider
the amount of energy required to have the swimmer bend
[51]. This could be a constraint on reaching higher swimming
speeds in fluids with larger resistance.

We have compared our asymptotic solutions to computa-
tions of finite-length swimmers with prescribed kinematics
using the method of regularized Brinkmanlets. For cylinders
of sufficient length, the asymptotic swimming speeds match
well with the computations. We note that the asymptotic
analysis is able to capture the trends of swimming speed
in terms of the dependence on permeability and amplitude.
However, it overestimates the swimming speed for shorter
length filaments. This is important to consider when using
asymptotic swimming speeds to make predictions of the
behavior of finite-length swimmers. Additionally, we have
observed that the analytical results overestimate the torque
for a finite-length filament with a helical bending wave.

For prescribed kinematics, we note that the asymptotic
and computational swimming speeds calculated increase as
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amplitude and resistance increase. The asymptotic analysis
presented here provides the swimming speed given that a
swimmer could attain the given prescribed kinematics in a
fluid with permeability γ . Previous studies have observed
nonmonotonic changes in swimming speed for finite-length
swimmers with increasing fluid resistance for planar swim-
mers, where the achieved amplitude of bending is an emergent
property of the fluid-structure interaction [45,52]. In these
studies, finite-length swimmers were not able to achieve
large amplitude bending as the permeability is decreased. In
addition, experimental studies have shown that the emergent
waveforms and swimming speeds will depend strongly on the
fluid environment [14,15]. Thus, it is important to put the
asymptotic results in the context of finite-length swimmers
where certain ranges of bending kinematics are not observed
in gels or fluids with small volume fractions of fibers.

In this computational study of a finite-length filament un-
dergoing periodic lateral bending, we observed a large increase
in angular velocity as the swimmer length decreases. Addition-
ally, angular velocity increased linearly as amplitude increased
for a fixed beat frequency. Sperm cells have been observed
to “roll” as they swim (simultaneous rotation of the sperm
cell body and flagellum) [14,53]. Specifically, human sperm
were found to increase rolling from 1.5 to 10 Hz and decrease
amplitude as the viscosity of methylcellulose solutions was
decreased [14]. In our computational study, angular rotation
(rolling) varies linearly with amplitude and is much smaller
than the experimental data. However, we are not accounting for
the dynamics of a cell body and have prescribed kinematics.
We note that a previous model of a finite-length swimmer in a
viscous fluid used resistive force theory to understand the cost
of pitching and bobbing (motion orthogonal to the translation
of the filament) [54]. We plan to use and extend the metrics
proposed in Ref. [54] to study the efficiency of our finite-length
swimmers in terms of swimming speed and angular rotation.
It will be interesting to study three-dimensional computational
models of finite-length swimmers with cell bodies and emer-
gent kinematics in the future to fully understand swimming
speed and angular velocity as a function of the permeability.
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APPENDIX

1. Surface cylinder location for planar bending waves

The surface points of the cylinder are defined by Eq. (3).
Using Fig. 1, we observe that θ ′ = θ + ξ and use this to rewrite
the equation as:

r2 = a2 + b2 sin2 s + 2ab sin s cos(θ + ξ )

= a2 + b2 sin2 s + 2ab sin s(cos θ cos ξ − sin θ sin ξ ),

where sin ξ = b sin s sin θ
a

. For small ξ , we have:

r2 = a2 + b2 sin2 s + 2ab sin s cos θ − 2b2 sin2 s sin2 θ

= a2 + 2ab sin s cos θ + b2 sin2 s(1 − 2 sin2 θ )

= a2 + 2ab sin s cos θ + b2 sin2 s cos2 θ − b2 sin2 s sin2 θ

= (a + b sin s cos θ )2 − b2 sin2 s sin2 θ

= (a + b sin s cos θ )2

[
1 − b2 sin2 s sin2 θ

(a + b sin s cos θ )2

]

r = (a + b sin s cos θ )

√
1 − b2 sin2 s sin2 θ

(a + b sin s cos θ )2
.

We can then arrive at the final equation for r:

r = a

[
1 + b

a
sin s cos θ + O

(
b

a

)2]
. (A1)

2. Asymptotics

We wish to calculate the swimming speed of the infinite
cylinder. The velocity components are expanded up to the
second order about ζ = ζ1 = ka:

u = (u)ζ=ζ1 + bk cos θ sin s(u′)ζ=ζ1 + · · · ,

v = (v)ζ=ζ1 + bk cos θ sin s(v′)ζ=ζ1 + · · · , (A2)

w = (w)ζ=ζ1 + bk cos θ sin s(w′)ζ=ζ1 + · · · ,
where Eq. (4) is used to rewrite (ζ − ζ1). Additionally, the
velocity components u, v, and w are expanded in the powers
of b/a,

u = u(1) + u(2) + · · · , v = v(1) + v(2) + · · · ,

w = w(1) + w(2) + · · · . (A3)

Substituting Eq. (A3) into Eqs. (A2) and (10):

u = u1 cos θ cos s + u(2)|ζ=ζ1

+ bk cos θ sin s cos θ cos s(u′)ζ=ζ1 , (A4)

v = v1 sin θ cos s + v(2)|ζ=ζ1

+ bk cos θ sin s sin θ cos s(v′)ζ=ζ1 , (A5)

w = w1 cos θ sin s + w(2)|ζ=ζ1

+ bk cos θ sin s cos θ sin s(w′)ζ=ζ1 . (A6)

By matching the above expansions with the boundary condi-
tions in Eq. (2), we can determine the constant coefficients
Amn, Bmn, and Cmn for each order of the expansion.

Specifically, the second-order expansion is

u(2) = −bk cos θ sin s cos θ cos s(u′)ζ=ζ1

= − 1
4bk(u′

1)ζ=ζ1 (sin 2s + cos 2θ sin 2s), (A7)

v(2) = −bk cos θ sin s sin θ cos s(v′)ζ=ζ1

= − 1
4bk(v′

1)ζ=ζ1 sin 2θ sin 2s, (A8)

w(2) = −bk cos θ sin s cos θ sin s(w′)ζ=ζ1

= − 1
4bk(w′

1)ζ=ζ1 (1 − cos 2s + cos 2θ − cos 2θ cos 2s).

(A9)
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The coefficients of the velocity in the second-order expansion
can be evaluated as:

u02 = − 1
4bk(u′

1)ζ=ζ1 , u22 = − 1
4bk(u′

1)ζ=ζ1 ,

v22 = − 1
4bk(v′

1)ζ=ζ1 , w02 = 1
4bk(w′

1)ζ=ζ1 ,

w20 = − 1
4bk(w′

1)ζ=ζ1 ,w22 = 1
4bk(w′

1)ζ=ζ1 .

The cylinder will move at a speed of U∞ with respect to the
fluid at infinity which is also the term that balances the constant
expression in w(2). Then,

U∞ = 1
4bk(w′

1)ζ=ζ1=ka.

3. Derivation of the stress tensor

From Ref. [30], the stress tensor components are given as

σrr = −p + 2μ
∂u

∂r
, σrθ = μ

(
∂v

∂r
− v

r
+ 1

r

∂u

∂θ

)
.

FIG. 12. The plot of the functions f in Eq. (A12) and g in
Eq. (A13).

Following Eqs. (9), (10), and (19)–(21), the first-order solu-
tions of p, u, and v are

p = μkAK1(ζ1) cos θ cos s,

u =
{

1

2
BK2(χζ ) + 1

2
CK0(χζ ) + A

2β2
[K2(ζ ) + K0(ζ )]

}
cos θ cos s,

v =
{

1

2
BK2(χζ ) − 1

2
CK0(χζ ) + A

2β2
K1(ζ )

}
sin θ cos s,

for A,B, and C given in Eqs. (22)–(24). The partial derivatives of u and v are

∂u

∂r
=

{
−

[
A

β2ζ
K2(ζ ) + B

ζ
K2(χζ )

]
−

[
A

β2
K1(ζ ) + 1

2
χK1(χζ )(B + C)

]}
cos θ cos s

∂u

∂θ
= u1 sin θ cos s

∂v

∂r
= ∂v1

∂r
sin θ cos s,

where u1 and v1 are obtained from (19)–(21). The calculation of σrr at the boundary ζ = ζ1 becomes

(σrr )ζ=ζ1
= −μkAK1(ζ1) cos θ cos s − 2μ

{[
A

β2ζ1
K2(ζ1) + B

ζ1
K2(χζ1)

]

+
[

A

β2
K1(ζ1) + 1

2
χK1(χζ1)(B + C)

]}
cos θ cos s.

Using the relations in Eqs. (19) and (21), the expressions in the curly brackets will vanish and we are left with

(σrr )ζ=ζ1
= −μkAK1(ζ1) cos θ cos s. (A10)

Recall that ζ = kr and the calculation for σrθ is then

σrθ = μk

[
∂v1

∂ζ
− v1

ζ
− u1

ζ

]
sin θ cos s.

If we estimate σrθ at the boundary ζ = ζ1 and use Eq. (19) and the relation u1 + v1 = 0, then we arrive at

(σrθ )ζ=ζ1
= μ

(
∂v1

∂ζ

)
ζ=ζ1

sin θ cos s. (A11)
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4. Surface cylinder location for spiral bending waves

As shown in Fig. 4, the time-dependent contour caused by the spiral bending wave is defined as

a2 = r2 + b2 − 2br cos(θ − s) = [r − b cos(θ − s)]2 + b2 sin2(θ − s),

or, equivalently,

r = b cos(θ − s) +
√

a2 − b2 sin2(θ − s), r = a

[
1 + b

a
cos(θ − s) + O

(
b

a

)2]
.

5. Analysis of the asymptotic functions

We look more closely at the behavior of the velocity in Eq. (29) and the work done in Eq. (35). Rewriting in terms of the
scaled resistance β = α/k,

f (β) = U∞
(1/2)b2k2U

=
K0(ζ1) − 1

2

(
1
β2 + 1

)
ln(1 + β2)

K0(ζ1) + 1
2

(
1
β2 − 1

)
ln(1 + β2)

, (A12)

g(β) = W

μπb2k2U 2
= 1

K0(ζ1) + 1
2

(
1
β2 − 1

)
ln(1 + β2)

. (A13)

The two functions are plotted in Fig. 12. Using the condition in Eq. (44), f (β) and g(β) are positive functions and f (β) is
bounded by 1. The first derivatives of f (β) and g(β) with respect to β are

f ′(β) =
2β2

{
K0(ζ1)

[−1 + ln(1 + β2) + 1
β2 ln(1 + β2)

] − 1
2

(
1 + 1

β2

)
ln2(1 + β2)

}
(1 + β2)

[
K0(ζ1) + 1

2

(
1
β2 − 1

)
ln(1 + β2)

]2 , (A14)

g′(β) = (1 + β2) ln(1 + β2) + β2(−1 + β4)

(1 + β2)
[
K0(ζ1) + 1

2

(
1
β2 − 1

)
ln(1 + β2)

]2 . (A15)

We observe that all terms in the denominator and the numerator of g′(β) are always positive for all β which implies g(β) is
an increasing function. On the other hand, the function inside the curly bracket of f ′(β) is positive when

K0(ζ1) >
(1 + 1/β2) ln2(1 + β2)

2[−1 + ln(1 + β2) + (1/β2) ln(1 + β2)]
. (A16)

In other words, f (β) is an increasing function when it satisfies
the condition in Eq. (A16). We note that the expression −1 +
ln(1 + β2) + (1/β2) ln(1 + β2) is always positive. The Taylor
expansions of f (β) and g(β) about β � 1 are as follows:

f (β) ≈ K0(ζ1) − 1/2

K0(ζ1) + 1/2
+ O(β2),

g(β) ≈ 1

K0(ζ1) + 1/2
+ O(β2). (A17)

This shows that when β is small, f (β) > g(β) as in Fig. 12.
When β is large, we can expand the two functions in terms of
the Puiseux series as:

f (β) ≈ 1 + 2 ln(1/β)

β2[K0(ζ1) + ln(1/β)]
+ O

(
1

β4

)
, (A18)

g(β) ≈ 1

K0(ζ1) + ln(1/β)
+ O

(
1

β2

)
. (A19)

Clearly, f (β) is bounded by 1 when β is large while g(β)
is unbounded. The two formulations above give insight as to
why a decrease in permeability γ causes a small increase in
swimming speed and a large increase on the rate of work done.

[1] E. Lauga and T. Powers, Rep. Prog. Phys. 72, 096601 (2009).
[2] C. Brennen and H. Winet, Ann. Rev. Fluid Mech. 9, 339 (1977).
[3] D. M. Woolley and G. G. Vernon, J. Exp. Biol. 204, 1333 (2001).
[4] D. Smith, E. Gaffney, J. Blake, and J. Kirkman-Brown, J. Fluid

Mech. 621, 289 (2009).
[5] D. Gagnon, X. Shen, and P. Arratia, Europhys. Lett. 104, 14004

(2013).
[6] L. Fauci and R. Dillon, Annu. Rev. Fluid Mech. 38, 371 (2006).
[7] J. Rutllant, M. Lopez-Bejar, and F. Lopez-Gatius, Reprod. Dom.

Anim. 40, 79 (2005).

[8] S. Suarez and A. Pacey, Hum. Reprod. Update 12, 23
(2006).

[9] J. Celli, B. Turner, N. Afdhal, S. Keates, I. Ghiran, C. Kelly,
R. Ewoldt, G. McKinley, P. So, S. Erramilli, and R. Bansil,
Proc. Natl. Acad. Sci. USA 106, 14321 (2009).

[10] H. Flemming and J. Wingender, Nat. Rev. Microbiol. 8, 623
(2010).

[11] H. Berg and L. Turner, Nature 278, 349 (1979).
[12] W. Schneider and R. Doetsch, J. Bacteriol. 117, 696

(1974).

043108-15

http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://jeb.biologists.org/content/204/7/1333.long
http://dx.doi.org/10.1017/S0022112008004953
http://dx.doi.org/10.1017/S0022112008004953
http://dx.doi.org/10.1017/S0022112008004953
http://dx.doi.org/10.1017/S0022112008004953
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1111/j.1439-0531.2004.00510.x
http://dx.doi.org/10.1111/j.1439-0531.2004.00510.x
http://dx.doi.org/10.1111/j.1439-0531.2004.00510.x
http://dx.doi.org/10.1111/j.1439-0531.2004.00510.x
http://dx.doi.org/10.1093/humupd/dmi047
http://dx.doi.org/10.1093/humupd/dmi047
http://dx.doi.org/10.1093/humupd/dmi047
http://dx.doi.org/10.1093/humupd/dmi047
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1038/nrmicro2415
http://dx.doi.org/10.1038/nrmicro2415
http://dx.doi.org/10.1038/nrmicro2415
http://dx.doi.org/10.1038/nrmicro2415
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC285562/


NGUYENHO HO, SARAH D. OLSON, AND KARIN LEIDERMAN PHYSICAL REVIEW E 93, 043108 (2016)

[13] V. Martinez, J. Schwarz-Linek, M. Reufer, L. Wilson, A.
Morozov, and W. Poon, Proc. Natl. Acad. Sci. USA 111, 17771
(2014).

[14] D. Smith, E. Gaffney, H. Gadelha, N. Kapur, and J. Kirkman-
Brown, Cell Motil. Cytoskel. 66, 220 (2009).

[15] S. Suarez and X. Dai, Biol. Reprod. 46, 686 (1992).
[16] G. Taylor, Proc. Roy. Soc. Lond. Ser. A 209, 447 (1951).
[17] G. Taylor, Proc. Roy. Soc. Lond. Ser. A 211, 225 (1952).
[18] G. Kosa, M. Shoham, and S. Haber, Phys. Fluids 22, 083101

(2010).
[19] M. Sauzade, G. Elfring, and E. Lauga, Physica D 240, 1567

(2012).
[20] H. Fu, V. Shenoy, and T. Powers, Europhys. Lett. 91, 24002

(2010).
[21] J. Du, J. P. Keener, R. D. Guy, and A. L. Fogelson, Phys. Rev.

E 85, 036304 (2012).
[22] Y. Magariyama and K. S, Biophys. J. 83, 733 (2002).
[23] T. Montenegro-Johnson, D. Smith, and D. Loghin, Phys. Fluids

25, 081903 (2013).
[24] M. Dasgupta, B. Liu, H. C. Fu, M. Berhanu, K. S. Breuer, T. R.

Powers, and A. Kudrolli, Phys. Rev. E 87, 013015 (2013).
[25] H. C. Fu, T. R. Powers, and C. W. Wolgemuth, Phys. Rev. Lett.

99, 258101 (2007).
[26] H. Fu, C. Wolgemuth, and T. Powers, Phys. Fluids 21, 033102

(2009).
[27] E. Lauga, Phys. Fluids 19, 083104 (2007).
[28] J. Teran, L. Fauci, and M. Shelley, Phys. Rev. Lett. 104, 038101

(2010).
[29] B. Thomases and R. D. Guy, Phys. Rev. Lett. 113, 098102

(2014).
[30] H. Brinkman, Appl. Sci. Res. A 1, 27 (1947).
[31] J. Koplik, H. Levine, and A. Zee, Phys. Fluids 26, 2864

(1983).
[32] J. Auriault, Transp. Porous. Med. 79, 215 (2009).
[33] I. Howells, J. Fluid Mech. 64, 449 (1974).
[34] L. Spielman and S. Goren, Env. Sci. Tech. 2, 279 (1968).

[35] L. Durlofsky and J. Brady, Phys. Fluids 30, 3329 (1987).
[36] A. M. Leshansky, Phys. Rev. E 80, 051911 (2009).
[37] J. Happel and H. Brenner, Low Reynolds Number Hydrodynam-

ics, 2nd ed. (Martinus Nijhoff, Amsterdam, 1983), Chap. 3,
Sec. 3.

[38] F. Olver, in Handbook of Mathematical Functions: With
Formals, Graphs, and Mathematical Tables, edited by M.
Abramowitz and A. Stegun (Dover, Minneola, NY, 1972).

[39] J. Drummond, J. Fluid Mech. 25, 787 (1966).
[40] W. M. Saltzman, M. L. Radomsky, K. J. Whaley, and R. A.

Cone, Biophys. J. 66, 508 (1994).
[41] E. Hafez and P. Kenemans, Atlas of Human Reproduction: By

Scanning Electron Microscopy (Springer Science & Business
Media, Berlin, 2012).

[42] G. F. Bahr and E. Zeitler, J. Cell Biol. 21, 175 (1964).
[43] R. Bloodgood, Ciliary and Flagellar Membranes (Springer

Science & Business Media, Berlin, 2013).
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