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Influence of the liquid film thickness on the coefficient of restitution for wet particles
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The normal coefficient of restitution (COR) for a spherical particle bouncing on a wet plane is investigated
experimentally and compared with a model characterizing the energy loss at impact. For fixed ratios of liquid
film thickness δ to particle diameter D, the wet COR is always found to decay linearly with St−1, where St, the
Stokes number, measures the particle inertia with respect to the viscous force of the liquid. Such a dependence
suggests a convenient way of predicting the wet COR with two fit parameters: a critical COR at infinitely large St
and a critical St at zero COR. We characterize the dependence of the two parameters on δ/D and compare it with
a model considering the energy loss from the inertia and the viscosity of the wetting liquid. This investigation
suggests an analytical prediction of the COR for wet particles.
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I. INTRODUCTION

As large agglomerations of macroscopic particles, granular
materials are ubiquitous in nature, industries, and our daily
lives [1,2]. Due to the energy dissipation through particle-
particle interactions, continuous energy injection is necessary
to keep a granular material in a stationary state, which is typi-
cally far from thermodynamic equilibrium. Thus, an important
key to understand the dynamics of granular materials is to
analyze the balance between energy injection and dissipation.
For binary impacts, the coefficient of restitution, which was
introduced by Newton [3] as the ratio between the relative
rebound and impact velocities, provides a convenient way
of characterizing the energy dissipation in fluidized granular
systems [4–13]. Over centuries, continuous investigations
have led to substantial progress in understanding how the
energy is dissipated (e.g., through viscoelastic or plastic
deformations [14–19]). Moreover, the adhesive interactions
arising from the surface energy of the deformed particles have
also been considered in predicting the coefficient of restitution
(COR) [20,21], using the well established Johnson-Kendall-
Roberts model [22,23].

Here we focus on the case of a liquid film covering the
solid bodies under impact, in order to shed light on the
collective behavior of wet granular matter at a particle level.
Recent investigations have revealed that clustering [24,25],
phase transitions [26–29], and pattern formation [30,31] of
wet granular matter are often related to the microscopic
particle-particle interactions, among which the wetting liquid
plays an important role. Because the presence of a liquid film
as thin as a few nanometers can be sufficient to influence the
rigidity of granular matter substantially [32,33], it is essential
to consider such an influence in the omnipresent applications.
For example, it is associated with the modeling of natural
disasters such as debris flow and volcano eruptions [34,35]
and the granulation process in chemical engineering and
pharmaceutics industries [36,37].

In the past decades, there has been a growing interest
in understanding the energy dissipation associated with wet
impacts in order to predict the wet COR [36,38–42]. In the low
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Reynolds number regime where the viscosity of the wetting
liquid dominates, the Stokes number was found to be the
relevant parameter determining the influence of the size and
density of the particles and the viscosity of the liquid on the
COR of two- and three-body collisions [40,43]. The Stokes
number is defined as St = ρpDvi/9η with particle density
ρp, particle diameter D, impact velocity vi, and the dynamic
viscosity of the liquid η. In the case of relatively high Reynolds
number where the inertia of the liquid cannot be ignored,
a prior investigation [44] revealed that the dimensionless
liquid film thickness δ̃ = δ/D (film thickness over particle
diameter) starts to play an additional role. For δ̃ ≈ 0.04, the
dependence of the wet COR on various particle and liquid
properties was characterized by the Stokes number [45,46].
Despite this progress, it is still unclear how the dimensionless
film thickness influences the wet COR quantitatively. In this
work we explore this influence through a systematic tuning
of δ̃ in the experiments and compare the results with a model
considering the liquid mediated energy loss during the impact.

II. EXPERIMENTAL SETUP

As illustrated in Fig. 1, we perform free-fall experiments to
measure the normal COR of a wet spherical particle bouncing
on the bottom of a rectangular glass container covered with a
liquid film. The bottom plate is leveled within 0.03◦ to ensure a
homogeneous film thickness, which is measured optically from
the deflection of an oblique laser beam shined from below the
container. A more detailed description of this method can be
found in Ref. [45]. Two types of silicone oil (Wacker AK10
and Carl Roth M50; see Table I for the specifications) are used
as wetting liquids. Two types of particles (Spherotech, G2),
polytetrafluorethylen (PTFE) with a density of 2.15 g/cm3

and polyethylene (PE) with a density of 0.94 g/cm3, are used.
For each combination of particle type and wetting liquid, we
vary systematically δ such that δ̃ grows stepwise from ∼0.03
to ∼0.15. The diameters of the spherical particles are D =
3.969, 4.762, and 7.938 mm for PE particles and D = 3.175,
4.762, and 8.000 mm for PTFE particles. The roughness of the
particles is ≈5 μm. The impact velocity is tuned via adjusting
the initial falling height from 3 cm to 15 cm.

After the wetting liquid is poured into the container,
we wait for at least 30 min for the liquid film thickness
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FIG. 1. (a) Schematic of the free-fall experimental setup with a
definition of the liquid film thickness δ and the particle diameter D.
(b) Trajectory of a PTFE sphere (D = 8.000 mm) bouncing on a glass
plate covered with a silicone oil film (δ = 800 μm). The inset shows
raw images taken (from left to right) before, during, and after the first
impact with a time step of 0.015 s. Solid curves in (b) correspond to
parabolic fits to the individual bouncing events.

to become stable. The free-fall motion of an initially wet
particle is triggered by tuning the air pressure in the nozzle.
When the free-falling particle enters the field of interest, a
computer-controlled high-speed camera (Lumenera LT225)
starts to take images. Subsequently, the images [see the inset
of Fig. 1(b) for an example] are subjected to an image analysis
program that removes the background and detects the positions
of a particle with subpixel resolution. As shown in Fig. 1(b),
we fit each bouncing event with a parabola, from which the
impact vi and the rebound vr velocities are determined. Based
on its definition, the normal COR is obtained from en = vr/vi.
In order to have a well defined initial condition, only the

TABLE I. Material properties of the wetting liquids at 25 ◦C.

Density Dynamic viscosity
Wetting liquid (kg/m3) (mPa s)

AK10 930 9.3
M50 965 48.3

COR from the first rebound is used in the analysis. For each
falling height, at least five consecutive experimental runs are
conducted with a waiting time of �2 min to ensure a stable δ.
More details on the experimental setup and procedure can be
found in Ref. [44].

III. FILM THICKNESS MEDIATED SCALING
WITH STOKES NUMBER

Before characterizing the wet COR and the associated
energy dissipation from the wetting liquid, we measure the dry
COR as a reference. As shown in Figs. 2(a) and 2(c), the dry
COR decreases with the vi for both PTFE and PE particles, in
agreement with former experiments and theories [8,19,47,48].
Qualitatively speaking, the maximum normal strain of the solid
bodies decreases with growing impact velocity, therefore the
smaller vi is, the closer the deformation is to an elastic one
with en = 1. Following the nonlinear viscoelastic model [8]
and taking the first-order approximation, we fit the measured
data with 1 − kv

1/5
i [dashed lines in Figs. 2(a) and 2(c)] and

obtain k = 0.183 ± 0.001 and 0.123 ± 0.001 for PTFE and
PE particles, respectively. The COR measured with larger D

yields a slightly smaller en. However, the difference is small
in comparison with the experimental uncertainty.

Figure 2(a) shows the wet COR as a function of vi for
PTFE particles. For most cases, en grows monotonically with
the impact velocity. The solid lines correspond to the fits of
the data sets with en ∝ v−1

i . See Sec. IV for a justification of
the fit. For the case of δ = 180 μm and less viscous AK10
wetting, en decays with the increase of vi. This exception is
presumably due to the influence of the dry COR, because the
energy loss from the wetting liquid decreases as the liquid
film thickness or viscosity decreases. Indeed, the decay shows
the same trend as that of the dry COR (gray dashed curve),
but with a shift of ≈0.1. As the focus of this investigation is
on the influence of the wetting liquid, we keep δ � 200 μm
in the following analysis. The error bars, which represent the
standard error arising from various runs of experiments, are
within the size of the symbols for most of the parameters. Such
a good reproducibility suggests that the initial condition of the
particle (e.g., its degree of wetting) plays a minor role.

As shown in Fig. 2(c), en obtained with PE particles and
less viscous wetting liquid also grows monotonically with vi

and decreases with growing film thickness δ. In agreement
with the results obtained with PTFE particles, increasing the
liquid viscosity or the film thickness yields smaller en, since
the energy dissipation through the viscous drag force increases.
For the more viscous wetting liquid M50, fewer data points
are obtained within the explored range of vi, because the
particles hardly rebound, owing to the relatively small ratio
of the particle inertia to the viscous force.

In Figs. 2(b) and 2(d) we show the scaling of the wet COR
with the Stokes number at a fixed δ̃ = 0.06. For both types
of particles, en obtained for various η, D, and vi is found
to decay linearly with St−1. Such a scaling reveals that the
influences of liquid viscosity, particle size, and impact velocity
are coupled with each other through the Stokes number. The
linear fit gives rise to two critical values: a critical wet COR einf

at St → ∞ and a critical Stokes number Stc below which no
rebound occurs. Note that einf is smaller than edry for both PTFE
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FIG. 2. (a) and (c) Normal coefficient of restitution en as a function of the impact velocity vi measured with various wetting liquids (silicone
oil AK10 and M50), δ and D for both (a) PTFE and (c) PE particles. Here δ is chosen such that the dimensionless film thickness δ̃ stays
constant at ≈0.06. The dashed and solid lines are fits to the en obtained from the corresponding dry and wet impacts. (b) and (d) Normal
coefficient of restitution en with respect to the inverted Stokes number St−1 for (b) PTFE and (d) PE particles. A linear fit of the data obtained
from all combinations of δ and D (solid line) gives rise to two parameters: einf , which represents the critical wet COR at St → ∞, and a critical
Stokes number Stc below which no rebound occurs. The fitting parameters are einf = 0.718 ± 0.004 and 0.713 ± 0.016 for PTFE particles and
Stc = 10.45 ± 0.53 and 10.96 ± 0.54 for PE particles.

and PE particles. Therefore, we cannot estimate the saturated
value of the wet COR at infinitely large vi with edry if the
liquid inertia does play a role (i.e., the Reynolds number is not
sufficiently small). Here the Reynolds number Re = ρlδvi/η

ranges from 6 to 150 at the beginning of impact. During the
impact, Re decreases with vi, suggesting that the viscous drag
force plays a more and more prominent role in comparison to
the inertia of the liquid. Note that the Reynolds number and the
Stokes number are coupled to each other with Re/St = 9ρ̃δ̃,
where ρ̃ = ρl/ρp is the density ratio between the liquid and
the particle.

Since the scaling of en with St suggests a convenient way of
predicting the wet COR with einf and Stc, it is intuitive to step
further and explore what determines the two fit parameters
as well as possible ways to predict them. Motivated by this
question, we vary systematically δ̃ and check its influence on
the scaling.

Figure 3 shows the dependence of en with St−1 for various
dimensionless film thicknesses. For both PTFE [Fig. 3(a)] and
PE [Fig. 3(b)] particles, the linear decay of en with St−1 is
prominent for all δ̃. Moreover, the data obtained with various
δ̃ tend to collapse into a line. For PE particles, the upper limit
of δ̃ is smaller than that of PTFE particles, owing to the lack
of rebound with thick liquid films. Note that in the lowest St−1

region, en may grow with St−1, particularly for the smallest δ̃.

This feature could be attributed to the influence from the dry
COR, because, as we learned from the discussion of Fig. 2(a),
the dependence of the dry COR on vi dominates for a relatively
thin and less viscous liquid film.

A closer analysis of the data reveals the influence of δ̃:
Data obtained with small δ̃ lie above the fitted line, while data
obtained with large δ̃ do the opposite. In order to have a more
quantitative analysis of such a dependence, we fit the data
individually for each δ̃.

Figure 4 shows the fit parameters einf and Stc as a function
of δ̃. As shown in Fig. 4(a), the critical wet COR decays
monotonically with δ̃ until it saturates at einf ≈ 0.72 for PTFE
particles. For the case of PE particles, the range of δ̃ is limited
due to the reason described above. Within the limited range,
the dependence of einf on δ̃ agrees with the results obtained
with PTFE particles within the error. As shown in Fig. 4(b),
the critical Stokes number Stc grows monotonically with δ̃

for both PTFE and PE particles. Within the common range of
δ̃, we also find good agreement between the results obtained
with PTFE and PE particles. Such agreement suggests that
the wetting liquid plays a dominant role in determining both
fit parameters. At the limit of δ̃ → 0 (i.e., dry impact), we
expect einf = edry and Stc = 0. As the dimensionless film
thickness grows, the amount of energy taken by the inertia and
viscosity of the liquid increases correspondingly. Therefore,
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FIG. 3. Wet COR en as a function of St−1 for (a) PTFE and (b) PE
particles at various δ̃. Normal coefficients of restitution en obtained
with different particle and liquid properties are grouped according
to the dimensionless film thickness δ̃. The solid line corresponds to
a linear fit to the data for all δ̃. The fit parameters are (a) einf =
0.727 ± 0.003 and Stc = 11.28 ± 0.27 for PTFE particles and (b)
einf = 0.740 ± 0.006 and Stc = 10.83 ± 0.26 for PE particles.

we can qualitatively understand the trend of einf and Stc as an
indication of the enhanced energy loss from the liquid phase.
In the following section, a more quantitative description of the
influence will be presented.

IV. MODEL

Following the above analysis, we present a model to explain
the scaling with the Stokes number and discuss the possibility
of predicting einf and Stc. According to its definition, the
coefficient of restitution can be written as

en =
√

1 − �Ediss

Ei
, (1)

where Ei = 1
2ρpVpv

2
i , with particle volume Vp, is the kinetic

energy of the particle before the impact and �Ediss is the
total amount of energy loss during the impact; �Ediss includes
the energy dissipation associated with inelastic solid body
interactions �Edry and the additional contribution from the
wetting liquid �Ewet. Assuming that the two sources of kinetic

FIG. 4. Fit parameters (a) einf and (b) Stc as a function of the
dimensionless film thickness δ̃ for both PTFE and PE particles.

energy loss are not coupled with each other, we have

en =
√

e2
dry − �Ewet

Ei
, (2)

where edry = √
1 − �Edry/Ei is the COR for dry impact. The

energy loss from the wetting liquid �Ewet has three main
contributions: surface energy due to the distorted liquid surface
in both penetrating and rebouncing regimes, kinetic energy
of the wetting liquid being mobilized �Eacc, and the energy
dissipation from the viscous drag force �Evisc. Following
a previous investigation [44], the rupture energy of a liquid
bridge formed as a particle rebounds can be estimated with
�Eb ≈ πγ

√
2VbD with the liquid surface tension γ and the

volume of the liquid bridge Vb. For the range of particle size
explored here, this energy dissipation is ignorable because
it is at least one order of magnitude smaller than �Ewet,
even for the lowest vi [44]. Note that �Eb is independent
on vi, while both of the other two contributions grow with
vi. Taking the other two terms into account, Eq. (2) can be
rewritten as

en ≈
√

e2
dry − �Eacc

Ei
− �Evisc

Ei
. (3)

As the velocity of the liquid being pushed sideways vl arises
from the penetration of the particle into the liquid film, we
consider vl ∝ vi (see below for a more quantitative analysis).
Consequently, we have �Eacc ∝ Ei. As the viscous drag force
is proportional to vi, we consider the corresponding energy
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dissipation term �Evisc ∝ vi. Thus, Eq. (3) can be rewritten as

en =
√

α + β

vi
= √

α

(
1 + β

2α

1

vi
− β

8α

1

v2
i

+ · · ·
)

, (4)

where α = e2
dry − �Eacc/Ei and β = −vi�Evisc/Ei are vi

independent parameters. This indicates that the inertia of the
wetting liquid contributes to a constant offset to en(vi), while
its combination with the viscous damping determines the
factors of higher-order terms. Since St ∝ vi, the linear decay
of en with St−1 observed above can be treated as a first-order
approximation of Eq. (4).

Moreover, Eq. (4) can be used to predict the two fit
parameters. On the one hand, einf , the wet COR at St → ∞,
can be estimated with

einf = √
α =

√
e2

dry − �Eacc

Ei
. (5)

It shows that the saturated value of the wet COR is always
smaller than edry, in agreement with the experimental results
shown in Fig. 2. Moreover, Eq. (5) indicates that the difference
between edry and einf arises from the energy taken by the inertia
of the wetting liquid.

On the other hand, a former analysis based on the
lubrication theory [44] shows that

�Evisc = 3

2
πηD2vi

(
ln

δ

ε
+ ln

δr

ε

)
, (6)

where δr and ε are the rupture distance of the liquid bridge
and the roughness of the particle, respectively. The two length
scales arise from the limits of the separation distance within
which the viscous force takes effect. In this estimation, it
was assumed that the lubrication force applies during the
whole impact period. This assumption becomes violated if
the liquid film thickness is much larger than the critical
separation distance δc, below which the lubrication theory
applies [40]. Since the lubrication theory predicts a diverging
viscous force as the separation distance approaches 0, we may
consider that most of the energy loss due to the viscous force
takes place within δc and estimate the viscous damping term
with

�Evisc = 3πηD2vi ln
δc

ε
. (7)

Inserting it into the definition of β, we have

β = − 36ηvi

ρpDvi
ln

δc

ε
= −4vi

St
ln

δc

ε
. (8)

Note the essential role of the Stokes number here. Inserting
Eqs. (5) and (8) into Eq. (4) and taking the first-order
approximation, we have

en = einf

(
1 − Stc

St

)
, (9)

with the critical Stokes number

Stc = 2 ln δc
ε

e2
inf

. (10)

FIG. 5. (a) Rescaled energy loss from the inertia of the liquid film
as a function of the dimensionless film thickness δ̃ for both types of
particles. Different curves correspond to the predictions of different
models describing the inertial effect: The dashed and solid curves
correspond to the prediction of Eqs. (11) and (14), respectively. The
inset shows a sketch of a spherical particle penetrating into a liquid
film. (b) Coupling between the critical Stokes number Stc and einf at
various δ̃, following the prediction of Eq. (10).

Thus, the scaling of en with the Stokes number observed in the
experiments is captured by the model.

As the next step, we discuss the dependence of the fit
parameters on δ̃. Starting from a former analysis [44], we
characterize the relative energy loss from the inertial effect
with

�Eacc

Ei
= 2ρlVlv

2
l

ρpVpv2
i

≈ 2ρ̃δ̃(3 − 5δ̃ + 2δ̃2), (11)

where Vl is the volume of the liquid being expelled. The factor 2
arises from the existence of inertial effects in both penetrating
(liquid being repelled from the gap) and rebouncing (liquid
being sucked into the gap) regimes. Here the horizontal
velocity of the liquid vl is estimated with the base radius of the
spherical cap over the penetrating time δ/vi, where the particle
is assumed to penetrate through the liquid film with the impact
velocity vi. As sketched in the inset of Fig. 5(a), the air-liquid
interface is assumed to be flat for the sake of simplicity. The
additional influence from surface waves or the meniscus of a
liquid bridge, which can lead to a modification of the kinetic
energy being transferred from the particle to the liquid, will be
left to future investigation.

Stepping further, we propose a more detailed model for
vl, considering the stepwise approaching and receding of the
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THOMAS MÜLLER AND KAI HUANG PHYSICAL REVIEW E 93, 042904 (2016)

particle. As illustrated in the inset of Fig. 5(a), we consider
the case of a spherical particle penetrating into a liquid film
from a depth of h (solid circle) to h + dh (long dashed circle).
Assuming the immersed part to be a spherical cap, we can
estimate the volume of liquid being pushed sideways with
Vcap = πh2(D/2 − h/3) and the radius of the three phase
contact line with the base radius rb = √

h(D − h). As the
dimension of the container is much larger than that of the
particle, we consider the film thickness δ to be constant during
the impact. Consequently, we have dVcap = πh(D − h)dh and
a corresponding horizontal movement of

drb = D − 2h

2
√

h(D − h)
dh. (12)

Due to momentum transfer, the liquid surrounding the particle
is accelerated in the direction normal to the contact surface.
However, the presence of the horizontal plane effectively
guides the streamline to the horizontal direction. If we suppose
that the change of flow direction is extremely efficient, we can
estimate the velocity of the liquid being pushed sideways with

vl(h̃) = drb

dt
= 0.5 − h̃√

h̃(1 − h̃)
vi(h̃), (13)

where h̃ = h/D is the dimensionless penetration depth. As
vl ∝ vi, the relative energy loss due to inertia of the liquid at
each penetration step is independent of vi. Thus, an integration
of dEacc = ρlv

2
l dVl/2 over the whole traveling distance leads

to

�Eacc

Ei
= 2

∫
dEacc

Ei
= ρ̃δ̃(3 − 6δ̃ + 4δ̃2). (14)

Note that in the receding regime, the flow of the liquid is
reverted. Again, the factor 2 arises from the assumption that
the kinetic energy gained by the liquid in both approaching
and receding regimes is the same.

According to Eq. (5), �Eacc/Ei can be obtained experimen-
tally with e2

dry − e2
inf . As Eqs. (11) and (14) both suggest that

ρ̃ contributes only a constant factor in �Eacc, it is intuitive
to compare the wet COR obtained with different types of
particles using (e2

dry − e2
inf)/ρ̃. Here we obtain edry from the

fits of dry COR shown in Fig. 2. Instead of the unrealistic
value of edry = 0 at vi → ∞, we choose the one at vi = 2 m/s,
which corresponds to the upper limit of the impact velocity
used in the dry COR measurements.

As shown in Fig. 5(a), such a comparison reveals a similar
trend for both types of particles: a monotonic growth with
δ̃ followed by a saturated value of ≈0.25. The results from
both PTFE and PE particles agree with each other within
the error. Such agreement supports the outcome of the above
analysis, i.e., the energy loss due to the inertia of the wetting
liquid accounts for the difference between edry and einf . As ρ̃

for PTFE and PE particles differs by a factor of ∼2.3, the
agreement also supports the scaling of the relative energy
dissipation �Eacc/Ei with ρ̃. Moreover, a comparison with
the predictions of the two models reveals that the simplified
model originally introduced in Ref. [44] overestimates the
influence from inertia, particularly for δ̃ � 0.04. The present
model considering stepwise penetrations shown in Eq. (14)

provides a better approximation, but it still cannot capture the
saturation of einf at larger δ̃. This is presumably due to the
assumption that all the momentum transfer to the liquid ends
up in the horizontal direction. In the future, more detailed
investigations on the flow field inside the liquid film at impact
are necessary to have a better prediction of einf .

Concerning the critical Stokes number, Eq. (10) suggests
that it depends on δ̃ through its inverse proportionality with
e2

inf , as well as on the ratio ln(δc/ε). Because of the logarithmic
scale, the latter influence is relatively weak. Therefore, one
could consider Stc ∝ e−2

inf . As shown in Fig. 5(b), this argument
is supported by the experimental results, because Stce2

inf stays
roughly constant at ≈5.5 for the common range of δ̃ explored
for both types of particles. Following Eq. (10), this value
corresponds to a critical separation distance of δc ∼ 100 μm. It
is a reasonable value because, for all δ used in the experiments,
the length scale associated with the wet region of the particle
(i.e., base radius of the spherical cap immersed in the liquid rb)
is at least one order of magnitude larger than δc. In the range of
δ̃ � 0.10, Stce2

inf obtained with PTFE particles tends to grow
slightly with δ̃. This can be attributed to the dependence of δc

on the film thickness [49].
Finally, the above analysis leads to an analytical prediction

of the wet coefficient of restitution as a function of St:

en = einf − k

einf

1

St
, (15)

where k = 2 ln δc/ε can be treated as a constant factor for
δ̃ < 0.10 and einf can be estimated with

einf =
√

e2
dry − ρ̃δ̃(3 − 6δ̃ + 4δ̃2). (16)

Such a prediction will be helpful in large-scale computer
simulations of wet granular flow and hence shed light on the
widespread applications such as granulation process in chemi-
cal engineering, debris flow, or volcano eruption in geophysics
as well as multiphase flow in civil engineering [35,50,51].

V. CONCLUSION

To summarize, this investigation shows that the linear
dependence of the COR for wet particle impacts with St−1

is robust against a variation of the dimensionless liquid film
thickness δ̃ and such a dependence can be rationalized with
a model considering the kinetic energy loss from the inertia
and viscous force of the liquid. It suggests the possibility of
predicting the wet COR with two fit parameters: the critical wet
COR einf as St → ∞ and the critical Stokes number Stc for a
rebound to occur. Based on a systematic variation of both film
thickness and particle size, we discussed how δ̃ influences the
fit parameters. We found that einf is predominately determined
by the inertia of the liquid. Considering the stepwise kinetic
energy gain of the wetting liquid at impact, we presented an
analytical estimation of einf . Moreover, the model predicted
Stc ∝ e−2

inf with a factor related to the ratio between two length
scales, i.e., the critical separation distance for the lubrication
theory to apply and the roughness of the particle. Therefore,
Stc can also be predicted analytically.
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In the future, a more detailed analysis of the flow field and
surface waves caused by the impact is necessary to clarify the
discrepancy between the experiments and the model in order
to have a more accurate determination of the wet coefficient
of restitution. In addition, the influence from the cavitation
dynamics [52] should also be addressed.
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