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Effects of shear flow on phase nucleation and crystallization
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Classical nucleation theory offers a good framework for understanding the common features of new phase
formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are
ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes
or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting
from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form
expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules
to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow
field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced
nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a
marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear
rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.
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I. INTRODUCTION

Understanding the mechanism of shear-induced nucleation
processes [1,2] could play an essential role in life sciences
where different phenomena, like protein [3] and peptide [4]
aggregation and crystallization, commonly take place under
applied shear flows. For example, under in vitro conditions,
shear is ubiquitous due, e.g., to stirring of the solution. Under
in vivo and physiological conditions, protein aggregation,
condensation, and crystallization phenomena occur under
cytoplasmic flow conditions [5].

Anomalies in in vivo protein crystallization are responsible
for different diseases. For example, the crystallization of
the mutated hemoglobin inside human blood cells underlies
numerous condensation diseases leading to anemia [6]. Fur-
thermore, the cytoplasmic flows inside embryos may drive
P granules condensation during the specification of germ
cells, a process not fully understood in which flow-enhanced
nucleation could play an important role [7].

In a very different setting, shear-induced crystallization in
the supercooled melt is of vital importance in metallurgy [2].
In particular, understanding the effect of shear on crystal-
lization rate is crucial in the processing of metallic glasses
which are cooled very rapidly from the high-temperature
melt. For example, recent experiments reported a significant
acceleration of the crystallization rate in supercooled metallic
melts [8]. Finally, crystallization under shear, in spite of being
poorly understood, is a critical process in many industrial
applications where shear flow is ubiquitous in continuous
industrial processing and devices [9]. Here we can just recall
the pervasive role of shear flow in the industrial crystallization
of pharmaceutical molecules [10]. In the integrated modeling
of industrial processes there is considerable need of analytical
models which incorporate the basic microscopic molecular
physics of the system, in terms of molecular interaction
parameters, solvent properties, etc.

Due to the pivotal role of nucleation processes in many
fields, several experiments and simulations have been per-
formed in an attempt to rationalize the effect of shear on
nucleation. Very different outcomes have been reported with
different materials and in different conditions. In particular,
while some studies have reported that shear flow essentially
slows down the nucleation rate [11,12], other studies have
found that shear flow significantly boosts or accelerates the
nucleation rate [3,4,13–17]. Pioneering simulations on colloids
with Yukawa (screened-Coulomb) repulsion showed that the
nucleation barrier increases quadratically with the shear
rate [12], but the overall effect of shear on the nucleation rate
was not reported. More recent simulations [18–20] suggested
the possibility that a maximum in the nucleation rate versus
shear rate may appear.

Kinetic models for nucleation in shear flow have been
proposed, for example, using mesoscopic nonequilibrium
thermodynamics [21]. The latter study leads to a mesoscopic
Smoluchowski equation with flow and to a formal dependence
of the effective diffusion constant on the anisotropoc flow
field. However, a closed-form expression for the nucleation
rate was not reported, because this requires solving the
singularly perturbed Smoluchowski equation with shear [22].
On the whole, it is very difficult to rationalize all these very
different outcomes, and apparently contradictory evidence,
in the absence of a unifying, microscopic, and analytical
description of the microscopic mechanism by which crystal
nuclei form in sheared supercooled liquids.

Here we propose a microscopic analytical theory to pro-
vide a microscopic mechanism of the process and possibly
new insights into the qualitative physics. Deriving a fully
quantitative theory of nucleation in shear flows is clearly
impossible, as it is in fact already for the simpler nucleation
without shear. However, we show below that our new theory
predicts qualitative behavior for the nucleation rate in good

2470-0045/2016/93(4)/042803(11) 042803-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.042803


FEDERICA MURA AND ALESSIO ZACCONE PHYSICAL REVIEW E 93, 042803 (2016)

FIG. 1. Schematic of the cluster assembling process via micro-
scopic single-particle addition and dissociation processes, in the
presence of shear flow. The arrows schematically represent the flow
velocity streamlines in a linear flow field. The flow velocity field at
any point, in Cartesian components, is given by vx = γ̇ y, where γ̇ is
the applied shear rate.

agreement with recent simulation and experimental data. More
importantly, it suggests a fundamental mechanism for the
process, which was hitherto missing in the literature.

In our derivation, we take a very fundamental approach
and start from the microscopic level of the master equation
describing the nucleus formation by addition of atoms or
molecules to subcritical clusters. At this level, as schematically
shown in Fig. 1, we account for the nonequilibrium effect of
shear flow on the transport of atoms or molecules to the cluster
by using an analytical solution to the governing Smoluchowski
diffusion-advection equation (Fig. 1). Further, we account for
the effect of shear-induced mechanical deformation of the
cluster. Our fully analytical theory allows one to disentangle
the different contributions of shear to the nucleation rate and
to predict the nucleation rate as a function of shear rate and
of other important physical and material parameters (e.g.,
molecular size, elasticity of the new phase cluster, viscosity
of the melt, etc.). The nucleation rate displays a pronounced
maximum as a function of shear rate which we are able
to explain qualitatively, for the first time, in terms of the
competition between flow-induced advective transport to the
cluster and mechanical straining of the cluster.

II. DERIVATION

A. Becker-Doering master equation for cluster growth

Let us start by considering a fluid of diffusing particles
(which could be atoms, molecules or colloidal particles),
mutually interacting with an arbitrary intermolecular or in-
teratomic interaction potential. The particles which constitute
the supercooled liquid can aggregate by forming clusters
(subcritical nuclei) of different sizes. We follow here the
original approach and notation of Zeldovich [23].

We let the coordinate R be the radius of the spherical cluster,
and the growth thereof is described as a motion along the R

axis. The growth takes place in discrete jumps of length λ, i.e.,
the radius variation due to the addition of a particle. Since all
cluster sizes are discretely distributed, the allowed sizes define
a set of nodes along the R axis at distance λ from each other.
Nodes can be labeled with a discrete index n expressing the
number of particles forming the nucleus n. We call the proba-
bilities of a jump to the right (particle addition to the cluster)
or to the left (particle loss), q+(n) and q−(n), respectively.

Therefore assuming the probability of the cooperative
acquisition or loss of two or more monomers to be negligible,
the variation in the probability density of nuclei Z(n) at the
nth node may be expressed by the following Becker-Doering
equation:

∂Z(n,t)

∂t
= −Z(n,t)[q+(n) + q−(n)] + Z(n − 1,t)q+(n − 1)

+ Z(n + 1,t)q−(n + 1). (1)

Denoting by b(n) the equilibrium number of nuclei of size n,
the principle of detailed balance gives

b(n)q+(n) = b(n + 1)q−(n + 1),

b(n − 1)q+(n − 1) = b(n)q−(n).
(2)

We can thus eliminate from Eq. (1) all the dissociation rates
q− and denote the remaining rate q+ simply by q. This leads to

∂Z(n,t)

∂t
= q(n)b(n)

[
Z(n + 1,t)

b(n + 1)
− Z(n,t)

b(n)

]

− q(n − 1)b(n − 1)

[
Z(n,t)

b(n)
− Z(n − 1,t)

b(n − 1)

]
. (3)

We can turn to a continuous distribution with density Z(R),
by setting Z(n) = λZ(R), Z(n + 1) = λZ(R + λ), and so on.
Assuming λ to be a small constant number, we expand each
term in Eq. (3) in a power series of λ; confining ourselves
to the first nonvanishing term, one obtains the following
diffusion equation in cluster-size space [23]:

∂Z

∂t
= ∂

∂R

[
λ2qb

∂

∂R

(
Z

b

)]
= ∂

∂R

[
Db

∂

∂R

(
Z

b

)]
, (4)

where the quantity D = λ2q plays the role of a diffusion
coefficient for the stochastic evolution in the space of
cluster sizes [1,23]. This is a crucial quantity which contains
the microscopic physics of molecular transport towards
the cluster, and thus it includes the effect of shear flow on the
nucleus growth.

B. Meaning of detailed-balance condition within classical
nucleation theory

Above and in the following, we apply the Zeldovich
formulation classical nucleation theory (CNT), and our orig-
inal contribution lies in the specification of the microscopic
transport rate of a molecule to the cluster in shear flows and
in the derivation of the modified nucleation energy barrier
to account for shear. Both these contributions are derived in
the following sections and will be implemented within the
Zeldovich framework for CNT subsequently. Here we would
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FIG. 2. Free energy as a function of the nucleus radius R. The
continuous solid line is the dependence without shear, and the dashed
line is the free energy in presence of shear as given by Eq. (17).

like to briefly discuss and contextualize the above derivation
of a diffusive Fokker-Planck equation, which is standard
in classical CNT but raises some questions when applied
to sheared systems. For example, a fundamental question
could be raised here about the validity or applicability of the
detailed-balance condition within the Becker-Doering master
equation in the context of nonequilibrium driven systems.

More precisely, the detailed balance condition, in Eq. (2),
is assumed in the one-dimentional nucleus size space, but
not in the phase space of positions and momenta of the
molecules, and returns an equilibrium state of zero cur-
rent, J (R,t) = 0, associated with the equilibrium distribution
b(R) ∝ exp[−F (R)/kBT ].

Due to the shape of the free energy function in the nucleus
size space, which shows a barrier for a critical size and becomes
negative for larger sizes (Fig. 2), this solution would give a
very large number of large nuclei after the barrier and cannot
predict the kinetic development of the nucleation process.
Thus, in the spirit of Zeldovich CNT we will solve Eq. (4)
for a nonequilibrium steady state Zst under the assumption
Zst/b ∼ 1 before the barrier and Zst/b ∼ 0 after the critical
size. Thus, within the same approach, we assume the ratio
between the attachment and detachment rate in the equilibrium
state to be the same also in the stationary nonequilibrium state.

It is evident that nucleation, both with and without shear, is
therefore always a nonequilibrium process which is accompa-
nied by a nonzero flux (J = const). Detailed balance is just an
initial condition which is useful to determine the dissociation
rate (which is very difficult to quantify otherwise) as a function
of the association rate and to eliminate it from the kinetic
equations.

Importantly, the existence of the initial quasi-equilibrium
state in which Zst is very close to equilibrium distribution is
justified, following the Zeldovich theory, by the fact that the
energy barrier is so steep that the initial probability of finding
a cluster of critical size is extremely low, and hence Zst can be
assumed to be thermalized and close to the Boltzmann form
b(R) ∝ exp[−F (R)/kBT ], but only until the barrier.

In other words, the system is initially localized (in the
energy landscape) just below the steep energy barrier for
nucleation, in a sort of “bound state” from which the escape

process is so slow due to the high barrier that even if the
distribution was not Boltzmann-like from the beginning, a
stationary distribution, with features stated above, will have
been established a long time before an appreciable number
of clusters have escaped over the barrier. This is the same
assumption underlying the derivation of Kramers’ escape rate
of a Brownian particle over a steep energy barrier [24].

There is nothing obvious which forbids assuming a similar
scenario for nucleation in shear flow as well, provided that, also
in this case, the energy barrier for nucleation in size space is
also large and steep. In fact, as we will show below, the energy
barrier with shear is even larger than in the absence of shear,
which makes the above considerations even more reasonable
and even more applicable for sheared systems compared to
static systems.

These arguments thus provide the justification for using
detailed balance, within the Zeldovich assumption of initial
quasi-equilibrium, to determine the dissociation rate in the
microscopic derivation of nucleation theory in shear flows.

C. Diffusion coefficient in cluster size space with shear

In order to evaluate the diffusion coefficient in Eq. (4) we
have to estimate the probability q that a single particle of radius
a joins a cluster of radius R in the presence of shear flow. The
first obvious consideration concerns the diffusion coefficient
of Brownian molecules in a shear flow. Due to the anisotropic
geometry of shear, the effective diffusion influenced by shear
becomes also anisotropic. For example, a formal expression
for the diffusion coefficient in shear flow as a function of
the flow field has been derived within the framework of
mesoscopic nonequilibrium thermodynamics [21]. Within the
microscopic framework of the Smoluchowski equation with
shear, this anisotropicity appears in the probability distribution
function of particles in space which is the solution to the
governing equation of motion. Within this approach, the aim
is to calculate the rate of collision between a molecule and a
cluster; a necessary step towards this aim is the evaluation of
the flux over the cluster, which is a spherical isotropic integral
of the probability distribution function of finding the molecule
at a given distance from the cluster.

In this way, the rate of a single-particle attachment to the
cluster can be estimated by solving the Smoluchowski equation
with shear or diffusion-advection equation [22,25], which
governs the collision rate between the cluster and the single
particle in the presence of (i) the mutual Brownian diffusion
of cluster and particle, (ii) the intermolecular interaction field
between cluster and particle, and (iii) the applied shear flow.

Let us consider spherical coordinates centered on the
nucleus of radius R, and c(r) the monomer concentration
(or probability distribution function) averaged over angular
coordinates (θ,φ) in the spherical frame centered on the cluster.
As shown in detail in Appendix A, c(r) is the solution to the
radial component of the two-body Smoluchowski diffusion-
advection equation and defines the probability of finding a
single molecule at a radial distance r from a cluster. The radial
component of the equation can be written as [26]

1

r2

d

dr
r2

[
Dβ

(
dU

dr
− Bvr,eff

)
c + Dr2 dc

dr

]
= 0, (5)
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where U is the intermolecular interaction (which may also
account for many-body correlations in an effective way, e.g.,
if one takes the potential of mean force) between the particle
and the cluster. D = Da + DR = kBT (a + R)/6πηaR is the
mutual diffusion coefficient with η the solvent viscosity, and
B = 6πηaR/(a + R) is the hydrodynamic drag; vr,eff is the
effective radial component of the relative velocity between the
cluster and the particle due to the shear flow (see its definition
in Appendix B).

In particular, vr,eff �= 0 and is given by the standard radial
component of the relative velocity, as given for simple shear
flows [27], only in those sectors of the solid angle where vr <

0. These are the sectors of solid angle where the flow brings the
particles towards each other. In those sectors where, instead,
the two particles are pushed away from each other and vr > 0,
we take vr,eff = 0. The motivation for this simplification is that,
upon taking the total inward flux, only those sectors of solid
angle contribute to the inward flux where the flow brings the
particles towards each other, whereas those sectors where the
two particles are pushed away from each other by the shear
field do not contribute to the inward flux. In this way, the
anisotropic character of the flow is fully accounted for by the
theory.

Importantly, this is not an uncontrolled simplification, but
a necessary step for calculating the rate. This is reflected in
the fact that different numerical values of the rate are given by
this theory for different flow geometries (e.g., axysimmetric
extensional flow, shear flow, sink flow, uniform flow, etc.), as
discussed in more detail in previous work [26]. For example,
within this approach, the value of the rate would be maximum
for a sink radial flow [28], where the cluster is located at the
sink point for the streamlines, since this is the most isotropic
flow field, whereas the value is clearly much smaller for
strongly anisotropic flow fields like shear. Of course one could
think of solving the fully anisotropic Smoluchowski partial
differential equation instead of its effective radial component
(which is an ordinary differential equation), but this cannot be
done analytically. It is instead possible to define the effective
radial component of the flow field as done in Ref. [26],
which accounts for the anisotropicity of the flow, and use
this within the Smoluchowski equation [Eq. (5)], to calculate
the collision rate, which is a spherically averaged quantity by
definition.

It is also necessary to emphasize that the Smoluchowski
equation with shear ensures that the anisotropic dynamics of
Brownian particles is correctly described. A manifestation of
this fact is that the local collision rate according to Eq. (5)
is anistropic and does depend on the angular orientation in
the solid angle, while the total inward flux is independent (by
construction, being an integrated quantity) of the angular ori-
entations. Another manifestation of the anisotropic dynamics
predicted by the Smoluchowski equation with shear becomes
evident if one transforms the Smoluchowski equation into its
associated Langevin equation with shear. The latter, in turn,
can be used to determine the mean squared displacement at
steady state as a function of time, in a standard way [29]. The
coefficient in this relation is an effective diffusion coefficient
which is manifestly anisotropic [21]. Hence, the anisotropic
diffusion is rather an outcome of Eq. (5), not an input
to it.

In dimensionless form, Eq. (5) becomes

1

Pe(x + 1)2

d

dx
(x + 1)2

[(
dŨ

dx
− 4Peṽr,eff

)
c + dc

dx

]
= 0,

(6)

where x = [r/(R + a)] − 1, Pe = γ̇ (a + R)2/[4(Da + DR)]
with γ̇ the shear rate, and where we have introduced the
nondimensionalized potential and velocity, Ũ = βU and
ṽr,eff = vr,eff/γ̇ (R + a), respectively. We can set the boundary
conditions for the collision problem:

c = 0 for x = 0,

c = c0 for x = δ/(R + a),
(7)

where c0 is the bulk density of molecules in the supercooled
melt, and δ is the boundary-layer thickness, which is defined
below.

As is known from many previous studies [22], the above
Smoluchowski equation with shear is singularly perturbed,
and presents a boundary-layer structure. In simple words, this
means that no matter how small the Peclet number is, the equa-
tion cannot be solved by a simple perturbative expansion in Pe.
This problem arises because the small parameter (the shear rate
γ̇ or the Peclet number, Pe) multiplies the relative radial ve-
locity in the above differential equation in the term −4Peṽr,eff,
which, for all linear shear flows, diverges as γ̇ r → ∞ in the far
field limit, r → ∞. The singular perturbation character means
that no matter how small Pe is, the flow term in the Smolu-
chowski equation is always going to diverge right at the far field
limit where a boundary condition is required to integrate the
differential equation. As a consequence, there exists an “outer
layer,” at r > δ, where the shear advection term is always
overwhelming compared to the other terms in the equation.

Conversely, for sufficiently small separations, there exists
an “inner layer” where all contributions (diffusion, potential,
shear) are important. The width δ of the boundary layer thus
separates the inner from the outer layer. Using the method of
matched asymptotics [30], one can thus develop a perturbative
expansion in 1/Pe in the outer layer where the shear term
dominates, and a different expansion in Pe for the inner layer
where shear does not dominate over the other terms. The two
expansions can then be matched at the boundary layer δ to re-
cover the full approximate solution over the entire domain of r .

Since we are interested in determining the collision rate, we
need only the inner layer solution, but we also need to know
the location of the boundary layer because we need to take the
surface integral of the concentration profile. It is found [26,31]
that δ ∝ Pe−1/2. Physically, this means that at very high Peclet
numbers where the shear dominates over Brownian motion, the
boundary layer is shifted towards very small separations, and
the inner layer eventually shrinks to zero (δ → 0) in the limit
of Pe → ∞. In this limit, the diffusive term in the equation
can be dropped, and the dynamics is entirely controlled by the
flow advection [22,26,31].

Our interest is not directed towards this latter extreme
case, because we want to limit our study to the range of
small shear rate. Thus the solution for the concentration
profile inside the inner layer can be built upon integrating
the dimensionless equation, with boundary conditions Eq. (7),
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up to the nondimensionalized boundary layer width δ
R+a

,

c(x) = exp
∫ x

δ
R+a

dx

(
− dŨ

dx
+ 4Peṽr,eff

)

×
[
c0 + �0

4π (R + a)(Da + DR)

∫ x

δ
R+a

dx

(x + 1)2

× exp
∫ x

δ
R+a

dx

(
dŨ

dx
− 4Peṽr,eff

)]
, (8)

where �0 is the inward flux of molecules colliding onto the
cluster surface at x = 0 [26]. Solving for �0 we obtain

�0 = 8π (R + a)(Da + DR)c0

2
∫ δ

R+a

0
dx

(x+1)2 exp
[ ∫ x

δ
R+a

dx
(

dŨ
dx

− 4Peṽr,eff
)] . (9)

The change in single-particle concentration per unit time can
be obtained upon multiplying the flux by the concentration of
nuclei cR , so that the kinetic equation for the rate reads as

dc0

dt
= −�0cR = −8π (R + a)(Da + DR)

W�

c0cR, (10)

where we have defined

W� = 2
∫ δ

R+a

0

dx

(x + 1)2
exp

[ ∫ x

δ
R+a

dx

(
dŨ

dx
− 4Peṽr,eff

)]
.

(11)

Equation (10) outlines the analog of a second-order chemical
reaction with the reaction rate given by

q = 4π (R + a)(Da + DR)c0∫ δ
R+a

0
dx

(x+1)2 exp
[ ∫ x

δ
R+a

dx
(

dŨ
dx

− 4Peṽr,eff
)] . (12)

We note that in the limit of Pe = 0 and U = 0, the rate q

correctly reduces to the diffusion-limited rate of a second-order
chemical reaction [32]: q = 4π (Da + DR)(R + a)c0.

D. Nucleus free energy under shear

In classical nucleation theory [1], the free energy of a
nucleus is the sum of an enthalpy term which is proportional
to the volume of the nucleus, and an interface term which is
proportional to its surface. Taking these two contributes into
account gives the standard free energy of the nucleus in the
form [1]

F (R) = −4

3
πR3 |�μ|

v′ + 4πR2ν, (13)

where �μ < 0 is the difference in the chemical potential
between the new phase (e.g., the crystal) and the metastable
phase (e.g., the liquid), v′ is the volume of one particle, and ν

is the surface tension.
As is well known, for small R values the surface energy

term dominates, the free energy thus increases with increasing
R, while for large R values the bulk enthalpy term dominates,
and the free energy starts to decrease with increasing nucleus
size R. Therefore, there is a range of R where a free energy
barrier arises with a maximum located at the critical value
R∗, which defines the critical nucleus. Since our interest is
in studying a system with shear, we have to consider also a

further contribution Fs in the free energy expression due to
the nucleus deformation caused by the shear. If we consider a
small elastic deformation due to the shear stress transmitted by
the surrounding fluid motion onto the nucleus, the additional
free energy contribution Fs reads [33,34],

Fs

V
= 1

2
σikuik, (14)

where V is the nucleus volume and σik and uik represent the
elastic stress and the symmetric component elastic of the strain
tensor, respectively.

For a laminar shear flow, the hydrodynamic stress tensor in
the fluid is given by [35]

		σ =

⎛
⎜⎝

0 ηγ̇ 0

ηγ̇ 0 0

0 0 0

⎞
⎟⎠, (15)

where η is the fluid viscosity and γ̇ is the shear rate. We assume
that the elastic stress acting upon the nucleus is equal to the
average hydrodynamic stress in the sheared fluid. Upon con-
sidering that the elastic stress on the nucleus is given by σxy =
2Guxy [33], where G is the shear modulus of the nucleus, the
elastic strain to which the nucleus is subjected is given by

		u =

⎛
⎜⎝

0 ηγ̇

2G
0

ηγ̇

2G
0 0

0 0 0

⎞
⎟⎠. (16)

Then the total free energy of the nucleus becomes

F = −4

3
πR3 |�μ|

v′ + 4πR2ν

(
1 + 7

24

η2γ̇ 2

G2

)

+ 1

2

η2γ̇ 2

G

4

3
πR3, (17)

which is depicted in Fig. 2 . In this derivation we accounted
for the shape deformation of the spherical nucleus into an
ellipsoid due to shear stress. This effect results in a correction
term to the nucleus surface, the derivation of which is shown
in more detail in Appendix B. Without this correction, the
surface term in the free energy of the nucleus would be
simply 4πR2ν, as for a sphere. It is important to note that the
shear-induced deformation does not affect the volume of the
nucleus, which remains constant as expected for simple shear
deformations, which are volume preserving.

However, the correction term for the nucleus surface change
upon deformation into an ellipsoid is negligible for a large
class of systems where the deviation from spherical shape is
small, and for some of those it has been indeed observed that
this change happens at substantial values of shear rates, e.g.,
∼10–100 s−1 for polymers [36]. The deformation of the nu-
cleus into an ellipsoid, furthermore, does not depend uniquely
on the applied shear rate γ̇ , but it has to depend necessarily also
on the shear rigidity of the nucleus. For example, if the nucleus
were infinitely rigid, it would forever retain its spherical shape
also at extremely high shear rates. Since the surface of the
deformed ellipsoidal nucleus increases as �S ∼ (ηγ̇ /G)2, this
relation gives the limit for which the nucleus can be described
as spherical as long as (ηγ̇ /G)2 
 1 is satisfied.
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E. Analytical expression for the nucleation rate with shear

The nucleation rate can be estimated using Kramers’ escape
rate theory for the crossing rate of the energy barrier [24,29],
when the growth of the clusters is governed by the Smolu-
chowski equation [23]. Starting from Eq. (4), and assuming
the equilibrium distribution to have the Boltzmann form

b(R) ∼ e
− F (R)

kB T , (18)

the associated current in cluster-size space is given by

J = −De
− F (R)

kB T
∂

∂R

(
Ze

F (R)
kB T

)
, (19)

where we recall that D = λ2q with q given by Eq. (12) and
λ = a is the radius of a single particle. At steady state (i.e.,
J = const) upon integrating Eq. (19) on both sides between
R0 ≡ 0 and a point RB located sufficiently far away beyond
the barrier, and RB such that F (RB) 
 F (R0), we obtain

J = −
Zst (R)e

F (R)
kB T

∣∣RB

R0∫ RB

R0
dR 1

D
e

F (R)
kB T

� Zst (R0)e
F (R0)
kB T

∫ RB

R0
dR 1

D
e

F (R)
kB T

� Zst (R0)∫ RB

R0
dR 1

D
e

F (R)
kB T

, (20)

where Zst is the stationary distribution of cluster sizes.
The integral in the denominator is dominated by the

exponential near the barrier, so neglecting the dependence
of D on R (as discussed in Refs. [23] and [37]), expanding
F (R) in a second-order Taylor series around the maximum,
and extending the limits in the integration domain to infinity,
we find

J � Zst (R0)

1
D(R∗)

∫ RB

R0
dRe

F (R∗ )+ 1
2 F ′′ (R∗ )(R−R∗ )2

kB T

� Zst (R0)D(R∗)√
2πkBT

−F ′′(R∗)e
F (R∗ )
kB T

. (21)

Near R = 0 we can approximate the stationary distribution
Zst (R) with the equilibrium Boltzmann distribution [23], b(R),
which in R0 is given by

Zst (R0) = b(R0) = Ntote
− F (R=0)

kB T

∫ R∗
R0

dRe
− F (R)

kB T

, (22)

where Ntot is the total number of particles in the metastable
state, before the barrier.

The integral in the denominator is dominated by the
exponential near the origin; hence upon expanding F (R) in
a second-order Taylor series around R0 and recalling that
F (R0) = 0, we obtain

b(R0) � Ntot∫ R∗
R0

dRe
− 1

2
F ′′ (R0)(R−R0)2

kB T

� 2Ntot√
2πkBT
F ′′(R0)

. (23)

In the last step, we have extended the upper limit in the
integration domain to infinity since contributions to the integral
past the barrier are negligible [24]. Finally, the nucleation rate
is defined by KN ≡ J

Ntot
and reads

KN = D(R∗)

πkBT

√
−F ′′(R∗)F ′′(R0)e− F (R∗ )

kB T

=
(
8ν + 7γ̇ 2η2ν

3G2

)
D(R∗)

kBT
e
− F (R∗ )

kB T , (24)

where in the second line we considered F ′′(R0) = −F ′′(R∗) =
8πν + 7πγ̇ 2η2ν

3G2 , obtained from Eq. (17) with

R∗ = νv′

6G

24G2 + 7η2γ̇ 2

2G|�μ| − η2γ̇ 2v′ .

The free energy barrier at the critical nucleus size R∗ is
found to be

F (R∗) = νv′2ν3π

648G4

(24G2 + 7η2γ̇ 2)3

(2G|�μ| − η2γ̇ 2v′)2
, (25)

which increases as γ̇ increases, as illustrated in Fig. 2.
In particular, upon Taylor-expanding this expression around

γ̇ = 0, we find that the first nonvanishing term in γ̇ is the
quadratic term, i.e., F (R∗) ∼ γ̇ 2. The effect of the shear rate
on the total free energy is to increase the height of the barrier
F (R∗), where R∗ is the critical nucleus size, and to shift its
position to a higher R value, thus slowing down the nucleation
process. Therefore, our Eqs. (24)–(25) explain the quadratic
increase of the nucleation energy barrier as a function of shear
rate, which has been observed in numerical simulations in the
past [12].

From a physical point of view, the quadratic increase of
the free energy barrier for nucleation with the shear rate is
explained within our framework in terms of the increased
elastic energy of the nucleus imparted by the elastic straining
due to hydrodynamic flow stress. It cannot be excluded that
for certain systems the increase of nucleation barrier due
to the increase of elastic energy may abruptly culminate
with the breakup of fragmentation of the nucleus [38], as
the mechanical yielding of the nucleus may be achieved at
high enough shear rates, a possibility discussed for example
by Onuki [39], which certainly plays an important role for
aggregating colloidal phases [40].

It is also important to note that, within our theory, a critical
value of shear rate γ̇ ∗ exists, for which the denominator in
Eq. (25) goes to zero, causing the nucleation rate to vanish.
This situation corresponds to the extreme case where not
even the smallest infinitesimal nuclei would be mechanically
stable under such large flow stresses, and nucleation is thus
suppressed completely by the mechanical instability of the
new phase under the imposed shear stress.

F. Prefactor of the nucleation rate expression

We can explicitly evaluate the prefactor in front of the
exponential in Eq. (24):

K0
N =

(
8ν + 7γ̇ 2η2ν

3G2

)
D(R∗)

kBT
. (26)
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In the expression for the diffusion coefficient in size space
D(R) we substitute the rate q from Eq. (12), and we get

K0
N =

(
8ν + 7γ̇ 2η2ν

3G2

)
4a2π (R∗ + a)(Da + DR∗ )c0

kBT
∫ δ

(R+a)

0
dx

(x+1)2 exp
[ ∫ x

δ
(R+a)

dx
(

dU
dx

− 4Peṽr,eff
)] .

(27)

In the presence of an intermolecular or interatomic interaction
potential, with a range ξ , between the particles, it was
previously established by means of scaling arguments and
in comparison with full numerical simulations of the Smolu-
chowski diffusion-advection equation [26], that δ/(R + a) �
[(R + a)Pe/ξ ]−1/2. In hard-sphere (HS) systems, the range of
the bare pair-interaction is zero, by definition. However, the
relevant interaction which causes the particles to stick onto
a cluster is not the two-body pair potential, but rather the
potential of mean force which features an attractive part with
a finite range ξ , as discussed below.

G. Calculation of the crystallization rate in sheared
hard-sphere colloid systems

Colloidal HS systems have been studied intensively both
experimentally and computationally, as model systems to un-
derstand complex many-body dynamics and phase transitions.
In the HS phase diagram, the controlling parameter is the
volume fraction φ occupied by the colloidal particles. For
example, HS systems undergo a first-order transition from
liquid to crystal at the freezing packing fraction φ = 0.54,
which is the analog of the freezing temperature of atomic
and molecular systems. Colloidal HS liquids at φ > 0.54
are therefore metastable, and nucleation processes take place
leading to the formation of the new crystal phase [41].

In HS systems, the bare two-body pair potential is an
infinitely steep wall and has zero range. However, at high
particle density such as in the metastable regime φ > 0.54,
many-body correlations lead to a potential of mean force which
features a pronounced effective attraction between two parti-
cles. The potential of mean force is defined by Vmf /kBT =
− ln g(r), where g(r) is the radial distribution function. The
effective attraction between two nearest-neighbor particles
arises due to the osmotic pressure, exerted by all the other
particles, which remains unbalanced in the gap between the
two particles [22,42]. Therefore, Vmf cannot be confused with
the simple two-body pair potential (which is just a hard wall
here) because it crucially accounts for collective processes that
are responsible for the cohesion of the crystal.

This entropic effective attraction is what drives the attach-
ment of a particle to a cluster or nucleus of the crystal nucleus
and is the consequence of many-body effects. The effective
attraction has been calculated using different approaches, and
it features an energy minimum of the order of 8–10kBT

with a range ξ ≈ 1.5σ = 3a, where σ is the hard-sphere
diameter [43]. Here, for our illustrative calculation, we assume
that the potential of mean force is what governs the effective
attraction between a particle freely moving in the supercooled
liquid phase and a particle protruding on the cluster surface.
Very schematically, we model the attraction as a ramp potential

with an energy minimum of −8kBT and range ξ = 3a,

U = Vmf

=
{

8kBT

3a
[r − (R − a)] − 8kBT

3a
3a

}
θ (R + 2a − r), (28)

where θ is the Heaviside function.
The qualitative behavior of the denominator in Eq. (27), for

a simple shear velocity field [26]: ṽr,eff = −1/3π (x + 1), as a
function of Peclet number, can be easily estimated numerically
and decreases as Pe increases. Further, in the numerator
the dependence of Da + DR∗ upon γ̇ can be neglected in
comparison with the dependence of R∗ on γ̇ and the explicit
dependence on γ̇ 2. Hence the prefactor K0

N of the nucleation
rate displays an increasing trend with the shear rate.

In the expression of the nucleation rate, Eq. (24), two
opposite contributions brought by the shear are present, in
the prefactor [Eq. (27)] and inside the exponential factor
[Eq. (25)], respectively. In fact, while the prefactor increases
with the shear rate due to the enhancement of advective-
diffusive transport towards the nucleus, the exponential factor
decreases upon increasing the shear rate due to the increased
elastic energy of the nucleus, which increases the nucleation
barrier. As a consequence of this competition (prefactor
increasing with γ̇ , exponential factor decreasing with γ̇ ), an
overall nonmonotonic dependence of the nucleation rate upon
the shear rate, with a point of maximum, arises.

We calculated the nucleation rate on the example of the
crystallization of a HS colloidal suspension of poly(methyl
methacrylate) (PMMA) spheres in a mixture of decahydron-
aphthalene and cyclohexylbromide. If not stated otherwise,
parameter values, reported in Table I, are taken from Ref. [41].
The viscosity η ≈ 1.8 × 10−1 Pa · s is estimated by the
calibration of our theoretical prediction of nucleation rate in
the absence of shear, with the experimental results of Ref. [41].
It is important to note that the chemical potential difference
between crystal and liquid �μ is in general a function of the
control parameter, which for colloids is volume fraction φ (it
would be the temperature in atomic systems), and the same
applies to the viscosity. These parameters therefore introduce
a dependency on the supersaturation which we do not consider
explicitly but we focus on a fixed quench depth into the
metastable regime.

TABLE I. Parameter values for a colloidal suspension of PMMA
spheres in a mixture of decahydronaphthalene and cyclohexylbro-
mide. The nucleation rate obtained with these values is plotted in
Fig. 3. The parameter values are taken from Ref. [41], with the
exception of the viscosity, which has been tuned in our calculation to
recover the experimentally measured nucleation rate in the absence
of shear.

Parameter Value Units

�μ 5.25 × 10−22 J
η 1.8 × 10−1 Pa · s
ν 6.87 × 10−11 N/m
G 1.6 × 10−3 Pa
c0 6 × 1016 1/m3

kBT 4 × 10−21 J
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FIG. 3. Nucleation rate of BCC colloidal crystals as a function
of the shear rate γ̇ , plotted using the parameter values reported in
Table I. Different curves are obtained for different values of the
particles radius.

On theoretical grounds [44], the first phase formed near
the melting line is the BCC crystal phase, although the stable
phase is the FCC crystal. For our illustrative calculations, we
assume the BCC structure, although of course the calculation
can be done for any crystal structure using the Born-Huang
theory of elastic constants of crystals. Therefore, the shear
modulus G is estimated using the standard Born-Huang
formula for BCC crystals [45] G = 2

3
κ
l

assuming that only
nearest neighbors matter. Hence, using κ ≈ 10kBT /l2, we
estimate G = 10 × 2

3kBT /l3 where l ≈ 2a is the crystal lattice
constant. The nucleation rate with shear flow for this system
was calculated using Eq. (24) and is plotted in Fig. 3 for
selected values of the physical parameters.

As shown in Fig. 3, the nucleation rate increases with the
shear rate until it reaches a maximum value for an optimal value
of shear rate γ̇ ∗. The three curves in Fig. 3 are obtained upon
varying the colloid size: as the latter decreases, a significant
shift of the optimal shear value takes place, while the peak
amplitude remains almost constant. The physical origin of this
effect is partly controlled by the nucleus elasticity: smaller
particles make stronger nuclei, and the increase of elastic
energy becomes important at comparatively higher γ̇ , while
at lower γ̇ the nucleation rate is comparatively lower because
the advective-diffusive transport towards the nucleus is slower
with smaller particles (which have smaller Pe numbers). If
the particle-size effect was solely controlled by the nucleus
elasticity, we would expect a dependence of the nucleation
rate peak on the shear rate as to the cubic power, because
the elastic modulus scales as kBT /a3. The dependence is,
however, somewhat stronger, to the fourth power, because of
the size effect due to molecular transport.

III. SIMULATIONS AND EXPERIMENTS: FROM
COLLOIDS TO ATOMIC LIQUIDS

Recent simulation results [18–20], showed the existence
of a peak in the nucleation rate with a characteristic non-
monotonic dependence of nucleation rate on the shear rate.
The nucleation rate is sped up at low shear rates up to the peak
value, after which it decreases with further increasing the shear

rate. This qualitative behavior was not explained by any clear or
simple microscopic mechanism thus far, and to our knowledge
the theory presented here provides the first mechanistic
explanation of this effect in terms of the competition between
advective enhancement of molecular transport to the nucleus
and increased energy barrier due to mechanical straining.

The same qualitative behavior has been reported recently
for the nucleation kinetics of amyloid aggregation in shear
flow [46], whereby the nucleation rate extracted based on a
Finke-Watzky model features a maximum as a function of the
shear rate.

While this qualitative agreement is certainly encouraging,
a more quantitative comparison with either simulations or
experiments is still out of reach. The main issue here is the
unavailability of physical parameters such as the viscosity, the
nucleus shear modulus, its surface energy, or its volume-energy
term, which are not provided in previous studies. Also, when-
ever they were measured, these parameter values are often
model dependent or based on assumptions which are foreign
to our theory. For example, the nucleation energy barrier in
Ref. [18] was extracted based on the assumption of an effective
temperature, which is unnecessary and redundant in our frame-
work where the effect of shear is described at the microscopic
level of molecular motion and cluster growth. The estimate
of the energy barrier provided by those authors also takes into
account the microscopic effect of shear on molecular transport,
and using it in our framework would lead to counting this effect
twice since we already account for it in a different way.

In future simulations or experimental studies, these pa-
rameters need be estimated independently of any model
assumption for the specific systems under study, to allow a
more quantitative comparison with predictions of the theory
presented here. Of course this is a very challenging task for
which no solution is yet in sight.

Calculations similar in spirit to the illustrative predictions
for colloidal crystallization presented above could be done, in
principle, for atomic systems as well, such as silicon [17], or
more complex metallic melts [8]. It is expected that the peak of
nucleation rate in those systems would be found at much higher
shear rates (of order 1 s−1 as reported recently for metallic
melts [8]), due to the much smaller size of the building blocks
(atoms instead of colloidal particles). However, extrapolating
our theory for colloids presented above by just replacing the
colloid size with an atomic size would predict that shear effects
become important only for enormously high shear rates. This
unreasonable outcome for atomic systems is due to the fact
that the theory for colloids cannot be extrapolated to atomic
systems without, at the same time, adjusting the other physical
parameters such as the viscosity and the shear modulus, which
are many orders of magnitude larger in atomic systems. This
effect can be understood by considering the important role
played by the viscosity in modulating the effect of shear
on the atomic motion. The Peclet number increases linearly
with the viscosity, but our prefactor in the nucleation rate
depends exponentially on Pe. The viscosity in atomic systems
is 10 orders of magnitude larger than in colloidal systems (it
increases strongly nonlinearly with decreasing the building
block size), which makes the effect of shear remain important
at accessible shear rates in atomic systems, thus compensating
for the effect of decreasing the size building block size.
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Finally, a word of caution should be given about comparing
theoretical predictions to simulation data. Currently used
protocols vary from Langevin dynamics where shear flow
is treated as an external force in the equation of motion to
nonequilibrium molecular dynamics employing microscopic
equations of motion such as the DOLLS or the SLLOD
equation of motion [47]. Each of these methods has a number
of idiosyncrasies (e.g., the SLLOD equation of motion cannot
be derived from a Hamiltonian, whereas the DOLLS yields
erroneous results at moderate shear rate), which makes any
comparison with analytical theory a highly nontrivial business.
Another possible issue of discrepancy in such a comparison
comes from the role of boundary conditions and boundary
effects in simulations. It is clear that, whenever periodic
boundary conditions (e.g., Lees-Edwards) are not employed,
particles moving close to the driven boundary experience
nontrivial entropic effects while their affinity to the wall of
the simulation box introduces another source of important
additional effects, which are absent in analytical theories that
work in the homogeneous, thermodynamic limit. On the other
hand, the use of Lees-Edwards periodic boundary conditions
is not free from arbitrary assumptions (starting from the choice
of the way particles are re-inserted into the system as they cross
a boundary), and different implementations are available [48].

IV. CONCLUSIONS

Nucleation phenomena in liquids are always occurring un-
der some external perturbation, especially in industrial settings
and in biological systems. Shear flow is the paradigmatic
external drive to approximate mechanical perturbations on
otherwise quiescent, equilibrium systems. We started off from
the basic (Becker-Doering) master equation for the nucleus
self-assembly by molecular transport-driven attachment and
detachment of molecules to and from the nucleus cluster.

Using a matched-asymptotics approximation of the singu-
larly perturbed diffusion-advection dynamics (Smoluchowski
equation with shear), within the Zeldovich reduction of the
Becker-Doering equation to a Fokker-Planck equation in
cluster-size space, we were able to estimate the effect of shear
flow on the growth rate of subcritical nuclei and to derive a
closed-form expression for the nucleation rate. The latter step
is achieved using Kramers’ method to evaluate the rate of
crossing the nucleation barrier.

In addition to the effect on the transport rate of molecules
towards the nucleus, the shear flow also affects the energetics of
the nuclei. The shear flow imparts shear stress on the nucleus,
which reacts elastically, and this increases its energy. For the
case of crystallization, the contribution of shear stresses to
the energy barrier for nucleation is always positive (energy
barrier increases due to strain) and can be estimated in
good approximation using the Born-Huang theory of crystal
elasticity for different lattice structures.

This framework delivers an analytical theory of crystal-
lization kinetics in shear. The main outcome of the theory is
the nonmonotonic dependence of the nucleation rate on the
shear rate. At low shear rates, the nucleation rate increases
with shear rate because of the increase in advective transport
rate towards the nucleus. As the shear rate increases further,
the increase in the elastic energy of the strained nucleus

becomes more and more important, which increases the
nucleation energy barrier. The competition between these
two opposite contributions (flow advection and shear-induced
strain energy, respectively) is responsible for the appearance
of a maximum in the nucleation rate. Past the maximum, the
nucleation rate starts to decrease upon further increasing the
shear rate as the controlling effect becomes the increase in
strain energy leading to higher barriers inside the exponential
Arrhenius factor. This framework opens up the possibility
of understanding nucleation and crystallization in flowing
systems, with widespread applications, from shear-induced
crystallization in metallic melts, to protein crystallization
under physiological conditions. Also, it may help the rational
design of experimental systems for the direct verification of
the laws predicted by our theory.
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APPENDIX A: SMOLUCHOWSKI EQUATION WITH
SHEAR FOR THE ORIENTATION-AVERAGED

CONCENTRATION FIELD

In order to derive Eq. (5) it is convenient to start from the
full Smoluchowski equation for a sheared system:

	∇ · [βD(−	∇U + b	v) − D 	∇]c = 0 (A1)

with the associated current:

	J = [βD(−	∇U + b	v) − D 	∇]c. (A2)

The incoming flux of particles on a spherical surface is
given by

� =
∮

	J · 	̂ndS =
∮

[−D 	∇c − βD( 	∇U − b	v)c] · 	̂ndS

=
∮

D

(
β

dU

dr
c − βbvrc + dc

dr

)
r2 sin θ dθ dφ

= 4πDr2

[
β

(
dU

dr
〈c〉 − b〈vrc〉

)
+ d〈c〉

dr

]
, (A3)

where 	̂n is the unit vector directed inwardly and 〈..〉 indicates
the spherical integral over the solid angle. Since we are
interested in the net inward flux of particles, we can run the
angular integration only on those angles such that the radial
component of the velocity field is negative (which corresponds
to the two particles being advected into each other by the flow).
It is thus convenient to define an effective radial velocity which
depends on the angular orientation as

vr,eff =
{
vr if vr < 0

0 otherwise.
(A4)

Under this assumption the inward flux becomes

� = 4πDr2

[
β

(
dU

dr
〈c〉 − b〈vr,effc〉

)
+ d〈c〉

dr

]
, (A5)

and supposing that convection is not overwhelming Brownian
motion we can also assume a weak correlation between the
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concentration profile and the velocity field:

〈vr (	r)c(	r)〉 � 〈vr (	r)〉〈c(	r)〉, (A6)

which allows us to obtain an analytical expression for the flux
as

� = 4πDr2

[
β

(
dU

dr
− B〈vr,eff〉

)
+ d

dr

]
〈c〉. (A7)

It is possible to show that the same result can be obtained
starting directly from the following Smoluchowski equation:

	∇ · [βD(−	∇U + B 	vr,eff) − D 	∇]〈c〉 = 0, (A8)

where we defined the effective (inwardly directed) velocity
field as 	vr,eff = [〈v−

r 〉,0,0]T. Writing Eq. (A8) for the radial
coordinate as appropriate for determining the flux, and setting
〈c〉 ≡ c for economy of notation, we recover Eq. (5).

APPENDIX B: SHEAR-INDUCED DEFORMATION OF THE
NUCLEUS INTO AN ELLIPSOID

The action of a simple shear flow described by the fluid-flow
strain tensor for simple shear flow 		s. It is important to note
that this is different from the elastic strain tensor in Eq. (16),
which describes the elastic contribution to the free energy and
has to be necessarily symmetric and cannot include rotational
components (which are associated with dissipation). The
fluid strain tensor 		s, instead, must include also the rotational

component and gives rise to an affine deformation 	X′ = 		T 	X
where 	X is a generic point in 3D space and

		T = 1 + 		s =

⎛
⎜⎝

1 α 0

0 1 0

0 0 1

⎞
⎟⎠, (B1)

where we defined α = ηγ̇

G
.

We are now interested in observing how this deformation
modifies the surface and volume of a spherical object in the
limit of small α. For the sake of simplicity let us consider a
unitary sphere described by the equation

	XT 1 	X = 1. (B2)

Under the action of T the equation becomes that of an ellipsoid:

	X′T T −T T −1 	X′ = 1. (B3)

Writing the quantity T −T T −1 in diagonal form gives

⎛
⎜⎜⎝

1 0 0

0
2+α2−α

√
(4+α2)

2 0

0 0
2+α2+α

√
(4+α2)

2

⎞
⎟⎟⎠. (B4)

The eigenvalues of this matrix represent the lengths of
semiaxes of the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1. (B5)

Using the Legendre approximated expression [49] to calculate
the surface of an ellipsoid,

S = 4πab

(
2

3
+ c2b2 + c2a2

6a2b2

)
, (B6)

and Taylor expanding around α = 0, we obtain

S = 4π + 7πα2

6
+ O[α]3, (B7)

which gives a correction to a spherical surface of the second
order in γ̇ .
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