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Phase diagram of a tubular vesicle adhering between two parallel rigid planes
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In this study, we propose a two-dimensional (2D) theoretical model to explore the adhesion behavior of a
tubular vesicle adhering between two rigid planes, which are constrained by a couple of forces. Based upon the
free-energy functional of the system, the equations for the equilibrium shape are derived. The general solution for
the system with zero pressure is obtained analytically and the stability of the corresponding equilibrium shapes
is tested by numerical simulation. With the volume constraint, three kinds of typical stable shapes are obtained
through scanning the parameter space numerically. The phase diagram is obtained and it is occupied mostly by
nonsymmetrical shapes. The force-displacement curves obtained for our model are in agreement with experimen-
tal results. The catastrophe of force is found at a critical state, which reveals a huge expanding force will act on the
two planes by the vesicle. It also implies that vesicles can spontaneously squeeze into a slit only due to adhesion.
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I. INTRODUCTION

When the membrane proteins are ignored, cell membranes
that are composed mostly by two layers of phospholipids
can be taken as liquid vesicles as well as 2D surfaces.
The equilibrium shapes of vesicles can be described by the
Helfrich-Canham bending energy theory [1–4]. In the past
40 years, the shapes and deformations of artificial vesicles,
which often have single component, were widely studied and
many theoretic results are in accordance with experimen-
tal observations, such as the Clifford torus [5–7] and the
beyond-Delaunay surface [8,9]. Also, the Helfrich-Canham
bending energy theory has been developed extensively to deal
with the equilibrium shapes of open vesicles [10], vesicle
adhesion systems [11–13], multicomponent vesicles [14,15],
cell membranes with cross-linking structures [16], and so
on [17]. However, the dynamic characteristics, such as the
viscoelasticity, of cell membranes resulting from the mem-
brane protein cross-linker are beyond the Helfrich-Canham
bending energy theory. In recent years, many studies have
focused on the viscoelasticity of single cells [18–21]. In these
works, the cells are adhered between two paralleled plates
and the dynamic behaviors are investigated by changing the
mechanical environment. It should be noted that the cell
membranes are complex structures, which means the protein
cross-linker and the two layers of phospholipids codetermine
the mechanical properties of cell membranes. Although the
works in Refs. [18–21] have explored the protein cross-linker,
it lacks a similar study about the liquid bilayer vesicles. So if a
vesicle adheres between two plates, what kind of mechanical
phenomena will appear is still unknown.

To study the vesicle adhesion systems, Seifert and
Lipowsky [11–13] initially introduced the contact potential
in the Helfrich-Canham bending energy theory to describe
the intensity of the adhesion energy between a vesicle and a
substrate. Their results indicate that the equilibrium structures
result from the competition between the curvature elastic
energy and the adhesion energy. Deserno et al. [22] developed
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a general geometrical framework to study the fluid surface
adhesion. The equilibrium shape equations for the contact
boundary line obtained by them are widely applicable.

Although much effort has been performed to study the
equilibrium structures of vesicle adhesion systems, we still
need a deep understanding on the mechanical characteristics,
especially how these adhesion structures can be disintegrated
by physical methods, such as by pulling force [23–25]. In
other words, when adhesion becomes a negative effect, how
to eliminate it requires further study. The work in Ref. [24]
provided some useful information. However, we notice that
this work didn’t consider the volume constraint for each
vesicle (the pressure always is zero in their work). So,
whether the volume constraint can induce new mechanical
behavior is unknown. Recently, Steffen et al. [26] studied the
depletion-induced adhesion of red blood cells. They provided
the relationship between the force and the distance when using
force to separate two adhered blood cells and said that is needed
in theoretical investigations. Although previous theoretical
works in Refs. [23,24] have studied similar questions as the
model in Ref. [26], their results about the force-distance curves
cannot explain the experimental data in Ref. [26]. What causes
the force-distance relationship is still challenging.

Motivated by the above analysis, in this work we propose a
2D model to explore the adhesion behavior of a tubular vesicle
adhering between two rigid planes, which are constrained by
a couple of forces. In Sec. II, the equilibrium shape equations
are derived and the general solution in the zero pressure case
is derived analytically. In Sec. III, the phase diagram for the
vesicle with fixed volume is obtained through scanning the
3D parameter space numerically and all shapes are tested by
stability analysis. Finally, these results are recapped in a short
discussion in Sec. IV.

II. SHAPES WITH NO VOLUME CONSTRAINT

In the Helfrich-Canham bending energy theory, the free
energy for vesicle is [1,2]

E = 1

2
κ

∮
(K1 + K2)2dS + κc

∮
K1K2dS, (1)
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where K1 and K2 are two principal curvatures, κ is the
bending rigidity, κc is the modulus of elasticity for Gaussian
curvature, and dS is the area element. For closed shapes, the
second term in Eq. (1) satisfies the Gauss-Bonnet theorem∮

K1K2dS = 2πEr [27], where Er is the Euler characteristic
which only depends on the topological structure of the surface.
For spherical topology surface, Er = 2. For torus, cylinders,
and tubes with infinite length, Er = 0. In the following text, we
will study the tubes with infinite length, so the valid total free
energy is reduced to E = 1

2κ
∮

(K1 + K2)2dS. Considering the
volume and surface constraints, the energy functional is Et =
E + p

∮
dV + γ

∮
dS, where p is the pressure difference

between the outside and inside of the vesicle, γ is the surface
tension coefficient, and dV is the element of volume. The
equilibrium shape equation can be obtained by discussing the
first variation δEt = 0 [3]. In 2D case, one principal curvature
is zero and the valid free energy is reduced to E = 1

2κ
∮

K2ds,
where K is the curvature and ds is the element of the arc length
of vesicle. If a 2D vesicle adheres to a rigid plane [11], the
total free energy is changed to E = 1

2κ
∮

K2ds − ωLd , where
ω is the adhesion potential and Ld is the total adhesion length.

Figure 1 is the cross section of a tubular vesicle adhered
between two parallel rigid planes. A couple of forces perpen-
dicularly act on them and keep a stable distance D between
them. This system can be simplified as a 2D model. The contact
red lines stand for the adhesion regions and the curved blue
parts are free ones. The equilibrium shape is governed by the
competition between the curvature elastic energy and adhesion
energy.

First, we consider that there is no volume constraint, which
means the pressure is zero. In this case, we can make an
ansatz that the shape has D2 symmetry. (This hypothesis will
be confirmed by simulation later in text). Then the two free
parts are equal and we can only choose half of the lower part

FIG. 1. A tubular vesicle adheres between two parallel rigid
planes. A couple of forces F perpendicularly act on them and keep
them within the distance D. The forces that the vesicle acts on the
two planes are F and we have F ′ = −F . The positive F ′ refers to the
vesicle pulling the walls together, and the negative F ′ corresponds
to the vesicle pushing them apart. The contact red parts are adhesive
regions, and the curved blue parts are free.

to study. As shown in Fig. 1, the system is defined in the x-y
plane and the bottom point is the initial point at which the arc
length s = 0. At the initial adhesion point, there is s = s0. Let
φ be the angle between the tangent of the free arc and the x

axis, the curvature is K = dφ/ds = φ̇. The total free energy of
the whole system is E = 2κ

∫ s0

0 φ̇2ds − 2ωB, where B is the
length of one adhesion part. Considering the volume constraint
(the surrounding area in the 2D case) and surface constraint
(the total length in the 2D case), the corresponding Lagrange
functional is [11]

� = E +
∫ L

0
[px sin φ + λ(ẋ − cos φ)]ds, (2)

where L = ∮
ds is the total length, and λ is the Lagrange

coefficient. The shape equations for the free part are [28]

κφ̈ − px cos φ − λ sin φ = 0,(0 < s < s0), (3)
p sin φ − λ̇ = 0,(0 < s < s0). (4)

The corresponding geometrical constraint equations are

ẋ = cos φ,ẏ = sin φ. (5)

The fixed boundary conditions can be described as

φ(0) = 0, x(0) = 0, y(0) = 0, (6)
φ(s0) = π/2, x(s0) = D/2. (7)

At the point s = s0, there is the condition [11,22,24]

2ω = κφ̇2|s=s0 . (8)

In order to obtain dimensionless results, we choose L = 2π

and κ = 1 (see details in the appendix for reasons). When
there is no volume constraint, we have p = 0. Then the shape
Eqs. (3) and (4) are reduced to [28]

φ̇2 = 2λ(C − cos φ), (9)

where C is an integral constant. It yields

ds = dφ√
2λ(C − cos φ)

. (10)

The distance can be written as

D = 2
∫ s0

0
cos φds =

∫ π/2

0

2 cos φdφ√
2λ(C − cos φ)

. (11)

Using Eq. (10) and L = 2π = 4s0 + 2B, we derive

B = π − 2
∫ π/2

0

1√
2λ(C − cos φ)

dφ. (12)

The total free energy is

E = 2
∫ π/2

0

√
2λ(C − cos φ)dφ − 2ωB. (13)

Making use of Eq. (9), condition Eq. (8) is reduced to

ω = λC. (14)

Substituting it into Eqs. (11), (12), and (13), and defining
F [x,y] and S[x,y] as the first and second incomplete elliptical
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FIG. 2. The energy-distance relationship with ω = 1. The energy
has the minimum at the distance D = √

2. At the point g, D reaches
its maximal value Dm = 2.177, and after that the adhesion will vanish.
The solid line is the analytical result and the red points are obtained
by simulation.

integral, respectively, we obtain

D = 2

√
2C

ω(C − 1)

{
C × F

[
π

4
,

2

1 − C

]

− (C − 1) × S

[
π

4
,

2

1 − C

]}
, (15)

B = π − 2

√
2C

ω(C − 1)
× F

[
π

4
,

2

1 − C

]
, (16)

E = 4

√
2ω(C − 1)

C
× S

[
π

4
,

2

1 − C

]

+ 4

√
2ωC

(C − 1)
× F

[
π

4
,

2

1 − C

]
− 2πω. (17)

If ω is given, there is only one parameter C in the above
expressions. So, for each ω, one can express the relationship
between the total energy E and the distance D using the
parametric curve [E(C),D(C)]. In Fig. 2 it shows the curve of
E and D with ω = 1, we can see there is an optimal distance
at which the total energy has the minimal value. Letting

dE

dD
= dE/dC

dD/dC
= 0, (18)

we find it needs C → ∞. Then, there is

φ̇2 = 2λ(C − cos φ) = 2ω(C − cos φ)/C = 2ω. (19)

This result indicates the optimal shape of the free parts in Fig. 1
are two half of circles with the same radius R = √

1/(2ω). The
minimal energy is Em = 2π (

√
2ω − ω).

If the two planes in Fig. 1 are constrained by a couple of
forces and the system is balanced, the forces satisfy

F = dE

dD
= dE/dC

dD/dC
. (20)

We show the parametric curves [F (C),D(C)] in Fig. 3 for
different ω, which are similar to the results in Ref. [24] that the
maximal force occurs at the adhesion vanishing point. Under

FIG. 3. The force-distance relationships for different ω. The
dotted purple line is the adhesion vanishing line on which the force
reaches its maximum (pull-off force).

the action of the couple of forces, if the distance D exceeds the
maximal value Dm, the adhesion length between the vesicle
and the planes will vanish. Letting B = 0 in Eq. (16), it yields
ω = ω(C). Substituting it into Eq. (15), we obtain the maximal
distance Dm = Dm(C). We show the curve of Dm and ω in
Fig. 4. Actually, the adhesion vanishing point g in Fig. 2 and
the adhesion vanishing line in Fig. 3 are derived by this way.
If there is no adhesion and the vesicle is free, it will be a
circle with the radius R = 1. So if the distance D < 2, the
adhesion will occur because the vesicle must contact with
two planes. Contrarily, the adhesion vanishing distance must
satisfy Dm > 2, which yields ω > 0.5. This result is first
presented by Seifert [11].

III. SHAPES WITH THE VOLUME CONSTRAINT

In the former section, we studied the adhesion behavior
of a tubular vesicle adhering between two rigid planes.
Supposing the shapes have D2 symmetry, we obtained the
analytical results under no volume constraint. In this section
we will prove that our former results are reliable and further
investigate the nonzero pressure state with volume constraint
by simulation.

FIG. 4. The curve of the maximal distance Dm vs. ω.
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When there is volume constraint, it is difficult to solve the
shape Eqs. (3) and (4) analytically. Here we use the finite
elemental software Surface Evolver [29] to study the adhesion
system. This software has been generally used to simulate
the equilibrium shapes of singular vesicles [30–32], vesicle
adhesion systems [33], and plate adhesion structures [34]. In
this software, the total energy functional for the model in
Fig. 1 is

Et = m

∮
K2ds − ωLd + p

∫∫
L

dσ + γ

∮
ds, (21)

where m is an adjustable constraint and σ is the area
surrounded by the vesicle. Similar to the study in the former
section, we set m = 1/2 and L = 2π in the simulation and the
dimensionless parameter can be defined (see the Appendix).
Considering the volume constraint, we define the reduced
volume ν = 1

π

∫ ∫
L

dσ , which can be adjusted in simulation.
Furthermore, the two rigid planes are added in simulation
as boundary conditions and the distance between them is
adjustable. Based on the above methods and techniques, each
equilibrium state is determined by the three parameters: ω, ν,
and D. So, the corresponding phase diagram should be three
dimensional.

Before studying the phase diagram, we tested our former
results with p = 0. The red points in Fig. 2 are obtained by
simulation, which are in good agreement with our analytical
results. Moreover, the stability analysis is important for each
equilibrium shape. In order to estimate the stability, the so-
called Hessian needs to be studied, which is the matrix of
the second differential coefficients of the total free energy and
can be calculated numerically by the Surface Evolver. If the
shape is stable, it must have a positive definite Hessian matrix.
Making use of this method, we tested our former results and
found all of them are stable and have D2 symmetry.

In the former discussion, we suppose the two planes are big
enough and the whole vesicle is clipped within the two planes.
In this case, with fixed ν one can deduce the shape reaches
the threshold that the free parts are two half circles with the
same radii, then the distance reaches its minimum D = Ds

and cannot decrease any more. There is

Ds = 2(1 − √
1 − ν). (22)

If this critical shape is a solution of the shape Eqs. (3) and (4),
the condition in Eq. (8) should be satisfied and it gives the
radii of the free parts of this critical shape Rs = √

1/2w.
Considering Ds = 2Rs , we have

ν =
√

2/ω − 1/(2ω). (23)

This is the condition for the critical shape to be a solution of
the shape Eqs. (3) and (4). Moreover, the general equilibrium
equations for free vesicles were discussed by Ou-Yang et al.
in Refs. [35,36]. Making use of their results we obtain the
following additional condition for this critical shape,

pR3
s + γR2

s − κ/2 = 0. (24)

We tested this condition by the Surface Evolver and found the
numerical results are confirmed by it.

However, if the two planes are not big enough and the
vesicle adheres to the borders of the two planes, new shapes

FIG. 5. A tubular vesicle with fixed volume adheres between two
parallel rigid planes. One plane is not big enough and the distance D

between them satisfies D < Ds .

will appear and it allows the distance D < Ds . An example in
Fig. 5 shows that one plane is not big enough and the distance
D < Ds . In our simulation, we don’t constrain the length of
the two rigid planes and set only the distance D between the
two adhesion lines as a constraint, which allows us to explore
the whole region of D and easily stride across the critical value
D = Ds .

Through scanning the parameter space, three kinds of
typical shapes are found. A set of examples are shown in Fig. 6.
These shapes have the same contact potential ω = 10 and
reduced volume ν = 0.8. Figure 6(a) shows a nonsymmetrical
shape with D = 1 < Ds . When D > Ds there is another kind
of nonsymmetrical shape as shown in Fig. 6(b). Moreover,
a kind of symmetrical shape like Fig. 6(c) is found when

FIG. 6. Three typical shapes with the same adhesion potential
ω = 10 and reduced volume ν = 0.8. (a) A nonsymmetrical shape
(phase I) with D = 1. (b) A nonsymmetrical shape (phase II) with
D = 1.5. (c) A D2 symmetrical shape (phase III) with D = 2.3.
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FIG. 7. The energy-distance bifurcation between three phases at
ω = 10 and ν = 0.8. The dotted blue line is the D2 symmetrical
phase like Fig. 6(c). As to the solid red line, from point a to b it is
the nonsymmetric phase in Fig. 6(a) and from point b to d it is the
nonsymmetric phase in Fig. 6(b). At the points a (D = 0.74) and
e (D = 2.66), one adhesion part of each shape will reduce to zero.
Point b is the critical state with D = 1.1056 � Ds , and point o is the
lowest energy point with D = 1.116. Point d is a symmetry breaking
point with D = 2.07. At the crosspoint c with D = 1.159, the energy
of two phases is degenerate. The inside shapes s1 and s2 are the two
phases at the degeneracy point c.

D > Ds . The lowest energy state always occurs when D

narrowly exceeds Ds .
Figure 7 shows the energy-distance bifurcation between

three phases at ω = 10 and ν = 0.8. Two phases are non-
symmetric shapes and another has the D2 symmetry. When
D < Ds there is no stable symmetric shapes and only has
one nonsymmetric phase (phase I). When D > Ds there is
a symmetric phase (phase III) and a nonsymmetric phases
(phase II) and they cross at the point c. Point d is the symmetry
breaking point and there is only the phase III above it. From
this figure we can see that, between points c and d, the phase II
has lower energy than the phase III. The inside figure indicates
the lowest energy point o with D = 1.116 has D2 symmetry.
Now, we know the points b, c, and d are phase transition points,
but to identify the orders of them requires following additional
discussion.

Figure 8 gives the relationship between the force F =
dE/dD and the distance D. It shows the force has a
catastrophe point at D = Ds (simulation indicates F → −∞
at this point). When D < Ds , the force is always negative.
When D > Ds , the forces of the phases II and III all will
rapidly increase to their maximal values. The points c1 and c2

correspond to the energy degeneracy point c in Fig. 7. Clearly,
Fig. 8 shows the forces of the two phases are unequal at these
two points. From the inside figure we can deduce that the
values of dF/dD also are not equal at these two points (one
is positive and the other is negative). Thus, point c in Fig. 7
is a first-order phase transition point. When we increase D

from an initial value D < Ds , simulation reveals the shape
will evolve along the phase II until it reaches point c2. Then it
will drop to point c1 if there is a small perturbation. At point d,
the forces between the two phases seem to be continuous. We
also studied the relationship between dF/dD and D at this
point. Based on the accuracy of the simulation software, we

FIG. 8. The force-distance curves at ω = 10 and ν = 0.8. At
point D = Ds = 1.1056, the force F → −∞. The dotted blue line
is the phase III with D2 symmetry. The two solid red lines are the
nonsymmetric phases: phase I for D < Ds and phase II for D > Ds .
The a, d , and e points correspond to the a, d , and e points in Fig. 7,
respectively. The c1 and c2 points correspond to the degeneracy point
c in Fig. 7. Simulation reveals the shape will drop from point c2 to c1

when we increase D from an initial value D < Ds .

only know it is a possible second-order or higher-order phase
transition point but cannot identify it.

Most impressively, when we increase D from an initial
value D < Ds , Fig. 8 indicates an expanding force will act
on the planes by the vesicle and it will become huge nearby
D = Ds . Looking back to Fig. 5, where the vesicle adheres
between two planes and the distance D < Ds . If the planes are
not fixed on the x direction, according to Figs. 7 and 8, the
vesicle will push the two planes away and squeeze into the slit.
This process is shown in Fig. 9, where one plane is fixed and
the other is connected with a spring. Supposing that the shape
in Fig. 9(a) is at the pint a in Fig. 7 and the spring is in the
original length, Fig. 8 reveals there will be a couple of pushing
forces acting on the two plates by the vesicle. Then the plate
on the right-hand side of Fig. 9(a) will be pushed away and
shape will roll down from the high-energy point a toward the
lowest energy point o. But the elastic force acting on the plate
by the spring will increase with the increase of the distance D.
So, when the pushing force by the vesicle and the elastic force
by the spring strike a balance on the right plate, the shape of
vesicle will not change and form Fig. 9(b), where we can see
the vesicle moves into the slit with a definite length. It must be
pointed out that due to the only stable phase when D < Ds is
nonsymmetric, the above processes need the edge of one plate
to exceed the edge of the other with an enough length.

Figure 10 shows the phase diagram of ω = 10. From it
we can see a large area is occupied by nonsymmetric shapes.
For instance, at ν = 0.6, there is no stable symmetric shape.
Figure 11 shows the energy-distance curves with ω = 10 and
ν = 0.6. Besides the former two nonsymmetric phases (phase
I and phase II), there is a new nonsymmetric phase (phase
IV, see the red branch in the inside figure of Fig. 11). But
this new branch is metastable because its energy is always
higher than phase II. It is found that this branch begins at the
critical point D = Ds and finally converges to phase II. The
force-distance curves in Fig. 12 reveal there is the catastrophe
of force at the critical point D = Ds . If we increase D crossing
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FIG. 9. A vesicle squeezes into a slit due to adhesion. (a) The left
plate is fixed and the right plate only can move along the horizontal
direction. The spring is fixed on the right plate and is in the original
length. The total free energy of the structure is at the critical point
a in Fig. 7, where the adhesion on the right plate is just beginning.
According to Fig. 8, the vesicle will push away the right plate and
the shape will roll down from the high energy state (point a in Fig. 7)
toward the lowest energy state (point o in Fig. 7). (b) When the
pushing force by the vesicle and the elastic force by the spring strike
a balance on the right plate, the shape of vesicle will not change and
then we can see the vesicle moves into the slit with a definite length.

Ds , simulation indicates the shape always evolves along the
metastable phase IV until it converges to the phase II. There
are likely two reasons for this phenomenon. First, when the
shape drops from D−

s to D+
s , it will first touch the phase IV

due to its higher energy. Second, there is a small energy barrier
between phases II and IV, which hinders the phase IV to drop
into phase II if the perturbation is not big enough. Phase IV has
a special feature in that the force has an evident trough, such
as the point n in Fig. 12. More results are shown in Fig. 13 and

FIG. 10. The phase diagram at ω = 10. The solid red line is the
adhesion vanishing boundary line and the dotted line from point h

to g is the first-order phase transition line. The dotted dashed line
from point g to f is the symmetry breaking line. The double dotted
dashed line is the critical state in Eq. (22). The a, b, c, d, and e points
correspond to the a, b, c, d, and e points in Fig. 7, respectively.

FIG. 11. The energy-distance curves at ω = 10 and ν = 0.6. The
dotted red branch is the phase IV, which begins at the critical point b

with D = Ds = 0.735 and finally converges to the phase II at point
c. Points e and f are two lowest energy states for phases II and IV,
respectively. The inset shapes b, c, e, and f are corresponding to the
points b, c, e, and f , respectively. When decreasing the simulation
step length, points e and f will get closer to point b.

we can also see the force fluctuation for phase IV. Particularly,
even when Eq. (23) is satisfied, the curve with ω = 3.7013 in
Fig. 13 reveals that there also is the catastrophe of force at
D = Ds and force fluctuation when D accessing Ds a little.
We think these phenomena are possible to be uncovered in
future experiments.

The curves for pase II in Fig. 13(b) obtained by decreasing
D show that the force F will reach its maximum rapidly when
D is increased from Ds = 0.735. This rapid increase is due to
a very narrow valley for the total energy, such as the results
in Fig. 11. When we increase D, before the shape can climb
out of this narrow valley, the force will increase rapidly due to
the fast increase of the free energy. After that, the increasing
speed of its free energy will slow down and consequently the
force F monotonously decreases with increasing D until one
adhesion part is failed. The right end point of each line is the

FIG. 12. The force-distance relationships at ω = 10 and ν = 0.6.
At the singular point D = Ds = 0.735, the force F → −∞. The
dotted red line, which is phase IV, has evident undulation. The inset
shapes s,m, and n correspond to the local maximum points s,m,
and minimum point n, respectively. The points e and f with F =
0 correspond to the two lowest energy states e and f in Fig. 11,
respectively.
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FIG. 13. The force-distance relationships at v = 0.6 for different ω. (a) for D < Ds and (b) for D > Ds . At the singular point D = Ds =
0.735, the forces F → −∞. a, b, and c are three end points for phase I. e, g, and k are three phase transition points between phase II and phase
VI. The lines for phase II with D > Ds are in accordance with the experimental phenomena in Ref. [26].

adhesion vanishing point at which the length of one adhesion
part reduces to zero. The above-mentioned phenomena are in
good agreement with the experimental results in Fig. 2(b) of
Ref. [26]. Figure 14 shows the phase diagram for different ω,
which can be taken as the projection of the 3D phase diagram
in the ν-D plane. In most areas, we can see the lowest energy
shape is nonsymmetrical.

IV. CONCLUSIONS

In summary, we have investigated the behavior of a tubular
vesicle adhering between two rigid planes, which are con-
strained by a couple of forces. The analytical configurations
without volume constraint are derived and three kinds of
typical stable shapes are obtained for the vesicles with volume
constraints. The phase diagram of the vesicle with fixed
volume is determined numerically, which indicates that, in
most areas, the shape is nonsymmetrical. It also implies vesicle
could squeeze into a slit only due to adhesion. Although
the force-distance relationships are in accordance with the
experimental phenomena in Ref. [26], we have to say that our

FIG. 14. The phase diagram which can be taken as the projection
of the 3D phase diagram in the ν-D plane. For each ω, the domain
for each kind of shape is similar to Fig. 10. It indicates the
nonsymmetrical shapes occupy a larger area than the symmetrical
ones.

model is only a 2D case, which just provides the similar trend
with experimental results qualitatively. Numerical agreement
needs a more complete 3D model, which will be studied in our
future work.
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APPENDIX

In this appendix, we show why we will get dimensionless
results when choosing κ = 1 and L = 2π for the models
in Eqs. (2) and (21). Different vesicles maybe have dif-
ferent size (surface area) and bending rigidity κ . So to
study the physical properties of different vesicles, such as
the free energy, dimensionless results will be convenient.
Let vesicle length L = ∮

ds be the length of a circle;
the radius of the circle is R0 = L/(2π ). Then we can
define the following dimensionless parameters: x̃ = x/R0,

ỹ = y/R0, s̃ = s/R0, p̃ = pR3
0/κ, λ̃ = λR2

0/κ, ω̃ = ωR2
0/κ ,

and �̃ = �R0/κ . Substituting these dimensionless parameters
into Eqs. (3), (4), and (5) and the conditions in Eqs. (6), (7),
and (9), we will obtain dimensionless results by solving
them [28]. But there is a simple way to do the above
operations and obtain dimensionless results. If we fix L =∮

ds = 2π and κ = 1, there are R0 = 1, x̃ = x, ỹ = y, s̃ =
s, p̃ = p, λ̃ = λ, ω̃ = ω, and �̃ = �. Then we will get
dimensionless results by solving shape Eqs. (6) and (7).
Similarly, in Eq. (21) we need to define other dimensionless pa-
rameters Ẽt = EtR0/(2m), K̃ = KR0, ω̃ = ωR2

0/(2m), p̃ =
pR3

0/(2m), γ̃ = γR2
0/(2m), Ṽ = V/R2

0 = (
∫ ∫

L
dσ )/(R2

0),
and the reduced volume ν = Ṽ /π = (

∫ ∫
L

dσ )/(πR2
0). When

choosing L = ∮
ds = 2π and m = 1/2, we have K̃ = K, ω̃ =

ω, p̃ = p, γ̃ = γ, V = Ṽ , ν = 1
π

∫ ∫
L

dσ , and dimensionless
energy functional Ẽt = Et . Then the reduced volume satisfies
0 � ν � 1, which will make it very convenient to solve the
shape equations and study the solutions.
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