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The multidimensional energy surface of a cholesteric liquid crystal in a planar cell is investigated as a function
of spherical coordinates determining the director orientation. Minima on the energy surface correspond to
the stable states with particular director distribution. External electric and magnetic fields deform the energy
surface and positions of minima. It can lead to the transitions between states, known as the Fréedericksz effect.
Transitions can be continuous or discontinuous depending on parameters of the liquid crystal which determine
an energy surface. In a case of discontinuous transition when a barrier between stable states is comparable with
the thermal energy, the activation transitions may occur, and it leads to the modification of characteristics of
the Fréedericksz effect with temperature without explicit temperature dependencies of liquid crystal parameters.
A minimum energy path between stable states on the energy surface for the Fréedericksz transition is found
using the geodesic nudged elastic band method. Knowledge of this path, which has maximal statistical weight
among all other paths, gives the information about a barrier between stable states and configuration of director
orientation during the transition. It also allows one to estimate the stability of states with respect to the thermal
fluctuations and their lifetime when the system is close to the Fréedericksz transition.
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I. INTRODUCTION

Cholesteric liquid crystals (ChLCs) have attracted much
attention because of their vast applications in optical systems,
including display devices [1–3], light shutters and optical
filters [4–6], lasers [7–9], and others. Under certain conditions,
ChLCs are characterized by the coexistence of several stable
states with distinct optical properties. Multistability of ChLCs
is particularly important for the applications in energy-efficient
optical display systems such as bistable reflective displays
[1,2] where visual information is maintained at a zero power
consumption and the only energy loss is associated with the
refresh of displayed data.

The coexistence of the planar (P) state, where the director
forms a perfect helix confined in the liquid crystal cell, and the
focal conic (FC) state, where the helix pitch becomes irregular
and the helix axis acquires a component parallel to the cell
surface, was first observed more than 40 years ago [10]. Since
then, several methods have been developed to obtain bistability
in ChLCs, including admixture of a dispersed polymer [11],
special treatment of the cell surfaces [12], as well as application
of external fields. Bistability of P and FC states can be achieved
even at a zero external field [1], which is particularly important
for the applications.

Recently, various topologically protected solitonic states in
ChLCs including skyrmions [13,14], hopfions [15], and other
localized defects [16] have attracted much attention. However,
quasi-one-dimensional structures in planar cells of ChLCs are
of great interest too, especially for practical use. For example,
metastable twisted states in planar liquid crystal cells have
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been found experimentally and explained as a result of an
interplay between the bulk and the surface contributions to the
free energy. Transitions between these states can be tuned by
adding chiral molecules to the system [17].

Theoretical description of transitions between the stable
states in ChLCs is an important problem in fundamental
studies of liquid crystals (LCs) and is of critical importance
in the design of optical liquid crystal displays, where efficient
switching between the optical states is needed for recording
the visual information. Several schemes have been proposed
to induce transitions between stable states in ChLCs, involv-
ing application of the external field pulses [1,18–21] and
pressure [22]. Thermal fluctuations can induce spontaneous
transitions and, therefore, affect the stability of optic states in
ChLCs. The preparation of a ChLC system in a particular state
can be destroyed by thermally activated transitions to other
available states. Typically P and FC structures are very stable
against thermal fluctuations due to the large energy barrier
separating the states [18,21,23]. However, energy barriers can
be tuned by external fields driving the system to the regime
where spontaneous thermally activated transitions can not be
neglected. Thermally assisted switching between P and FC
states has already been proposed for recording visual data in
ChLC devices [24].

In this article, we study the transitions between stable states
in ChLCs by analyzing the multidimensional energy surface
of the system defined by the Oseen-Frank model [25]. The
minima on the energy surface correspond to stable states,
while minimum energy paths (MEPs) between them define
the mechanism of transitions. An MEP represents the path
that lies lowermost on the energy surface, and a maximum
along the MEP corresponds to a saddle point (SP) which
gives the energy barrier. MEPs contain valuable information
as they recover structural and energetic transformations during
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transitions between stable states in LCs. Information about
MEPs can help design optimal switching scenarios in LC
cells, which is very important for optical devices. We apply
the geodesic nudged elastic band (GNEB) method [26] to
calculate MEPs of transitions between stable states in ChLCs.
We study how external electric and magnetic fields as well
as boundary conditions affect energy barriers. Analysis of the
energy barriers is needed for the quantitative assessment of
the effect of thermally activated transitions within the rate
theory [27]. In particular, we show that thermal activation
needs to be taken into account when assessing the stability of
states in ChLCs with respect to an applied field, contributing
to the temperature dependence of the transition field. Based on
the Oseen-Frank model, we also develop a reduced description
of the ChLCs providing a two-dimensional representation of
the energy surface of ChLCs, where the minima, SPs, and
MEPs can be visualized, giving an insight into the transition
mechanism and effect of the applied field on the transition path.

This article is organized as follows. In Sec. II a multi-
dimensional energy surface of a ChLC in external electric
and magnetic fields is introduced as a function of spherical
coordinates defining the director orientation. A reduced, two-
dimensional energy surface as a function of the first Fourier
components of the spherical coordinates, presented in the same
section, provides an easy way to visualize the Fréedericksz
transition. An overview of the GNEB method for calculating
MEPs on the multidimensional energy surface of ChLCs is
given in Sec. III. In Sec. IV the GNEB method is applied to a
transition between P and D states of ChLCs, and the effect of
a thermal activation is estimated.

II. ENERGY SURFACE OF A CHOLESTERIC
LIQUID CRYSTAL

A. Oseen-Frank model

A flat liquid crystal cell of thickness L is considered. The
Z axis of the reference frame is chosen to be perpendicular
to the cell plane. The system is assumed to be homogeneous
in the XY plane so that the director is a function of the z

coordinate only, n(r) = n(z). The energy per unit area of the
system is given by a sum of three terms:

Ftot = Fe + Ff + Fsf, (1)

where each term is a functional of spherical coordinates θ (z)
and φ(z) defining orientation of the director n(z). The first term
in Eq. (1) is associated with distortions of ChLCs and can be
written as [30]

Fe = 1

2

∫ L

0
[A(θ )(θ ′)2 + B(θ )(φ′)2 − 2C(θ )φ′] dz. (2)

Here the prime denotes a derivative with respect to z, and
functions A(θ ), B(θ ), C(θ ) are defined as

A(θ ) = K11 sin2 θ + K33 cos2 θ, (3)

B(θ ) = sin2 θ (K22 sin2 θ + K33 cos2 θ ), (4)

C(θ ) = q0K22 sin2 θ, (5)

where Kii are Frank modules (i = 1,2,3) and 2π/q0 is the
helix pitch.

The second term in Eq. (1) represents the contribution from
the external field [30]:

Ff =
⎧⎨
⎩

− 1
2

∫ L

0 χaμ0H
2 cos2 θ dz, for the H field,

− 1
2ε0U

2
( ∫ L

0 E(θ ) dz
)−1

, for the E field.
(6)

Here H is the magnitude of external magnetic field, χa is the
anisotropy of magnetic susceptibility defined as a difference
between its longitudinal and transverse components, U is the
voltage applied at the boundaries of the ChLC cell, and μ0 and
ε0 are the vacuum permeability and the vacuum permittivity,
respectively. The function E(θ ) is defined as follows:

E(θ ) = (ε⊥ + εa cos2 θ )−1, (7)

where εa and ε⊥ are the anisotropy and transverse component
of dielectric permittivity, respectively.

The third term in Eq. (1) is the surface energy per unit area.
For small deviations of a director from an easy axis in plane of
the cell, the surface energy can be written as a quadratic form
of degrees of freedom:

Fsf = 1

2

∑
s

[
Ws

θ

(
θ − θs

0

)2 + Ws
φ

(
φ − φs

0

)2
]
. (8)

Index s can take two values, l for the lower boundary of the
cell and u for the upper boundary. Ws

θ > 0 and Ws
φ > 0 are the

anchoring coefficients and the θs
0 and φs

0 are angles defining the
easy directions for the director at the boundaries. Equation (8)
is an analogue of the Rapini-Papoular anchoring potential [28]
describing anchoring with the cell boundaries and expressed as
a function of the angles θ , φ [29,30]. If Ws

θ ,Ws
φ � Fe + Ff , the

director is fixed at the boundaries. This case corresponds to the
rigid boundary conditions; otherwise, the director may deviate
from the easy directions at the boundaries (soft boundary
conditions).

FIG. 1. Stable states of a ChLC confined in a planar cell. (a)
Planar (P) state, when the director is perpendicular to the helix axis
(θ = π/2, φ = q0z). (b) Distorted (D) state, when the director has
nonzero projections on the helix axis [θ = π/2 + δθ (z), φ = q0z +
δφ(z)]. δθ (z), δφ(z) are found from a direct minimization of the total
energy of the ChLC [see Eq. (1)]. External electric (or magnetic) field
is along the z axis.
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FIG. 2. Energy of the ChLC as a function of applied voltage (a) and magnetic field (b). Curves P and D correspond to planar and distorted
states, respectively. Metastable states are shown with dashed curves.

B. Multidimensional energy surface

The energy surface of the ChLC can be introduced by
applying the coarse-grained approximation to the system. The
ChLC is divided into N layers lying in the XY plane, and in
each layer the director is assumed to be constant. Configuration
of the system is then described by the set of spherical
coordinates θi and φi defining the orientation of the director ni

in each element of the ChLC, � ≡ (θ1,φ1,θ2,φ2, . . . ,θN ,φN ).
The total energy as a function of 2N spherical coordinates,
Ftot = Ftot(�), can be obtained by applying Simpson’s
approximation to the integrals in Eqs. (2) and (6), where spatial
derivatives are approximated using forward finite differences:
ψ ′

i ≈ (ψi+1 − ψi)/	z,ψ ≡ θ,φ, and 	z = L/(N − 1).
Function Ftot(�) defines a 2N -dimensional energy surface
where minima correspond to stable configurations. A P
state with the director in plane parallel to the cell surface
and a distorted (D) state when it has nonzero out-of-plane
projection are such stable configurations (Fig. 1). Depending
on the parameters of ChLCs, energy minima associated
with P and D states can coexist [30]. This is illustrated by
Fig. 2, where the energy of P and D states as a function
of magnetic field and applied voltage is shown for a ChLC
characterized by the following set of parameters: K11 = 4.2
pN, K22 = 2.3 pN, K33 = 5.3 pN, Wl

θ = 2500 nJ/m2,
Wu

θ = 500 nJ/m2; Wl
φ = 250 nJ/m2, Wu

φ = 100 nJ/m2;
L = 60 μm, q0 = 0.5 rad/μm; ε⊥ = 7.2, εa = 9.0;
θ l

0 = θu
0 = π

2 , φl
0 = 0, φu

0 = 3, for a system in an electric field,
and K11 = 100 fN, K22 = 50 fN, K33 = 200 fN; L = 2 μm,
q0 = 1.57 rad/μm; χa = 4π × 10−7; θ l

0 = θu
0 = π

2 , φl
0 = 0,

φu
0 = π , for a system in a magnetic field with rigid boundary

conditions. The discontinuous Fréedericksz transition is
expected in ChLCs with this set of parameters [30].

At the zero voltage [see Fig. 2(a)], only one stable
state exists in the system which corresponds to a planar
configuration of the director. The D configuration emerges
at U = U ∗∗ = 985 mV as a metastable state. The energy of D
state decreases faster with the voltage as compared to that of
P state, and at U = Uc = 987 mV the energy levels of both
states coincide. If the voltage further increases, the D state

becomes energetically favorable. At U = U ∗ = 990 mV, the P
state becomes unstable. A ChLC in the external magnetic field
shows similar behavior and becomes bistable in the magnetic
field range H ∗∗ < H < H ∗, where H ∗∗ = 632.7 kA/m, Hc =
641.4 kA/m, H ∗ = 652.6 kA/m [see Fig. 2(b)].

The ChLC initially prepared in the P state can be transferred
to the D state by increasing the applied voltage (magnetic
field). If the effect of thermal fluctuations is not taken into ac-
count, the transition from P to D occurs at U = U ∗ (H = H ∗)
when the energy barrier separating the states vanishes. An
inverse transition from D to P occurs at U = U ∗∗ (H = H ∗∗).
However, temperature renormalizes transition fields: thermal
fluctuations can induce spontaneous transitions even when the
barrier is not zero. Specifically, a transition field at a given
temperature is the magnitude of the external field at which
the time scale of thermally activated transitions from P (D)
state to D (P) state, τ , becomes equal to the time scale of the
experiment, τexp. The thermal lifetime τ can be estimated using
the harmonic rate theory [27], which predicts the Arrhenius
dependence on the temperature:

τ = τ0e
	E/kBT , (9)

where the preexponential factor τ0 is expected to weakly
depend on the field, and the energy barrier 	E given by the
energy difference between the local energy minimum and the
first order saddle point (SP) is strongly field-dependent (see
below). Equation (9) is an implicit definition of the transition
fields in ChLCs at a finite temperature.

Study of the effect of thermal fluctuations on the transitions
in ChLCs essentially becomes a problem of identifying the SPs
on the energy surface. The first order SP is a stationary point
on the energy surface, which is a maximum with respect to one
and only one degree of freedom, but a minimum with respect
to the other degrees of freedom. One approach for locating SPs
is based on finding minimum energy paths (MEPs) between
given stable states, because the maximum on the MEP is a
SP on the energy surface. This approach is used here to study
activation energy barriers for the transitions in ChLCs.
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FIG. 3. Energy surface of the ChLC in a magnetic field as a function of the first nonzero Fourier components, cθ and cφ , of the spherical
coordinates θ (z) and φ(z) defining orientation of the director. (a) H < H ∗∗. (b) H ∗∗ < H < H ∗. The MEPs are shown with a white curve, and
SPs are indicated with crosses.

Before we proceed with the analysis of MEPs and SPs on
the multidimensional energy surface of a ChLC, we present
a reduced, two-dimensional model of a ChLC with rigid
boundary conditions in a magnetic field, where stable states,
SPs, and MEPs can be visualized easily, giving a valuable
insight into the mechanism of transitions in ChLCs.

C. Two-dimensional energy surface

Fourier components of the spherical coordinates θ (z),
φ(z) can be used to define the energy surface of a ChLC.
The dimensionality of the energy surface is then defined
by the number of Fourier components taken into account
in the analysis. In the simplest approximation, when only one
Fourier harmonic is taken for θ (z) and for φ(z), the energy
surface is two-dimensional and, therefore, can be visualized.
In this case the following functional form for the spherical
coordinates may be used:

θ (z) = π

2
+ cθ cos

π (z − L/2)

L
, (10)

φ(z) = q0z + cφ sin
2π (z − L/2)

L
. (11)

A contour graph of the energy surface can be constructed
by substituting θ (z) and φ(z) from Eqs. (10) and (11) into the
expression for the energy of the system, Eq. (1). The resulting
energy surface is obtained for two values of the magnetic field,
H = 620.7 kA/m and H = 642.2 kA/m. The structure of the
energy surface depends on the magnitude of the external field.
When H < H ∗∗ [Fig. 3(a)], there is only one minimum on the
energy surface (cθ = cφ = 0), which corresponds to P state.
At larger fields (H ∗∗ < H < H ∗), two equivalent stable D
states appear in the system, while the P state is also present
[see Fig. 3(b)]. MEPs between the states pass through the SPs,
which define the energy barriers.

Although the two-dimensional model of ChLCs reveals the
main characteristics of transitions between the stable states, the
quantitative analysis of energy barriers requires calculations of
stable states, MEPs, and SPs for the full, multidimensional

model. Locating the SPs on the multidimensional energy
surfaces is significantly more difficult than finding the minima.
The difficulty arises from the need to minimize the energy
with respect to all but one degree of freedom for which a
maximization should be carried out. The problem is that it is
not known a priori which degree of freedom should be treated
differently. In the next section we briefly describe an efficient
approach based on the calculation of MEPs.

III. MINIMUM ENERGY PATHS

An MEP between two minima is the path in the configura-
tion space which lies lowermost on the energy surface. In the
case of Fréedericksz transition in ChLCs, following an MEP
means rotating the director of each element of the ChLC in
such a way that the energy is minimal with respect to all degrees
of freedom perpendicular to the path. A maximum along an
MEP corresponds to a first order saddle point on the energy
surface, and the highest maximum gives an estimate of the
activation energy barrier. The MEP not only gives the position
of an SP, but also provides information about the mechanism
of the transition, as it represents the path of highest statistical
weight.

Special attention needs to be taken when calculating MEPs
for the transitions in ChLCs, because of the curvature of
the configuration space arising from the constraint on the
length of the director, |ni | = 1. Namely, the configuration
space of a ChLC divided into N elements is a 2N -dimensional
Riemannian manifold, R, corresponding to the direct product
of N two-dimensional spheres:

R =
N∏

i=1

S2
i , (12)

where S2
i is a two-dimensional unit sphere associated with the

director of the ith element. A similar problem arises when
studying transitions in magnetic systems, where a constraint
is usually applied on the length of magnetic moments.

Recently, the geodesic nudged elastic band (GNEB) method
has been formulated to find MEPs in curved manifolds such as
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R and applied to transitions in magnetic systems [26]. Similar
to the original nudged elastic band (NEB) method [31] widely
used to study thermally induced atomic rearrangements, the
GNEB method involves taking some initial guess of a path
between the two minima and systematically bringing that to
the nearest MEP. A path is represented by a discrete chain
of states, or “images,” of the system, where the first and the
last image are placed at the energy minima corresponding
to the stable configurations. In order to distribute the images
evenly along the path, springs are introduced between adjacent
images. At each image, a local tangent to the path needs to be
estimated, and the force guiding the images towards the nearest
MEP is defined as the sum of the transverse component of the
negative energy gradient plus the component of the spring
force along the tangent. The position of intermediate images
is then adjusted so as to zero the GNEB force.

An important aspect of the method is that both the GNEB
force and the path tangent are defined in the local tangent space
of the R manifold, which is needed to satisfy the constraint
on the length of the director and to properly decouple the
perpendicular component of the energy gradient from the
spring force [26].

Application of the original NEB method [31] to transitions
in LCs can still give a good estimate of the MEP. For example,
it was used to calculate free energy pathways of a multistable
liquid crystal device in Ref. [32] where, however, only in-
plane director rotations were considered. But in general, the
NEB method can suffer from convergence problems when
applied to systems with constraints [26], in particular LCs
with noncoplanar director orientation.

A more detailed description of the GNEB method applied
to ChLCs in a planar cell is as follows. A chain of Q images is
constructed, [�1,�2, . . . ,�Q], where the endpoints are fixed
and given by the local minima corresponding to P and D
configurations in the ChLC, while the Q − 2 intermediate
images �ν = (θν

1 ,φν
1 , . . . ,θν

N ,φν
N ), ν = 2, . . . ,Q − 1, give a

discrete representation of a path. The position of the interme-
diate images is adjusted in order to converge on the MEP. This
is accomplished by systematically displacing the images in the
direction defined by the GNEB force acting on them so as to
zero this force. The GNEB forces Fν

GNEB guiding the images
towards the MEP are defined as follows:

Fν
GNEB = (−∇E(�ν)|⊥ + Fν

s |‖)T . (13)

Here the subscript T denotes projection of a vector on the
local tangent space of R. The perpendicular component of
the energy gradient is obtained by subtracting out the parallel
component

∇E(�ν)|⊥ = ∇E(�ν) − (∇E(�ν) · τ̂ ν
T )τ̂ ν

T , (14)

where the unit tangent to the path, τ̂ ν
T , lies in the tangent space,

which is indicated by the subscript T . The parallel component
of the spring force is evaluated as

Fν
s |‖ = κ[L(�ν+1,�ν) − L(�ν,�ν−1)]τ̂ ν

T . (15)

Here L(�ν+1,�ν) and L(�ν,�ν−1) are geodesic distances
between images ν + 1, ν and ν, ν − 1, respectively, and κ is a
spring constant. Since the spring force is decoupled from the
perpendicular component of the energy gradient, the value of
the spring constant is not critical and, in fact, can be varied over
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FIG. 4. Energy per unit area along the MEP at U = Uc =
986.84 mV. The filled circles correspond to the images of the system
used in the GNEB calculation. The reaction coordinate is defined as
the displacement along the path normalized by its total length.

several orders of magnitude without affecting the calculation
results [26].

Some minimization method needs to be used in connection
with the GNEB method so as to zero the forces Fν

GNEB . We
used the velocity projection optimization algorithm based on
a fictitious equation of motion of a point mass on a curved
manifoldRwhere the velocity is damped by including only the
component in the direction of the force [26]. Once convergence
has been reached, the images lie on the MEP where the energy
gradient ∇E(�ν)|T can only have a component in the direction
of the path. The activation energy and the SP configuration can
then be derived from the maximum along the MEP.

IV. RESULTS

The GNEB method was applied to ChLCs in an external
electric field, for which parameter values listed in Sec. II B
were used. For each value of the applied voltage, both P
and D states were found by minimizing the total energy
of the system, and the MEP between them was identified.
Although the system is homogeneous in the XY plane, this
is a challenging calculation involving noncoplanar rotation
of the director. Figure 4 shows the energy change along the
MEP for the transition between P and D states in the ChLC,
where the magnitude of applied voltage was chosen to be
U = Uc = 986.84 mV, at which the energy levels of P and D
states coincide. The maximum along the MEP gives the energy
barrier for the transition. The position of the maximum along
the MEP (Fig. 4) was found using Climbing Image GNEB [26].

While the images at the ends of the MEP correspond to
stable configurations in the ChLC (P and D states), interme-
diate images provide information about changes in the system
during the transition between the states. Figure 5 demonstrates
intermediate configurations of the ChLC during the transition
from the P to D state for U = Uc. Each configuration is shown
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as a profile of spherical coordinates, θ (z) [Fig. 5(a)] and φ(z)
[Fig. 5(b)]. The straight line in Fig. 5(a) θ = π/2 is the P
state, and the curve with the largest deviation from that line
is the D state. Curve 3 corresponds to the configuration of
the ChLC at the saddle point. The minimum of θ (z) does not
change its position on the z axis along the MEP. For the rigid
boundary conditions, this minimum is in the middle of the cell,
but it is shifted towards a boundary with a smaller anchoring
coefficient for the soft boundary conditions. For each image
along the MEP, the azimuthal angle φ(z) demonstrates small
deviation from the straight line φ(z) = q0z. Figure 5(b) shows
the magnitude of this deviation, 	φ(z), as a function of z for
several images along the MEP between P and D states. 	φ(z)
is antisymmetric with respect to the center of the cell for the
rigid boundary conditions. However, the symmetry is broken
in the case of soft boundary conditions.

The chirality of the system is defined by the parameter q0.
If q0 > 0, then φ(z) changes clockwise. If q0 < 0, the chirality
becomes anticlockwise. The inset in Fig. 5(b) demonstrates
the profile 	φ(z) for the opposite twist of the ChLC director,
i.e., after replacement q0 −→ −q0.

Changes in external electric field lead to the changes in
the shape of the energy surface and, therefore, MEPs between
states as well as the corresponding energy barriers. Figure 6(a)
shows the MEPs for five various magnitudes of applied
voltage. At U = U ∗∗ (curve 1) the energy along the MEP
is completely flat at one of the ends of the path, which is a
signature of the emergence of D state. The D state energy
minimum becomes more pronounced as the voltage increases,
while the P state minimum becomes shallower (curve 2).
Therefore, there is a threshold voltage, U = Uc, at which the
energy levels of both configurations coincide (see Fig. 4). If
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FIG. 6. (a) MEPs for the transition between P and D states at different applied voltages. The reaction coordinate is defined as the displacement
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the voltage is further increased, the P configuration becomes
a metastable state (curves 3, 4, and 5). Although the P state is
not a ground state of the system in the voltage range between
Uc and U ∗, there is still a finite barrier separating this state
from the D state. If the system is initially prepared in the
P state and the effect of temperature is not included, this
barrier prevents the system from passing to the D state even if
voltage is close to U ∗ and transition occurs only if the barrier
vanishes, i.e., the voltage reaches the value of U ∗. However,
thermal fluctuations can be sufficient to induce over-the-barrier
transitions on the laboratory time scale, which renormalizes the
transition voltage.

The barrier for the P → D transition monotonically de-
creases to zero with the applied voltage, while the barrier for
the inverse transition gets larger as the voltage is increased.
Two curves intersect at U = Uc [Fig. 6(b)].

A variation of anchoring coefficients also changes the
energy surface. The dependence of MEP on the anchoring
coefficient Wu

φ while other anchoring coefficients are kept
fixed is shown in Fig. 7(a). The energy of the D state increases
monotonously compared to that of the P state as the anchoring
coefficient at the upper boundary gets larger. Thus, variation
of the anchoring coefficient has a similar effect as variation of
voltage: there is a threshold value of Wu

φ at which the energy
levels of both states are the same. Further increase in Wu

φ

makes the D state metastable first (curve 2) and then unstable
(curve 3). Barriers for the transition between P and D states
also strongly depend on the anchoring coefficient.

Similar behavior takes place in an external magnetic
field. Thus, the voltage, the magnetic field, and anchoring
coefficients can be used for tuning the energy barrier separating
two states.

These results can now be used to estimate how char-
acteristics of the Fréedericksz transition change with tem-
perature. Usually such influence is explained in terms of
temperature-dependent adjustment of the Frank modules or

other parameters of a liquid crystal. Indeed, the variation of
Frank modules modifies the energy surface and, therefore, may
change the transition field. However, quantitative assessment
of thermally activated transitions between states in liquid
crystal can explain the effective renormalization of parameters
of the Fréedericksz transition.

In particular, the temperature dependence of the transition
voltage U ∗ can be explained as follows. The system will remain
in the P state until the applied voltage has lowered the energy
barrier sufficiently and, thereby, decreased the lifetime of the
P state sufficiently for the transition to the D state to occur on
the laboratory time scale. According to Eq. (9), the lifetime
is mostly defined by the energy barrier, 	E = 	E(U ), which
is strongly voltage dependent [see Fig. 6(a)]. Although the
determination of the absolute value of the energy barrier
requires an estimate of the nucleation area for the transition,
the effect of thermal fluctuations on characteristics of the
Fréedericksz transition can be analyzed based on the energy
per unit area only. Assuming a constant preexponential factor,
the change in U ∗ can be predicted from the the following
equation, which can be obtained from the Arrhenius formula
[see Eq. (9)]:

	E(U ∗
1 )

	E(U ∗
2 )

= T1

T2
, (16)

an implicit expression showing how U ∗ changes with temper-
ature. Equation (16) predicts a drop of 0.5 mV for a U ∗ as the
temperature is raised from 300 to 360 K [see Fig. 6(b)].

In summary, we have introduced the multidimensional
energy surface of ChLCs in a planar cell as a function of
spherical coordinates which determine the orientation of direc-
tor profile across the cell. In a certain range of external electric
(magnetic) field energy the surface contains two local minima
corresponding to P and D states of ChLCs. The transition
between these states is the discontinuous Fréedericksz effect.
MEPs between P and D phases give the energy barrier which
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needs to be overcome for such a transition. The height of
the barrier and the shape of the energy surface strongly
depend on the applied field and boundary conditions. In
particular, the energy barrier can be lowered so that thermal
fluctuations become sufficient to stimulate the Fréedericksz
transition. It gives an additional contribution to tempera-
ture dependence of the characteristics of the Fréedericksz
transition.
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