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Interactions of carbon nanotubes in a nematic liquid crystal. I. Theory
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Elongated and rodlike objects such as carbon nanotubes (CNTs) are studied when immersed in a nematic liquid
crystal. Their interaction energy in a uniform nematic field depends on their orientation relative to the director n,
and its minimum determines if they stabilize parallel or perpendicular to n. Using free energy calculations, we
deduce the orientation at equilibrium that they choose in a uniform director field n or when they are in contact
with a splay-bend disclination line. Naturally, the CNT orientations also depend on the anchoring conditions at
their surface. Essentially, three types of anchorings are considered, planar, homeotropic, and Janus anchorings
in the cases of weak and strong anchoring strengths. In the presence of a splay-bend disclination line, they are
attracted toward it and ultimately, they get out of the colloidal dispersion to stick on it. Their orientation relative
to the line is found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a
sufficient number of particles are deposited on a disclination line, we finally obtain a micro- or nanonecklace in
the shape of a thin thread or of a bottle brush, according to the CNTs being oriented parallel or perpendicular to
the disclination line, respectively. The system exhibits a rich versatility even if up to now the weak anchorings
appear to be difficult to control. As discussed in the associated experimental paper, these necklaces could be a
step toward interesting applications for realizing nanowires self-connected in three dimensions to predesignated
electrodes. This method could provide a way to increase the number of transistors that may be connected together
on a small volume.
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I. INTRODUCTION

In an outstanding work, Poulin et al. evidenced a new
interaction between water droplets dispersed in a nematic
liquid crystal (LC) [1]. The interaction essentially arises from
the distortion of the nematic director that the anchoring at the
water-LC interface produces in the nematic bulk around the
droplets [2]. Though quite simple, the system has, generally,
the advantage to exhibit a good reproducibility, the droplets
being highly monodisperse with well-defined anchoring condi-
tions. The anchoring is consequently uniform on the droplets,
so that they bear a +1 topological charge each, which implies a
-1 point defect in their vicinity to preserve the zero charge of the
whole system [3]. The observation easily extends to systems
of isotropic liquid droplets suspended in a nematic LC, as
silicone oil droplets [4], or glycerol droplets [5]. Interestingly,
these systems allow one to build one-dimensional (1D) and
even two-dimensional (2D) sets of spherical droplets that are
stabilized by the intercalation of point defects in between them.
Similar experiments have also been performed with silica
microspheres [6]. They again led to the observation of 1D [7],
and 2D [8] sets assembled by means of topological defects.
The nematic interaction of particles was further extended to
more complex fields than merely uniform. The interaction
of particles with disclination lines was thus considered [9].
Surprisingly, the interaction is not radial around a disclination
line, so that the trajectory of a particle that is attracted toward
a disclination line is not rectilinear. After a while, the particle
gets trapped on the disclination. The process is indeed iterative,
and more and more particles may get trapped too on the line,
and we actually end up with a necklace of micro- or nanoparti-
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cles [10]. The disclination line being prepared in order to join
opposite electrodes, an electropolymerization technique may
be used then to glue the beads to their neighbors. The wire thus
automatically goes from one electrode to the associated one,
and it conducts enough electricity to allow the synthesis of
some polymer between the particles. Finally, the disclination
line that worked as a template for guiding the synthesis of the
wire may finally be removed. This can be simply achieved
on heating the liquid crystal up to the isotropic phase [11].
The wire that is realized in this manner takes the very place
of the initial disclination line, and somehow materializes it.
Interestingly, the process may be extended to the simultaneous
synthesis of a lot of microwires in the three-dimensional space,
each one joining predesignated electrodes. Applications for
such a possibility could be developed in the near future,
allowing a rapid growth of the number of transistors that may
be connected together on a small volume. In this manner,
Moore’s law could be continued even if the downsizing of
the circuits that is at its origin comes now to limitations
that belong to mesoscopic physics, as tunneling conduction
through insulators, or conversely, Coulomb blockade effects
that may prevent conduction at nanometric sizes [12].

Symmetry reasons clearly indicate that spherical particles
are not well adapted for building 1D wires. Elongated particles,
such as, e.g., carbon nanotubes (CNTs), should be more
convenient. Moreover, these particles are known for their
strength and toughness [13]. They are particularly interesting
for producing wires because they generally conduct electricity,
and also because they may exhibit extremely large aspect
ratios. They should therefore provide the appropriate pieces
for building thinner wires, that would offer a reduced drag
in the LC, and being more resistant, they should better
resist residual flows. Fortunately, experiments show that the
CNTs may be dispersed rather well in nematic LCs [14,15],
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leading to paranematic phases [16,17]. The use of a surfactant
that spreads over the CNT surface may, moreover, help the
dispersion of the CNTs in the nematic phase. The surfactant,
according to its nature and quantity, changes the wetting
properties of the CNTs and may thus favor their dispersion
in the nematic bulk. More subtle effects may arise too, as for
instance, differential wetting properties with respect to both
parts of the liquid crystal molecules, which at the molecular
scale arise from the contrast between the London interactions
that the CNTs exert on the aromatic and the alkyl parts
of the liquid crystal molecule. The surfactant thus governs
the differential, i.e., anisotropic, wetting properties of the
nematic on the CNT surface, and consequently defines the
LC anchoring on the CNTs [18].

As we theoretically show in this paper, the anchoring
properties on the CNT surface determine the interaction of
the CNT with the nematic director n, and consequently they
determine its orientation at equilibrium in the n field. In
Sec. II, are discussed the cases of the planar, homeotropic,
and Janus anchorings, the Janus anchoring being characterized
with homeotropic and planar conditions on the opposite sides
of each CNT. We consider the strong and weak anchoring
cases, where the direction of n is fixed at the CNT surface and
where conversely the direction of n is free, respectively. In this
latter case, n adjusts at the CNT surface in order not to change
the initial distortion, nor consequently, the elastic energy of
the n field. The discussion is based on an estimate of the free
energy of the whole system that includes the anchoring energy
and the elastic energy variations due to the introduction of a
CNT in the nematic bulk. Rough estimates are indeed sufficient
to conclude in almost each situation. In Sec. III, we similarly
discuss the interaction of a CNT with a splay-bend disclination
line, and more precisely, we analyze the best way, orientation,
and position, that the CNT will adopt when settling on it. The
three cases of the planar, homeotropic, and Janus anchorings
are again considered. Finally, we conclude in Sec. IV on
discussing the respective advantages of the CNTs, and their
best anchoring treatments, for realizing nanowires that auto-
matically connect in the three-dimensional (3D) space to pre-
designed electrodes. In the following paper [19], experimental
observations are reported to provide a basis for comparison
with these theoretical results, and to complete the discussion
on the interactions of CNTs with the director field n and with
the disclination lines of the nematic LC that is presented here.

II. CNT ORIENTATION IN A NEMATIC LC

The CNTs, when dispersed in the nematic LC phase,
interact with the LC molecules and they finally choose their
preferred orientation referred to the direction of the nematic
director n. In this paper, we study three different anchoring
conditions of the LC molecules onto the CNTs—planar,
homeotropic, and Janus anchorings (namely, half planar and
half homeotropic)—and we examine the manner that the CNTs
spontaneously orient in a nematic LC.

A. Planar anchoring

Density functional calculations show that the binding
energy of a LC molecule onto a CNT wall is about 2 eV

FIG. 1. Schematic representation of the n distortion around a
CNT aligned parallel to the director n in a uniformly oriented nematic
LC. The oval red dots depict the two boojums on each pole of the
CNT.

essentially due to London interactions between corresponding
benzene rings. This energy is much larger than kT ∼ 1

40 eV,
T being the room temperature [20]. This indicates that nude
CNTs may be directly dispersed in LCs, and secondly, that
the LC molecules prefer to stick tangentially to the CNTs,
which corresponds to planar anchoring. We may, moreover,
anticipate that the London interaction of multiwall CNTs
with the benzene ring body of the LC molecules should be
larger than the interaction of single-wall CNTs, because they
naturally contain a larger density of benzene rings. They should
therefore exhibit stronger planar anchoring properties too.

Among all the possible orientations that satisfy the condi-
tion of the nematic director being parallel to the CNT surface,
the one that distorts the director field as little as possible and,
therefore, that minimizes the elastic energy cost, is clearly
realized when both the CNT and the director n are parallel
to each other, irrespective of the strong or weak anchoring
strength on the CNT. We also notice that a uniform planar
anchoring on the CNT implies that it is equivalent to a +1
topological defect. Therefore, when the CNT is introduced
in a uniformly oriented nematic LC (i.e., of null topological
index), companion defects of total indices −1 are necessary
in the vicinity of the particle to conserve the sum of the
topological indices. Reminiscent to the case of spherical
particles dispersed in a nematic phase, two surface point
defects of strength − 1

2 , known as boojums [21], then appear
on both ends of the CNT (Fig. 1).

As the large CNTs may be observed under a polarizing
microscope, we easily verify that the bare CNTs orient parallel
to the director as is consistent with the above discussion
(Sec. IV A). This feature is particularly striking in the vicinity
of a disclination line perpendicular to the sample. Then the
CNTs orient parallel to the director as compasses follow the
magnetic field in the vicinity of magnets [10,11].

B. Homeotropic anchoring

In order that the CNTs anchor homeotropically the nematic
director n on their surface, they have to be covered with
chemical orbitals that resemble the tips of liquid crystal
molecules [22]. Namely, they have to be coated with aliphatic
chains. The LC molecules will then prefer to stand everywhere
perpendicularly to the CNT surface. As in the planar case, the
particle is topologically equivalent to a +1 point defect, which
means that, when the CNT is immersed in a uniformly oriented
sample, a companion defect of strength −1 must be created
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FIG. 2. Cross sections of a CNT with homeotropic anchoring
conditions, and oriented parallel to n. The whole director field is
symmetric around the horizontal axis. Being topologically equivalent
to a +1 defect, the CNT is accompanied (a) with a −1 point defect
at a distance R from the tip, (b) that may open up into a Saturn ring
of − 1

2 disclination line shown as red dots in the cross section, and
represented close to the CNT center, this symmetric configuration
being probably the stable one.

in the vicinity in order to conserve the total topological index
equal to zero [1].

Before beginning calculations, we may make a few general
remarks. For the sake of reproducibility, the CNTs of identical
anchoring treatments orient preferentially at the same, definite,
angle from the nematic director n. We may also anticipate
that symmetric configurations are characterized by extreme
coupling energies. More precisely, the symmetry should not
only concern the CNT orientation referred to the general ori-
entation of n, namely, the parallel or perpendicular directions.
It should also include the whole director field around the
CNT. Generally, but this is not an absolute law, the energy
varies monotonously as a function of the CNT rotation angle
from one of the symmetric orientations to the next one. Then,
one of the symmetric orientations corresponds to the lowest
energy, and determines the stable orientation. In this case, the
preferred CNT orientation is parallel (Fig. 2) or perpendicular
(Fig. 3) to n. Let us first examine the parallel case. The
coupling energy between the CNT and the LC molecules
may be calculated from the addition of the elastic energy of
the distortion that is produced around the CNT, and of the
anchoring energy of the LC molecules on the CNT surface.
In order to simplify the evaluation of the elastic energies, we

FIG. 3. Director field around a CNT with homeotropic anchoring
conditions, introduced in the nematic perpendicularly to n. (a) Cross
section perpendicular to the CNT, and (b) in the plane of both the
CNT axis and of n.

suppose the Frank elastic constants to be equal. The n field then
satisfies the Laplace equation �n = 0, under the constraint
n2 = 1. In general, the problem is difficult to solve and needs
numerical calculations. However, if we restrict our interest
to places far enough from the CNT so the director n is only
slightly deviated from its general direction z, the perpendicular
components of n are small, and they independently obey the
scalar Laplace equation, i.e., they are harmonic functions. As,
moreover, we focus on the n solutions that exhibit cylindrical
symmetry, the use of cylindrical coordinates is recommended.
Then, the perpendicular components of n just reduce to the
radial component nr , which, satisfying the Laplace equation
at large distances, is equivalent to an electric potential. For
solving the problem, we may thus simply use an electrostatic
analogy [2,11]. In the case of infinitely long CNTs, for
instance, this allows us to deduce that the distortion extends
over an infinite distance perpendicularly to the CNT axis.
However, real CNTs have a finite length L. The Laplace
equation then shows that the second derivatives in z (along the
CNT axis) and in r (along a radial axis) should be on the same
order of magnitude [23]. The distortion starting from the CNT
center should therefore extend over about the same distance L/2
radially as along the CNT axis. This remark is consistent with
L being the only relevant distance of the problem. The volume
of the distortion is therefore roughly cylindrical, ∼π

4 L3.
We may now estimate the interaction energy of a CNT

colloid with strong homeotropic anchoring when immersed in
a uniform n field. The anchoring being strong, the director
n is forced to be perpendicular everywhere onto the CNT
surface. This implies a distortion around the CNT colloid, and
therefore an elastic energy. Conversely, as the director n over
the whole CNT surface is along the preferred direction, the
anchoring energy is null. The interaction energy of the CNT
with the nematic LC then reduces to the elastic energy of the
distortion. In the case where the CNT is oriented parallel to n
(Fig. 2), we may thus estimate its interaction energy to be

W
para
str−h ∼ 1

2
K

(
π

L

)2
π

4
L3 ∼

(
π

2

)3

KL. (1)

In this expression, we have neglected the energy of the
distortion around the CNT tips, because they only extend
over a distance equivalent to the CNT radius R, and that R
is much smaller than L. We have also evaluated the modulus
of the distortion to be ∇θ ∼ π

L
, since the whole distortion

roughly corresponds to a π/2 rotation over a distance L/2.
Let us recall that point defects do not produce any singularity
in the elastic energy expression contrarily to the equivalent
one-dimension defects, namely the disclination lines [2]. Their
energy, moreover, stays small here so that we may neglect
it. Clearly, this evaluation is rather crude, but it leads to
W

para
str−h ∼ 3.87KL, which is pretty close to the more detailed

calculation proposed in the Appendix which yields W
para
str−h ∼

3.66KL [Eq. (A9)].
In the case of thin CNTs, the point defects may evolve

towards − 1
2 disclination loops of radius 2R as observed on

spherical particles of small radius. The reason for these Saturn
rings is that the line tension of disclinations is on the order
of K, and that their energy, 4πKR, becomes smaller than the
energy of a point defect for R < 0.2 μm [3]. When the point
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defect changes into a Saturn ring, the director field does not
significantly change except in a volume between the CNT and
the ring, on the order of 4π

3 R3. With R much smaller than
L, the corresponding distortion energy may be neglected in
the expression of the coupling energy [Eq. (1)]. We may also
wonder if the ring further slides towards the CNT center and
stabilizes into the symmetry plane perpendicular to the CNT
axis [Fig. 2(b)]. The configuration is then formally equivalent
to 2 CNTs of L/2 length in head to tail position. As Eq. (1)
or (A9) shows, this configuration exhibits a coupling energy on
the same order of magnitude as the previous one with the ring
around the CNT tip. However, the distortion in the vicinity of
the disclination loop should be softer [Fig. 2(b)] than around
the hyperbolic point defect [Fig. 2(a)]. We may thus anticipate
that the configuration with the Saturn ring being located
symmetrically in the CNT center has a lower, and indeed
minimum, energy cost. However, this minimum of energy
should be confirmed by a specific numerical calculation.

We may similarly estimate the elastic energy of the distor-
tion produced by a CNT with strong homeotropic anchoring,
and immersed in the nematic LC perpendicularly to n. We
obtain

W
perp
str−h ∼ 1

2
K

(
π

L

)2
π

4
L3 × 2 ∼ 2

(
π

2

)3

KL. (2)

The distortion extends over a distance about L in the
three directions of space as in the previous case of a CNT
parallel to n. More precisely, the distortion is confined inside
a cylinder of radius L/2 and length L, centered approximately
on the topological point defect, at about a distance L/2 from
the CNT. Its volume is therefore ∼π

4 L3. As in the previous
case, the distortion roughly makes a π/2 rotation. However,
close to the CNT the distortion increases up to make a π

turn and, moreover, it occurs in both planes of Figs. 3(a)
and 3(b). This double rotation explains the factor 2 in Eq. (2).
We thus obtain W

perp
str−h ∼ 7.74KL. A more careful estimation

is proposed in the Appendix that yields W
perp
str−h ∼ 8.06KL

[Eq. (A11)], which indeed is rather close. Clearly, to obtain a
really better evaluation, numerical models should be used.
They would allow one to calculate the real advantage of
the parallel orientation over the perpendicular one, in the
strong anchoring limit. Nevertheless, in view of the estimates
proposed here, we may conclude that W

para
h−el < W

perp
h−el by about

a factor of 2. Both configurations being symmetric, the above
remark on the minimum coupling energy applies. We may
therefore conclude that the preferred orientation of the CNTs
under strong homeotropic conditions is indeed parallel to n.

Naturally, the anchoring strength is never infinitely strong.
For comparison, we may consider the opposite assumption,
where the anchoring is weak (but not infinitely weak). Then,
there is no extra distortion in the vicinity of the CNT and also
no need for any point defect. The coupling energy between
the CNT and the n field is just relevant to the anchoring
energy, that is nothing else than the anisotropic part of the
CNT surface energy in its LC environment. This energy
arises from the different orientations between the nematic
director n and the easy axis n0 on the CNT surface. To the
lowest order, the anchoring energy per surface unit may be
defined as an always positive or null quantity by the equation

Wanch = 1
2A[1 − (ns · n0)2], where ns is the director on the

CNT surface, and the anchoring coefficient A is an energy
per surface unit [2,24]. The coefficient A may therefore be
understood as an energy per unit length divided by a length,
where both quantities are characteristic of the nematic liquid
crystal. Their orders of magnitude are therefore that of the
Frank elastic constant K and of the nematic extrapolation
length λ, respectively. So, we may estimate A ∼ K /λ [2].
In general, the extrapolation length identifies with the only
available distance in the nematic phase, which is the molecular
length, or more exactly in the case of 5CB, the dimer length, l.
However, close to the substrates, the role of the solid interface
may complicate this simplified argument and change the value
of λ by orders of magnitude. For instance, the azimuthal
anchoring constant may be measured to be much below this
crude evaluation [25]. Nevertheless, such cases seem to be
exceptional. In our experiments, CNTs with R ∼ 100–150 nm
are dispersed in a 5CB nematic LC of dimer length ∼3 nm; we
may evaluate the ratio R

λ
to be on the order of 30–50 [19]. This

allows us to estimate the anchoring energy that is involved
when the anchoring conditions on the CNT are weak. The
anchoring on the CNT being unable to disturb the director
field, and to produce a distortion around the CNT, the elastic
energy vanishes, and the interaction energy between the CNT
and the nematic LC reduces to the anchoring energy. In the
cases where the CNT is oriented parallel or perpendicular to the
average direction of n, the anchoring energy, or equivalently,
the interaction energy between the CNT and the nematic LC
may thus be estimated to be, respectively,

W
para
w−h ∼ πARL ∼ πK

R

λ
L, (3)

and

W
perp
w−h ∼ 1

2
AπRL ∼ π

2
K

R

λ
L. (4)

In the last expression, we have taken into account that
n is already about homeotropic on half of the CNT sur-
face, and that therefore this part of the surface does not
contribute to the anchoring energy. We may then estimate
the ratios W

para
str−h / W

para
w−h ∼ π2

8
λ
R

and W
perp
str−h / W

perp
w−h ∼ π2

2
λ
R

.
They indicate that except for large extrapolation lengths and
small CNT radii, the elastic energies are much larger than the
anchoring ones, and that therefore we are generally in the case
of infinitely strong anchorings. Then, a simple comparison
between Eqs. (1) and (2) shows that the minimum energy
is obtained when the CNTs with homeotropic conditions
are oriented parallel to the average direction of n. In the
case of large extrapolation lengths and small CNT radii,
conversely, the anchoring is weak and the distortion vanishes.
The preferred orientation of the CNTs is then given on
comparing the anchoring energies (3) and (4). They show that
the CNTs will now prefer to orient perpendicular to the average
direction of n, i.e., perpendicular to the direction that they take
in the strong anchoring case.

In the general case, the anchoring strength is in an
intermediate range. Neither the elastic energy of the distortion
around the CNT, nor the anchoring energy, may be neglected.
The two elastic energies are in series, and they may be
identified on following the distortion of the director n in the
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FIG. 4. Cross sections of a Janus CNT and its director field in the
case where (a) the CNT axis is parallel to n, and (b) perpendicular
to n. The yellow (white) parts indicate the areas treated for a
homeotropic (planar) anchoring, respectively. The oval dots mark
surface disclination lines. The circular dot at a distance R from the
CNT tip is a − 1

2 point defect.

nematic cell. Starting from the CNT substrate, we see that the
director n first rotates from the easy axis n0 to ns in the nematic
layer in contact with the CNT surface where the anchoring
takes place. The director n then continuously rotates along the
distortion in the nematic bulk from ns toward the direction n∞
away from the CNT particle. The two corresponding energies
being of the elastic type, the total energy of the system W obeys
a classical theorem, and satisfies the simple equation

1/W = 1/Wanch + 1/Welast, (5)

where the distortion energy Welast is obtained under the
assumption n0 = ns, i.e., in the strong anchoring limit, and
conversely, the anchoring energy Wanch is calculated with the
opposite assumption, ns = n∞, i.e., in the weak anchoring
limit.

C. Janus anchoring

Janus CNTs are prepared [19] in such a way that they exhibit
homeotropic and planar anchoring conditions on opposite
sides as shown in Figs. 4(a) and 4(b). In this manner, the
CNTs may more easily adapt to a complex director field, so
that the elastic distortion and the anchoring energies should
be significantly reduced if compared to the previous and
simpler anchorings. However, these coupling energies are
more difficult to estimate.

In the case where the CNTs are oriented parallel to n, the
elastic and anchoring energies may be evaluated on using the
same method as for the full homeotropic case. If the anchoring
of the nematic LC on the CNT is strong, we may use again the
electric analogy to calculate the distortion field and its elastic
energy. The CNT with Janus treatment is equivalent to a dipolar
line made of opposite charges spread over two parallel lines
at a distance of about R to each other. Therefore, though the
distortion in the half space in contact with the homeotropically

treated surface appears to be qualitatively the same as in the
full homeotropic case [compare Figs. 2(a) and 4(a)], it now
extends over a distance of about R only. With a rotation angle
of π

2 over a distance R, and a volume ∼π
2 (2R)2L, the distortion

now has an elastic energy on the order of

W
para
str−J ∼ 2

(
π

2

)3

KL, (6)

which is twice the elastic energy of the completely
homeotropic CNT in the parallel orientation to n [Eq. (1)].

Because of their two types of anchoring, planar and
homeotropic, the Janus CNTs bear a + 1

2 topological defect.
This property may be understood rather simply on approaching
two Janus CNTs back to back until they come in contact with
each other by their planar side. After relaxation, we obtain the
distortion field of a completely homeotropic CNT that bears
a +1 topological index (Sec. II B). We thus deduce that the
Janus CNTs should be accompanied by a − 1

2 point defect
when immersed in a uniformly oriented nematic LC. This
point defect adds up to the surface disclination line that runs all
around the Janus CNT along the border between both surface
treatments. This disclination is sketched by two oval red dots
in the cross sections of Fig. 4. If the anchoring is infinitely
strong, the point defect stays at a distance about R from the
tip, but if more realistically the anchoring has an intermediate
strength, the point defect migrates toward the CNT tip, and may
eventually merge with the surface disclination line for weak
enough strengths. In the case of an infinitely weak anchoring,
the energy of a Janus CNT in the parallel to n orientation may
similarly be estimated to be equal to half the anchoring energy
of a homeotropic CNT oriented parallel to n [Eq. (3)]:

W
para
w−J = π

2
ARL = π

2
K

R

λ
L. (7)

If a CNT with a strong Janus anchoring is immersed
perpendicularly to n, the resulting distortion, as noticed above,
is equivalent to the one produced by a dipolar line. This shows
that the distortion extends over a distance R from the CNT
surface and is essentially located in two volumes ∼R2L each,
close to the surface disclination line [Fig. 4(b)]. The associate
rotation is less than π

2 in the average, and partially escapes
into the third dimension around the point defect in the planar
area, thus reducing the effective curvature of the distortion. Its
elastic energy may therefore be estimated to be

W
perp
str−J ∼ 1

2
K

(
1

R

)2

R
2 L × 2 ∼ KL, (8)

that is about eight times smaller than W
para
str−J [Eq. (6)], which

shows that the parallel-to-n orientation of the CNTs is unstable
[Fig. 4(a)]. Using again the remark in Sec. II B, we could
immediately see that the parallel-to-n orientation cannot be an
extremum, because the orientation exhibits only one symmetry
element, the plane of Fig. 4(a), that allows dissymmetric
and therefore different coupling energies for in-plane CNT
oscillations of the same angle. If, conversely, the Janus CNT
is oriented perpendicular to n, the n field is symmetric
about the plane perpendicular to the CNT [Fig. 4(b]). This
ensures that the orientation corresponds to an extremum of
the coupling energy between the CNT and n. This is clearly a
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necessary condition for the coupling energy being a minimum
and, so, for the corresponding configuration being stable.
So, the CNTs with a strong Janus anchoring preferentially
orient perpendicular to n. Interestingly, such an orientation is
opposite to the stable orientation which was obtained in the
completely planar or homeotropic cases.

Conversely, in the weak anchoring case, the integration of
the anchoring energy Wanch over the CNT surface, except on
the caps, is straightforward. This yields

W
perp
w−J = π

2
K

R

λ
L, (9)

a result that is similar to the case of the Janus CNT in the
parallel-to-n orientation [Eq. (7)]. So, in the case of weak
anchorings on both Janus CNT sides, the interaction energy
between a CNT and the nematic director is rather independent
of their relative orientation. In fact, the estimate of the coupling
CNT-n energy is too approximate to allow us to deduce the
preferred CNT orientation in this case. Numerical calculations
are necessary to obtain more precise results.

III. INTERACTION OF A CNT WITH A SPLAY-BEND
DISCLINATION LINE

The disclination lines, and in particular, the splay-bend
disclination lines, are defects that may be produced at
predesigned places in nematic samples provided that the
substrates have received appropriate anchoring treatments.
Interestingly, the disclinations have been shown to interact
with colloids of spherical shape dispersed in a nematic
LC [10,11]. As elongated colloids, the CNTs naturally extend
this simple case. Because they bear splay and bend multipoles,
they couple to the splay and bend components of the distortion
field emitted by the disclination lines. From the multipolar
interaction energy that results, we may derive the force that
drags the CNTs over a long range toward, or away from,
the disclination lines. Surprisingly, the force is not radial
and consequently, the trajectories of the colloids are not
rectilinear [9]. After a while, the CNTs get in contact with
the disclination line and they possibly remain trapped on it. A
similar phenomenon was evidenced a long time ago in solid
crystals where defects are known to condense impurities [26].
To understand the trapping effect, we may estimate the free
energy variation of a CNT particle between the two states,
far from the disclination line and in contact with it. This
needs to estimate the variations of the potential energy and
of the entropy between the two states. If the elastic distortion
close to the CNT, which depends on the anchoring conditions,
resembles the initial distortion around the disclination line,
the CNT and the disclination may fit within each other rather
well, as a foot in its shoe, without needing an important
supplementary energy. (The potential energy contains also
an anchoring energy, but for simplicity, we only mention the
elastic energy here). A part of the total elastic energy may
then be saved in the association. This gain corresponds to
the interaction energy between the CNT and the line. For the
adhesion of the CNT on the disclination line to be effective,
this saved potential energy should be larger than the difference
of entropic energies between the two states.

FIG. 5. (a) Pure splay-bend disclination line perpendicular to the
figure (red dot). The pure splay (α) and pure bend (β) areas belong
to the symmetry plane that contains the disclination line. (b) CNT
with planar anchoring, located in the area α, and perpendicular to the
disclination. (c) CNT perpendicular to the disclination line, positioned
close to the area β, but out of the symmetry plane. The boojums on
the CNT tips are not shown.

A. Planar anchoring

As shown in Sec. II A, the CNT colloids with uniform
planar anchoring prefer to orient parallel to n. This remark a
priori excludes that the CNTs stabilize parallel or just tilted
relative to a splay-bend disclination line after being trapped
on it.

They should therefore better stand perpendicular to the
disclination, preferentially in a symmetric configuration, that
is in the symmetry plane of the splay-bend disclination, in
places noted α and β in Fig. 5(a). In both places, the n field is
about uniform, so that the distortion field of the disclination is
negligibly affected by the presence of a CNT. However, the α

and β places are not equivalent. In the splay area α, the CNT
stands in the symmetry plane and explores a quasiuniform
n field whatever is its length, so that the distortion field
of the disclination is negligibly affected by the presence of
the CNT [Fig. 5(b)]. The involved extra elastic energy is
negligible too, and the planar conditions being satisfied all
over the CNT surface, the CNT-disclination interaction energy
is minimum, which is consistent with the above remark on
the symmetric configurations (Sec. II B) that their coupling
energies are extremes. The other symmetric place, the bend
area β, where the CNT is perpendicular to the symmetry
plane [Fig. 5(c)], is a little less favorable. Due to its length,
the CNT is immersed in a less uniform n field so that the
match of the anchoring conditions is not so perfect as it was
in α. Moreover, the interaction energy is somewhat increased
if the CNT, perpendicular to the disclination, is shifted off the
symmetry plane. So, the interaction energy between a planar
CNT and a disclination, independently of the strong or weak
strength of its planar anchoring, is at the minimum in the
configuration depicted in Fig. 5(b), and close to it if shifted
apart [Fig. 5(c)]. The CNTs with planar anchoring would
therefore prefer to stabilize perpendicularly to the disclination
line and to lie close to its symmetry plane, independently of
their anchoring strength. We may, moreover, notice that if the
CNT is in the α place, one of the boojums at its ends may easily
coalesce with the core of the disclination line, which could
save a supplementary part of the defect energy, adding up to
the CNT-disclination interaction energy. However, though the
symmetric configuration α corresponds to the lowest energy,
it should cost some entropic energy because this configuration
is unique [Fig. 5(b)]. So, if the CNTs are somewhat tilted
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from the symmetry plane of the disclination, as shown in
Fig. 5(c), multiple arrangements become available. Typically,
the number of possibilities for setting a planar CNT on a
disclination is on the order of the available area in the vicinity
of the line, L2, divided by the projected area of a CNT, LR,
that is ∼L/R, which leads to a free energy:

−T �S ∼ −kT ln(L/R). (10)

This entropic energy adds up to the interaction energy of
elastic and anchoring natures to determine the free energy that
is necessary for condensing a CNT in the symmetry plane
of a pure splay-bend disclination line. This term naturally
decreases the angular dependence of the CNT free energy
interaction with a disclination. We may therefore anticipate
that before interacting with one another, i.e., in the absence
of direct contact, the CNTs that condense on a disclination
line would form a rather disordered structure, in the shape of
a bottle brush [Fig. 5(c)]. As more CNTs move toward the
disclination line, their density increases on it until they come
in contact with one another and stick by means of van der
Waals interactions. These interactions being essentially due
to London interactions between benzene rings of neighboring
CNTs, they are rather strong. The scenario could then evolve
a little bit further. The London interaction between close
cylindrical objects being proportional to ∼–1/sin θ , where θ is
their relative angle [27], the interaction between neighboring
CNTs and the torques that they exert on each other, diverge at
small θ angles. These torques could be strong enough to force
the CNTs to arrange parallel to one another, and therefore to
form local ribbons. However, the initial configuration before
the CNTs get into contact with one another being a priori
completely disordered, in the shape of a bottle brush, there
are places where the θ angle between neighboring CNTs is
large. The aligning torque in these places is then weak and
insufficient to overcome the van der Waals adhesion and to
orient the CNTs in a common direction. The system should
therefore evolve toward local ribbons of different orientations,
so that complete ribbonlike structures should be impossible.
They would have probably been interesting for applications.

B. Homeotropic anchoring

As spherical colloids, the CNTs with a uniform
homeotropic anchoring are topologically equivalent to a +1
point defect (Sec. II B). This explains that, when immersed
in a nematic LC, they are accompanied by a point defect of
−1 topological index located at a distance d ∼ L/2 (Fig. 3).
If the CNT gets trapped onto a disclination line, the point
defect may come closer to the CNT than L/2 due to the
stress exerted by the disclination and because the distortion
energy, being proportional to (∇�n)2 ∼ 1/d2 multiplied by the
distortion volume ∼d2L, does not depend on this distance
d to a first order approximation. In a second step, the point
defect may open up into a disclination loop of − 1

2 topological
index, provided that its diameter does not exceed a few
micrometers [28] [Fig. 2(b)]. However, this limitation may
be bypassed if the disclination loop partly merges with the
neighboring disclination line. The disclination loop around
the CNT may thus elongate, one of its sides merging with the
+ 1

2 disclination line and annihilating. Only the other side of

the loop, of − 1
2 topological index, remains and connects to

the + 1
2 disclination line, that consequently just changes sign

along the part that runs next to the CNT. The energy cost of
the operation is consequently limited to the elimination of the
point defect.

Roughly, a CNT with strong homeotropic anchoring, that
therefore prefers to point parallel to n (Sec. II B), may get
trapped on a splay-bend disclination line essentially along two
directions, perpendicular or parallel to the line. In the case
that the CNT stands perpendicular to the disclination line,
its interaction energy with the disclination corresponds to an
extreme if it is located in the symmetry plane or perpendicular
to it. Precisely, as in the planar anchoring case (Sec. III A), the
interaction energy is minimum when the CNT stands parallel
to the symmetry plane in the splay area α [Fig. 5(a)]. The CNT
is then oriented parallel to n, and the distortion field around it
is the same as before its adhesion onto the disclination, so that
this configuration does not involve any supplementary elastic
energy. The energy gained is therefore restricted to the energy
saved by the collapse of the point defect associate to the CNT
onto the disclination line. We deduce the interaction energy
between the CNT and the disclination to be on the order of

E
perp
str−h ∼ −Wcore ∼ −KL, (11)

which corresponds to a relatively weak attractive energy [11].
Let us notice that the other symmetric position of the CNT,
perpendicular to the symmetry plane in the bend area β

[Fig. 5(a)], is less favorable again because this area undergoes
a diverging bend close to the core of the disclination line.
This naturally implies supplementary elastic and anchoring
energies when introducing a straight CNT in it.

The CNTs with strong homeotropic anchoring may also be
trapped parallel to the line in the most favorable area α. The
energy gain is then given by the addition of the core energy
[Eq. (11)] to the elastic energy of the CNT before trapping
[Eq. (1)] to which the elastic energy of the distortion contained
in the cylinder between the CNT and the disclination line is
subtracted [crosshatched area in Fig. 6(a)]. This supplementary
distortion is necessary to reconcile the homeotropic orientation
of the director on the CNT with the general perpendicular
direction of n above the disclination line (area β). Being on
the order of ∼π /2 in a cylinder of diameter d and length L,
this distortion costs an elastic energy that may be estimated in
the same manner as for establishing Eq. (1):

W
para
elast ∼ 1

2
K

(
π

2d

)2
π

4
d2L ∼ π3

25
KL. (12)

We thus deduce the interaction energy between a disclina-
tion line and a CNT, that is trapped parallel to it, to be

E
para
str−h ∼ −

{
1 +

(
π

2

)3

− π3

25

}
KL ∼ −3.9KL, (13)

which shows that the CNTs with strong homeotropic anchoring
should stay strongly fixed onto the disclination lines, and E

para
str−h

being larger than E
perp
str−h (in absolute values), that the CNTs will

prefer to orient parallel to the disclination lines in the area α

[Fig. 6(a)].
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FIG. 6. CNT in interaction with a pure splay-bend disclination
line perpendicular to the figure. (a) Case of a strong homeotropic
anchoring. The CNT (black open circle) is located at a distance
d < L/2 in the domain α below the disclination line (red dot). The
supplementary distortion that is added to the initial distortion of the
disclination when introducing a CNT is roughly contained inside the
hatched cylinder of diameter d and length L. (b) Case of a weak
homeotropic anchoring. The anchoring breaks on the surface of the
CNT are marked in red (gray). This allows the disclination line to
vanish inside the CNT. (c) Case of a Janus anchoring. The disclination
line vanishes inside the CNT as in (b), but without breaking the
anchoring. The lateral disclination lines along the CNT surface are
not shown.

Conversely to these CNTs, the CNTs with weak
homeotropic anchoring conditions orient perpendicular to
n (Sec. II B). If, moreover, they are perpendicular to the
disclination line, extremes of the coupling energy are obtained
if they are located in the symmetry plane of the splay-bend
disclination line. They may then be perpendicular to the
symmetry plane in the splay area α, or parallel to it in the
bend place β. In this latter case, the n field is quasiuniform
around the CNT, so that the anchoring has to break on about
half the CNT surface. The interaction energy with the n field
is then given by Eq. (4) (Sec. II B):

W
perp
anch ∼ π

2
ARL ∼ π

2
K

R

λ
L. (14)

After subtraction of the CNT energy before trapping, we
obtain the interaction energy of a weakly homeotropic CNT,
with a disclination and perpendicular to it, to be

E
perp
w−h ∼ 0. (15)

This estimate indicates a rather unfavorable coupling. In
the former case (area α), the n field around the CNT is less
uniform. The anchoring has to break on a larger area, and
the interaction energy with the n field is larger than evaluated
above [Eq. (14)]. On subtracting the self-energy of the same
CNT immersed perpendicularly to n [Eq. (4)], we obtain a
larger interaction energy than in the previous case [Eq. (15]),
i.e., a positive energy that shows that the CNT cannot be
attracted by the disclination line.

The CNT with weak homeotropic anchoring may also be
trapped parallel to the disclination line in the splay area α, the
bend area β being clearly less favorable. The anchoring has
now to break on less than half the CNT surface [marked in
red in Fig. 6(b)] in order to avoid additional distortions around
it. The interaction energy with the n field if such a weakly
homeotropic CNT is trapped onto the disclination is therefore
below the one evaluated for the perpendicular case [Eq. (14)].

After subtracting the self-energy of a CNT immersed in a
uniform nematic, we thus evaluate the interaction energy to be
negative, which shows that the CNTs with weak homeotropic
anchoring get trapped onto disclinations parallel to them in the
region α.

Clearly, numerical calculations are necessary to obtain
more precise evaluations. They could allow one to know
how strongly the CNTs with weak homeotropic anchoring
get trapped on the disclination lines. However, in the real
cases, the anchoring strength is rarely perfectly weak, so
that the interaction energy between CNTs and disclinations
should indeed be intermediate, according to Eq. (5). We
may therefore anticipate that the interaction energy between
CNTs and disclinations will be larger than in the purely weak
anchoring cases. The interaction should therefore be attractive,
but rather weak and insufficiently efficient for building clean
self-connected wires. This suggests to us trying other types
of anchoring treatments that are able to solve the intrinsic
contradiction of the splay-bend disclination lines that prefer a
homeotropic orientation on one side and a planar orientation
on the other side.

C. Janus anchoring

In order to improve the trapping efficiency of CNTs onto
the splay-bend disclination lines, we now consider Janus
anchorings where the CNTs are treated for strong, planar,
and homeotropic anchorings on both sides, respectively. As
discussed in Sec. II C, the Janus CNTs prefer to orient
perpendicular to n, and for the same reasons as the CNTs
with weak homeotropic anchoring, they will prefer to set
parallel to the splay-bend disclination line in the domain α, the
distortion that they produce [Fig. 4(b)] fitting rather well inside
the disclination distortion. The other symmetric positions are
indeed less favorable since they involve an extra distortion of n
around them. Therefore, neither supplementary distortion nor
breaking of the anchoring are necessary if the Janus CNT is set
parallel to the line in the domain α [Fig. 6(c)], so that a part of
the self-energy is saved. After subtraction of this self-energy
[Eq. (8)], we may estimate the interaction energy of a Janus
CNT with a disclination to be

E
para
str−J ∼ −KL. (16)

This shows that the line is able to attract the strong-
anchoring-treated Janus CNTs. However, the attraction is
weaker than with the strong homeotropic CNTs [Eq. (13)].
This somewhat surprising conclusion results from the large
elastic energy involved when dispersing strong homeotropic
CNTs in a nematic LC, and that the introduction in the
natural distortion field of a splay-bend disclination line will
significantly reduce.

Similarly, the interaction energy between a Janus CNT with
weak anchoring properties and a splay-bend disclination line
may be estimated to be

E
para
w−J ∼ −π

2
K

R

λ
L. (17)

This shows that the interaction is attractive again, at least
more than in the case of CNTs with weak homeotropic
anchoring.
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TABLE I. Preferred CNT orientations, referred to n or to a splay-
bend disclination line, according to the planar, homeotropic, or Janus;
weak or strong; anchoring on the CNTs.

Anchoring 

Interaction
           with 

Planar Homeotropic Janus 

Strong Weak Strong Weak

n // // ?

Disclination line // // // //

So, in both cases, the Janus CNTs with strong or weak
anchorings should settle along the disclination line and orient
parallel to it, which is the most favorable orientation for
building clean self-connected wires.

IV. PREFERRED CNT ORIENTATIONS

The energies of CNTs immersed in a nematic LC [Eqs. (1)–
(9)] or in contact with a splay-bend disclination line, that
have been estimated in Eqs. (11)–(16), allow us to deduce the
most stable orientations that the CNTs will adopt according
to their anchoring properties, planar, homeotropic, or Janus.
Only the case of CNTs treated for a weak Janus anchoring
does not lead to clear conclusions, as the two configurations,
parallel and perpendicular to n, give similar estimates for
the CNT-n interaction energy. As mentioned in Sec. II C,
numerical calculations would be necessary to determine the
equilibrium CNT orientation in this case. Noticeably too, the
CNTs with uniform homeotropic treatments are found to orient
in a different manner referred to n according to the anchoring
strength. However, following Ref. [25], even if a substrate
has carefully been prepared for exhibiting a weak anchoring,
this property is generally observed to fade out after a while.
The cause is a small quantity of large impurity molecules
initially solved in the nematic LC, that progressively settle on
the substrate and harden its anchoring. For this reason, we
do not really observe any stable weak anchoring. Probably,
the weak anchorings considered here could remain theoretical
only. All the cases discussed above are gathered in Table I.

V. CONCLUSIONS

Whereas spherical colloids dispersed in nematic liquid
crystals have been studied for a long time, the use of
elongated particles as CNTs has received little attention yet.
Their strongly anisotropic shape, however, suggests trying to
associate them with nematic LCs. They, moreover, offer rich
possibilities of interactions with a uniform nematic field or
with disclination lines, if one takes the available types of
anchoring into account.

On performing simple evaluations of the anchoring and
elastic CNT-n interaction energies, we may predict the
orientation of the CNTs in nematic LC dispersions. We thus
show that the CNTs stabilize parallel to n in the case of
CNTs with strong planar or homeotropic anchorings. In the
remaining cases, the CNTs conversely stabilize perpendicular
to n except in the weakly anchored Janus case that needs
dedicated numerical calculations to be clarified (Table I).

We have also considered the interaction of a CNT with a
splay-bend disclination line. The elastic part of the interaction
energy essentially arises from the overlap of the distortion
fields from both objects. The CNTs may consequently be at-
tracted toward the splay-bend disclination line, and ultimately
they settle on it. We have then discussed their orientation
at equilibrium on estimating the CNT interaction with the
splay-bend disclination line, based on the same method as for
calculating the interaction of the CNTs with a uniform nematic
field. Again, the CNT orientation depends on the anchoring
conditions of the nematic director n on the CNT surface.
We thus show that though the CNTs with planar anchoring
should stabilize perpendicular to the splay-bend disclination
lines, they will come parallel to it in the other cases, i.e., for
homeotropic, or Janus anchoring conditions of weak or strong
strengths (Table I).

These latter cases may indeed lead to interesting practical
applications. For instance, they should result in a large number
of CNTs to be attracted to and to fix on a disclination line. We
could thus obtain thin nanonecklaces that somehow would
realize a materialization of the disclination lines. These points
are experimentally addressed in the following paper [19].
Surprisingly, they could help in building 3D self-connected
wires at a micro- or nanoscale.

APPENDIX

1. Homeotropic CNT parallel to n

The n field around a CNT with homeotropic anchoring
conditions [Fig. 2(a)] is the superposition of a radial splay-bend
distortion located in the symmetry planes (z, r), and of
an orthoradial splay distortion in the plane perpendicular to
the z axis. We may calculate this distortion with reasonable
approximations. This will be useful for estimating the elastic
energy involved by the CNT. In a first step, we periodize the
system on adding CNTs every 2L distance along the z axis,
a point defect being intercalated between each. We may then
expend the field of the distortion nr (r,z) in a Fourier series
in z, each term being a solution of the Laplace equation [23].
Due to the homeotropic anchoring, the z function nr (r = R, z)
is approximately a square function, and the amplitude of its
harmonics decreases as the reverse of their order. Their elastic
energy respectively decreases as the reverse of the order to
the square, and therefore becomes rapidly negligible. For
simplicity, we may limit the calculations to the fundamental
term of the series that is

nr = f (r)
2

π
cos

(
πz

L

)
. (A1)

We deduce that f (r) is a solution of the differential
equation:

f ′′ + f ′

r
−

(
π

L

)2

f = 0. (A2)

The solution of this equation is known to be the modified
Bessel function K0, which decreases exponentially as a
function of the radial distance r from the CNT. Since we
are only interested in orders of magnitude, we may simplify
Eq. (A2), and drop its second term. We deduce the approximate
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solution, valid for r > L
π

:

nr = 2

π
cos

(
πz

L

)
exp

(
−πr

L

)
, (A3)

with

nz = ±
√

1 − n2
r . (A4)

We may then estimate the elastic energy of the distortion per
CNT on the line. It is essentially composed of three distortions,
a splay and a bend distortion that superpose to a distortion
around a hyperbolic point defect [Fig. 2(a)]. With the above
expressions of nr and nz, we deduce the splay term to be

div n =
(

1

r
− π

L

)
nr + ∂ nz

∂z
. (A5)

On integrating this divergence to the square over a period
2L, we deduce the splay distortion energy per CNT. The
dominant term is given by the square of the first term in
Eq. (A5). It may be evaluated to be worth

WSplay1 ∼ 4

π
KL

{
ln

L

2πR
− 3

4

}
. (A6)

With an anisotropic ratio L/R ∼ 35–50 [19], we deduce
WSplay1 ∼ 1.6KL. The cross term between the two terms of
Eq. (A5) yields similarly

WSplay2 ∼ 26

π2 33 KL, (A7)

that is, WSplay2 ∼ 0.24KL. The square of the second term of
Eq. (A5) has a negligible contribution, so that we may estimate
the total splay contribution to be WSplay ∼ 1.85KL.

To this splay energy, we also have to add a bend energy that
comes from the square of the bend vector. We deduce

WBend ∼ 19

16π
KL, (A8)

that is, WBend ∼ 0.38KL. Adding this bend contribution to the
splay one, we get the elastic energy for the fundamental mode
to be 2.23KL. In order to take into account the contribution
of the higher order modes, we have roughly to multiply this
result by

∑ 1
n2 = π2

6 . We thus obtain

W
para
str−h ∼ 3.66KL. (A9)

To this energy, we have also to add the elastic energy of
the hyperbolic point defect, which may be easily calculated
to be 8π

3 KR [29]. In this expression, R stands for the radius
of the distorted region, and therefore corresponds to the CNT
radius (Sec. II B). Because the aspect ratio of the CNTs is
large, this point defect energy may be neglected compared to
W

para
str−h [Eq. (A9)].

2. Homeotropic CNT perpendicular to n

The elastic energy involved by a homeotropic CNT oriented
perpendicular to n may be evaluated on starting from a
hedgehog distortion (Fig. 3). The distortion extends over a
distance L

2 and the elastic energy is ∼ 4π
3 KL. In order to obtain

the distortion sketched in Figs. 3(a) and 3(b), we have to apply
two supplementary bend distortions of π

2 angle over a distance
L
2 . On considering that this bend distortion roughly extends
over a cylindrical volume of axis parallel to n, of length and
radius equal to L

2 , we may estimate the complete elastic energy
of the distortion around the CNT to be

W
perp
str−h ∼

{
4π

3
+

(
π

2

)3}
KL, (A10)

i.e., numerically,

W
perp
str−h ∼ 8.06KL. (A11)
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