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Hydrodynamic interactions between two forced objects of arbitrary shape. I1. Relative translation
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We study the relative translation of two arbitrarily shaped objects, caused by their hydrodynamic interaction
as they are forced through a viscous fluid in the limit of zero Reynolds number. It is well known that in
the case of two rigid spheres in an unbounded fluid, the hydrodynamic interaction does not produce relative
translation. More generally, such an effective pair-interaction vanishes in configurations with spatial inversion
symmetry; for example, an enantiomorphic pair in mirror image positions has no relative translation. We show
that the breaking of inversion symmetry by boundaries of the system accounts for the interactions between
two spheres in confined geometries, as observed in experiments. The same general principle also provides
new predictions for interactions in other object configurations near obstacles. We examine the time-dependent
relative translation of two self-aligning objects, extending the numerical analysis of our preceding publication
[Goldfriend, Diamant, and Witten, Phys. Fluids 27, 123303 (2015)]. The interplay between the orientational
interaction and the translational one, in most cases, leads over time to repulsion between the two objects. The
repulsion is qualitatively different for self-aligning objects compared to the more symmetric case of uniform

prolate spheroids. The separation between the two objects increases with time ¢ as ¢

more strongly, as ¢, in the latter.
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I. INTRODUCTION

Hydrodynamic interactions are crucial for the dynamics of
colloidal dispersions [1,2]. These flow-mediated interactions
are characterized by a long-ranged R~' decay with distance R.
The effect of hydrodynamic interactions is particularly strong
in the case of driven systems, where an external force acts on
each constituent object. This effect is apparent already at the
level of a single object, where the combination of driving
and hydrodynamics generally leads to rotation-translation
coupling [1]. At the level of a forced pair of objects, the
hydrodynamic interaction gives rise to rich behavior, as
presented in the preceding article [3] (referred to hereafter
as Publication I) and the present one. On the collective level of
driven suspensions, the long-ranged and strong hydrodynamic
interactions may create large-scale dynamical structures, as in
colloid sedimentation [4].

The hydrodynamic interaction between two forced sym-
metric objects, e.g., spheres, was explored extensively in the
middle of the 20th century; see Ref. [1] and references therein.
In the limit of zero Reynolds number, the hydrodynamic inter-
action between two identical sedimenting spheres, isolated
in an unbounded fluid, does not bring about any relative
translation, i.e., the spheres neither reduce nor increase their
mutual distance while settling through the fluid (they do not
rotate around each other either). This remarkable result can be
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173 in the former case, and

related to the time-reversal symmetry of the Stokes equations
governing the flow field [4].

On the other hand, the vanishing relative velocity in the case
of two spheres is readily violated by changing the system’s
geometry. For example, Squires and Brenner [5] pointed out
that, when forced away from a nearby wall, two spheres do
develop relative velocity, making them approach one another.
Such long-ranged attraction between two like-charged spheres
in the presence of a similarly charged wall was observed in
optical tweezers experiments by Larsen and Grier [6]. These
apparent interactions do not originate from any direct, e.g.,
electrostatic or van der Waals interaction, but from the velocity
fields generated by the objects (and sometimes they are
referred to as “hydrodynamic pseudopotentials” [7]). Another
example of an attractionlike behavior, mediated by Stokes flow,
appears in the motion of two spheres driven along an optical
vortex trap [8]. The effects of such interactions can show up
in experiments not only as pair-attractions but also in more
complex phenomena, such as collective phononlike excitations
in driven object arrays [9,10].

These previous studies of apparent interactions originating
in hydrodynamic coupling were ad hoc, treating specific
experimental scenarios. In this article, we address two more
general questions: (i) At zero Reynolds number, what are
the geometrical configurations for which relative translation
between two objects necessarily vanishes? (ii) In cases in
which it does not vanish, what are the consequences for
the long-time trajectories of the two objects? Looking for
properties of general applicability, we consider arbitrarily
shaped objects and do not restrict ourselves to a specific
geometry. Symmetry considerations have been successfully
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invoked in the past for various hydrodynamic problems
at zero Reynolds number, e.g., the motion of objects in
shear flow [11,12], or Purcell’s theorem for swimmers [13].
Similarly, we seek general laws, derivable from symmetry
arguments, concerning the relative translation of driven object
pairs.

In the inertialess regime, the flow and the velocities of
suspended objects at a given moment are proportional to
the external forces acting at that moment. Consequently, the
motion of two interacting objects can be expressed by a
grand pair-mobility matrix [3,14-16]. Earlier works focused
on the mobility (or inversely, hydrodynamic resistance) of
objects in various simple geometries, such as a pair of
spheres or spheroids [17-23]. In addition, several numerical
techniques were developed to study dispersions of arbitrarily
shaped colloids [24-28]. In Publication I, we studied general
properties of the hydrodynamic interaction, and we considered
its effect on orientational dynamics. In the present article, we
extend this study, focusing on translational motion of object
pairs.

The motivation of Publication I was to understand the role of
hydrodynamic interactions between self-aligning objects [29].
An object is self-aligning if, when subjected to an external
unidirectional force (as in sedimentation), it achieves terminal
alignment between a specific eigendirection affixed to the
object and the force direction, due to a translation-rotation
coupling in its mobility [30-32]. (See also Sec. III A below.)
We focused on self-aligning objects of irregular shape, which
have a richer response as they also rotate with a constant
angular velocity about the aligning direction. Toward that
end, we explored the pair-mobility of two identical, arbitrarily
shaped objects, which are arranged in the same orientation.
Based on general considerations, and utilizing the system’s
symmetry under exchange of objects, we proved that self-
aligning objects undergo relative rotation, as well as relative
translation, when forced through an unbounded fluid. The
leading effective interaction is dipolar, scaling as R~2 with
the mutual distance R between the objects. In addition, we
used a numerical integration scheme to study the effect of
these pair-interactions over time. We found that the majority
of our examples, comprising pairs of randomly constructed,
self-aligning Stokeslet objects, showed a repulsivelike be-
havior, where the objects move away from each other
in time.

These two key results, concerning the instantaneous and
long-time interactions, have led to the present work, which
extends the analysis along two separate directions: (a) In Sec. II
we continue to study the instantaneous response of object
pairs, i.e., the rigorous properties of the pair-mobility matrix.
We provide examples for configurations with spatial inversion
symmetry, where the relative translation vanishes, as well as
simple geometries, for which this symmetry is broken. (b) In
Sec. III we return to examine in more detail the repulsive trend
in the far-field time evolution of self-aligning object pairs,
providing a quantitative explanation of the phenomenon. We
further compare it to the time evolution of two nonalignable
objects (uniform prolate spheroids), and we point out the
qualitative difference between the two cases. Finally, the
implications of our results, from theoretical and experimental
points of view, are discussed in Sec. IV.
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II. INSTANTANEOUS RESPONSE
A. Pair-mobility matrix

We consider a system of two rigid objects, a and b, with
typical size [, subject to external forces and torques Fa,Fb
and 7¢,7° in a fluid of viscosity 1. The geometry of the
system, i.e., the shape of each of the objects and the fluid
boundaries, is arbitrary. Each of the objects is designated
with an origin about which its linear velocity and torque
are measured. In the regime of zero Reynolds number (also
known as Stokes flow, creeping flow, or inertialess flow),
the objects respond with instantaneous linear and angular
velocities through a symmetric, positive-definite 12 x 12 pair-
mobility matrix [1,3,15],

ya Adga (Tea)T Aab (']I*ba)T Fa
al 1| e qaa Tab  Sab a1
Vb = nl | (A9byT  (TebyT  Abb (TOb)T Fb
bl Tba (SebyT Thb gpb /1

ey

The dimensionless blocks of the matrix defined in Eq. (1)
depend on the whole geometry of the system (the shapes of
the objects, their mutual configuration, as well as the shapes
of the surrounding boundaries), the boundary conditions at
all the surfaces, and the choice of the objects’ origins. The
transformation between matrices that differ in the choice of
the objects’ origins can be found in Appendix A of Publication
I. Hereafter, we normalize the viscosity such that nl = 1.

In this work, we focus on the translational dynamics of two
forced objects (without external torques), which is given by a
6 x 6 submatrix of the pair-mobility, indicated hereafter by A,

Ve Ada  Aab\ /Fa

<Vb) B (Aba Axbb> (ﬁb)' @
The diagonal blocks, A% and A%, correspond to the response
of an object to a force on itself, in the presence of the other
object. The off-diagonal blocks, A%’ and A’*, correspond
to the hydrodynamic interaction, i.e., the response of one
object to a force on the other. The properties of the full pair-
mobility matrix in Eq. (1) imply that A is positive-definite and
symmetric [1,33,34]. The matrix A has additional symmetries,
as discussed in the next section.

B. Symmetrical pair configurations

Brenner [14] (see also Ref. [1], Sec. 5.5) characterized the
properties of the self-mobility matrix for individual, isolated,
symmetric objects. Given a symmetry of the object’s shape, he
deduced which of the hydrodynamic responses vanish. For
example, if an object has a plane of reflection symmetry,
forcing it in the direction perpendicular to that plane cannot
lead to translation parallel to the plane. For instance, forcing a
spheroid along its major axis does not induce translation along
its two other principal axes.

As a first step, we consider the transformation of the
pair-mobility matrix under various operations—spatial proper
and improper rotations (rotations combined with reflections),
and the exchange of objects. We note that the positions of
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the objects’ origins, i.e., the external forcing points, are an
essential part of the system geometry. In this section, we will
restrict our treatment to cases in which the forcing point is
at the geometric centroid of the object, that is, the center
of mass if the object has a uniform mass density. Consider
the transformation between two pair-mobility matrices that
differ by a rigid rotation. Given the rotation matrix R between
a given configuration and the rotated one, the blocks in A,
being all tensors, transform accordingly: A% — RA“RT,
A% — RA®RT and A? — RAP’R”. The same law applies
to the transformation between systems that differ by a rigid
improper rotation with improper rotation matrix R. We note
here that the twist matrices T, the blocks in Eq. (1) that
relate forces to angular velocities, are pseudotensors; thus,
their transformation under improper rotation includes a change
of sign, T¢ — —~RT*“R". Since the pair-mobility matrix
inherently refers to two distinguishable objects, a and b, we
should also consider its transformation under interchanging
the objects’ labeling, a <> b. This transformation corresponds
to interchanging the blocks A*? <« AP? and A% < A or,
in matrix form,

A —> EAE™!, 3)
where [ is a 6 x 6 matrix that interchanges the objects,
0 I
E— ( 3><3>’ @
i 0

and [3.3 is the 3 x 3 identity matrix.

As mentioned in Sec. I, at zero Reynolds number, sedimen-
tation of two identical rigid spheres in an unbounded fluid does
not induce any relative motion of the two spheres. In contrast,
we showed in Publication I that two identical, arbitrarily
shaped objects in an unbounded fluid, under the same forcing,

—>

)(
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may attract or repel each other. In addition, using the symmetry
of such a system under the exchange of objects, we found
the leading (dipolar) order of this effective interaction at
large mutual separation. We now examine the hydrodynamic
interaction for several symmetric configurations. In this part
of the article, we focus on what symmetry has to tell us,
and we do not yet anticipate when its consequences are
useful. To demonstrate the resulting principles, therefore, we
allow ourselves to examine specially designed configurations.
Examples for the usefulness of these principles will be given
later on.

1. Two enantiomers in an unbounded fluid

As the first example, we examine a system possessing inver-
sion symmetry. The spatial inversion of the Stokes equations
under reversing time has been shown to imply fundamental
consequences concerning the dynamics of rigid objects. For
example, it was used previously to deduce generic properties
of shear flow response in the cases of a single spheroid
[11] and an enantiomeric noninteracting pair [12]. The fact
that the instantaneous response, under the same forcing,
of pair configurations with spatial inversion symmetry does
not induce relative translation may have already been given
elsewhere; yet, we are not aware of works that give a rigorous
derivation of it. Accordingly, we review this basic result below
from matrix transformations and time-reversibility points of
view.

Consider a system of two enantiomers in an unbounded
fluid as depicted in the left panel of Fig. 1. We choose the
mutual orientation of the objects such that one object is the
mirror image of the other; hence, the system’s geometry is
invariant under spatial inversion, 7 — —r. This symmetry
implies that the pair-mobility matrix is invariant under two

I
it

FIG. 1. Schematic description of the arguments presented in Sec. IIB 1 for the vanishing instantaneous relative motion between two
forced enantiomers. The left panel describes how the mirror symmetry of the system is expressed in terms of spatial inversion combined with
interchanging the objects. The right panel demonstrates the arguments based on the symmetry of the Stokes equations under inversion of time
and forces, where gray (thin) and green (thick) arrows indicate forces and velocities, respectively. Configuration (b) is the spatial inversion of
configuration (a), whereas configuration (c) is the response of configuration (a) under the opposite forcing.
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FIG. 2. The three systems discussed in Secs. IIB 1 and II B 2: (a) Two identical axisymmetric objects, with fore-aft symmetry, where the
vector connecting their origins, R, is perpendicular to their symmetry axes. (b) A pair of spheres near a wall. (c) A pair of spheres driven along

aring. The angular separation is indicated by Af.

consecutive operations (see Fig. 1): spatial inversion followed
by exchange of objects’ labels, or, in matrix form, A =
E(—Igx6)A(—Igxs)E~", where |E has been defined in Eq. (4).
This last equality yields A% = A?” = A% and A®? = AP =

Acoupling’ i.e.,
Acoupling
>, &)

Aself
Enantiomeric pair: A = < :
Aself

Acoupling

which applies in fact for any inversion-symmetric situation.
This form of the pair-mobility matrix implies that, under the
same force F , the two objects will develop identical velocities,
Ve = Vb = (A®f 4 Acouplingy . F. Thus, the instantaneous
response under the same forcing of a pair, whose configuration
possesses an inversion symmetry, does not include relative
translation. As noted above, a system of two sedimenting
spheres is a particular example of this general result.

The vanishing relative motion in a system that is invariant
under spatial inversion can be understood alternatively by the
following argument. Assume by negation that two enantiomers
in an unbounded fluid develop a relative velocity under the
same forcing. Without loss of generality, let us take the case
when the two objects get closer together; see configuration
(a) in the right panel of Fig. 1. The mirror configuration of
the system (¥ — —7), depicted in configuration (b), implies
that the two also get closer when reversing the forces. On the
other hand, Stokes equations are invariant under inversion of
time and forces; hence, reversing the forces in configuration
(a) should make the objects get further apart, as depicted in
configuration (c). Since (b) and (c) represent the same system,
we reach a contradiction, and we deduce that the relative
velocity between the two enantiomers must vanish.

To summarize, it is inversion symmetry that governs the
vanishing relative velocity between two forced objects at zero
Reynolds number; hence, whenever this symmetry is broken,
one should expect relative translation.

An important remark bears mentioning here. The instan-
taneous rotational response of the enantiomeric pair corre-
sponds to two opposite rotations, i.e., nonvanishing relative
angular velocity. (See Publication 1.) With time, the opposite
rotations will break the inversion symmetry, unless there
are additional symmetries, for example, when the objects’
shapes are isotropic, as in the case of two spheres. While
the example of two enantiomers whose mutual symmetry is
only instantaneous may seem artificial, the principle that it
demonstrates is useful. Driving forces will sometimes bring

bodies close to a symmetric situation, and then one will
find especially simple motions that call for explanation. In
particular, two irregular objects can be aligned by the driving
[30-32], and then we should be interested in the question of
whether they keep their distance or drift apart. Moreover, a pair
of spheres are not the only objects that will preserve inversion
symmetry over time. Another example is two ellipsoids,
or indeed a pair of any bodies of revolution with fore-aft
symmetry, whose axes are aligned on a plane perpendicular
to the force; see Fig. 2(a). Without any calculation, we can
assert that two such objects will maintain their relative position
over time. The additional symmetry of the system imposes
relative rotation only about the axes of symmetry [y axis
in Fig. 2(a)], which does not break the inversion symmetry.
Another example will be given in Sec. IV.

2. Configurations with one reflection plane
and exchange symmetry

We now turn to examples in which the symmetry is broken
by the confining boundaries. The first system consists of two
spheres, placed on a plane parallel to a wall; see Fig. 2(b). This
system was used in Ref. [5] to interpret the apparent attraction
between two like-charged spheres near a similarly charged
wall, as was observed in optical-tweezers experiments [6].
The geometry of the system is invariant under two successive
operations: reflection about the symmetry plane of the two
spheres, and interchanging the objects. We denote by || and
L the directions parallel and perpendicular, respectively, to
the mirror plane, i.e., perpendicular and parallel, respectively,
to the wall itself. The reflection leaves vectors parallel to the
mirror plane unchanged but reverses vectors normal to that
plane. Using the transformation laws introduced above, we
find that the blocks of A, which relate forces perpendicular to
the wall and objects’ velocities parallel to the wall, must satisfy
AY = —A% and A9, = — A% These restrictions imply that,
under forcing toward or away from the wall (e.g., as the spheres
are electrostatically repelled from the wall [6]), the objects
respond in opposite directions in the plane parallel to the wall,
Vi =AY + A{}))F) = —V!. Note that the symmetry of the
system alone does not tell us whether the objects repel or attract
under a given forcing direction. The analysis in Ref. [5] showed
that forcing away from the wall results in an apparent attraction
between the pair, in agreement with the experiment. It should
be stressed that, unlike specific calculations as in Ref. [5], our

042609-4



HYDRODYNAMIC ... .II. RELATIVE TRANSLATION

symmetry principle is restricted neither to spheres nor to the
limit of small objects, nor to the limit of large separations.
The complete form of the pair-mobility matrix as a result of
the geometrical restrictions in this system is given in Appendix
B, Eq. (B1), along with the explicit known expressions for
point objects. Another interesting conclusion, arising solely
from the system’s symmetry, is that, since A4} = —A%/ and

Aj”u = —A’j_“H, forcing the spheres parallel to the wall will
result in one sphere approaching the wall and the other moving
away from it.

As a second example, let us consider the system addressed
in Ref. [8]—two spheres forced to move along a ring; see
Fig. 2(c). The corresponding pair-mobility matrix can be
written in polar coordinates (p,0). The system is invariant
under two successive operations: inversion of the 6 coordinate,
6 — —0, and interchanging the objects. Hence, this system is
similar to the previous one in the sense that it is symmetric
under objects exchange by inversion of one coordinate. This
leads to A% = —A’[’Jz and Agg = —A’/’)‘g. Consequently, under
the same forcing along the tangential direction, the spheres
respond with opposite velocities along the radial direction.
Sokolov et al. used a holographic optical vortex trap to study
this system, and they observed the radial symmetry breaking
experimentally [8]. In addition, they found that this effect,
combined with a confining radial potential, results in overall
attraction along the ring as the system evolves in time. Once
again, the symmetry argument derived here is far more general
than the specific limit studied theoretically in Ref. [8].

We note that the results obtained above, regarding configu-
rations with one reflection plane of symmetry, should also be
derivable using time-reversal arguments, as was done in the
case of an enantiomeric pair.

III. FAR-FIELD DYNAMICS OF TWO FORCED OBJECTS
IN UNBOUNDED FLUID

In the preceding section, we considered the instantaneous
response of a pair of objects given the symmetries of their
configuration. The analysis of this linear problem, derived
from symmetry arguments, is useful to determine the stability
of a given state of the system. However, it might be inapplicable
to the time-dependent trajectories, since a configuration
symmetry at a given time can be broken by subsequent motion.
A well-known example is the sedimentation in an unbounded
fluid of two prolate spheroids, which start with their major
axes parallel to the force [18,22,27]. The initial inversion
symmetry about the plane perpendicular to the force, which,
according to the discussion in Sec. II, precludes any relative
translation, soon breaks due to the rotation of each spheroid,
and relative velocity appears (see a more detailed analysis
below). In general, since the instantaneous response depends
on configuration, the time-dependent trajectories of a driven
pair are governed by coupled nonlinear equations. We are
compelled, therefore, to implement numerical integration for
specific examples, and to try to identify general trends. In this
section, we consider the time evolution of two objects under
the same constant driving. In particular, we provide further
insight into the results reported in Publication I concerning the
combined effects of rotational and translational interactions.

PHYSICAL REVIEW E 93, 042609 (2016)

A. Dynamics of an isolated object

Before describing the time evolution of object pairs, it
is essential to introduce the different types of objects that
we consider hereafter and describe their dynamics, under a
unidirectional force, at the single-object level. For more details
on the various orientational behaviors of single objects; see
Refs. [30,35]. In the absence of external torque, the linear
and angular velocities of an object are given, respectively,
by Ag- F and T - F, where Ag and Ty are 3 x 3 blocks of
the object’s self-mobility matrix. These blocks depend on the
shape of the object, its orientation, and the position of the
forcing point.

We consider three types of objects: (a) Uniform prolate
spheroid—a spheroid whose forcing point is located at its
geometric centroid, as in the case of spheroids with a uniform
mass density under gravity. For such an object, Ty = 0; hence,
it does not rotate, regardless of its orientation. The translation
direction of a uniform spheroid is in the plane spanned by
its major axis and the forcing direction [1]. (b) Self-aligning
prolate spheroid—a prolate spheroid whose forcing point is
displaced from the centroid along its major principal axis,
e.g., spheroids with a nonuniform mass density. These objects
have an antisymmetric T matrix. For any initial orientation,
a self-aligning spheroid rotates toward a state where its major
axis and translation direction are aligned with the external
force. We use type (b) as a simple example, which can be
treated analytically, for self-aligning objects. (c) Self-aligning
object of irregular shape—an object whose T matrix has only
one real, nonzero eigenvalue. These objects reach an ultimate
alignment between a specific eigendirection affixed to the
object (the eigenvector corresponding to the real eigenvalue)
and the force, together with a uniform right- or left-handed
rotation about it (according to the sign of the real eigenvalue)
[30-32]. As in Publication I, we use the particularly simple
construction of Stokeslet objects—a discrete set of small
spheres, separated by much larger, rigid distances, where each
sphere is approximated by a point force. Constructing them
randomly, we avoid objects of predesigned shapes.

B. Far-field equations

Let us assume that there are no external torques on the
objects, such that we can choose their origins as their forcing
points. We consider thg case in which the objects are subjected
to the same forcing F. The mutual separation between the
objects a and b is designated with the vector R , whose direction
is defined from the origin of a to the origin of 5. While time-
integrating the equations, it is essential to take into account the
coupling between translation and rotation. Thus, we must work
with the complete pair-mobility matrix, Eq. (1), which gives

ﬁ — ‘754 _ ‘7}) — (Aaa +Aah _ Abb _ Aba) . I_::, (6)
O = (Taa + Tab) . I_’;, (7)
& = (T 4 T") . F. (8)

A major simplification, from both the analytical and
numerical points of view, is to consider pairs with separation
much larger than the typical size of the individual object
[, and to study the corresponding far-field interaction. In
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Publication I, we studied a system of two arbitrarily shaped
objects in an unbounded fluid, and we derived the general form
of the pair-mobility matrix up to second order in //R: (a) the
zeroth-order term corresponds to two noninteracting objects;
(b) the first-order term accounts for the advection of one object
by the Oseen flow generated by the other, whicb regults in a
common translation of the pair with velocity G(R) - F ~ R™!
and with no relative translation; (c) the second-order term,
~ VG ~ R72, is the leading term that can give rise to relative
translation between the objects via hydrodynamic interactions.

The equations governing the objects’ mutual separation and
their rotations read

R = [(A% — AL) + (I“ + T1”) : VG(R) — VG(R)"

(M + 1% - F, ©)
@ = [T+ (W — 1€) : VG(R)] - F, (10)
& =[Th - (¥* - 1€) : VG(R)] - F, (11)

where Ao, Ty and IT, ¥ are single-object-dependent tensors of
rank 2 and 3, respectively, which depend on the individual
object’s shape and orientation, and £ is the Levi-Civita tensor.
In Publication I, we introduced a tensor ® with dimensions
6 x 3 x 3; here we separate it into its translational part, II,
and its rotational part, ¥ — %8 , each with dimensions 3 x 3 x
3. The tensors Ay and T, are the zeroth-order blocks (the
blocks in the self-mobility matrices), which give the linear
and angular velocities of a single object when it is subjected
to external force. The tensors IT and W correspond to the
linear- and angular-velocity responses to a flow gradient at
the object’s origin. When these tensors are coupled with VG,

PHYSICAL REVIEW E 93, 042609 (2016)

they construct second-order terms of the pair-mobility matrix,
describing the direct hydrodynamic interaction between the
objects. The term that is proportional to £ is also a part of
the second-order term, giving the rotation of one object with
the vorticity generated by forcing the other. The tensors Ay,
Ty, and IT depend on the choice of objects’ origins; for the
corresponding transformations, see Appendices A and B in
Publication I, or Ref. [16].

C. Transversal repulsion under constant forcing

In Publication I, we examined the effect of hydrodynamic
interactions on the orientational evolution of two identical,
self-aligning objects. Using numerical integration, we fol-
lowed the time-dependent trajectories of pairs of Stokeslet
objects under two types of driving—a constant force and
a rotating one. The latter, in the absence of hydrodynamic
interactions, tends to synchronize each object with the rotating
force [31,32]. We noticed that in most (though not all) of
the studied examples, the two identical, self-aligning objects
effectively repelled each other when subjected to the same
driving [see the solid red curve in Fig. 4(a)]. (Counterexamples,
such as limit-cycle trajectories, were observed as well.) The
increasing separation is transversal—taking place within the
plane perpendicular to the average force direction. Below, we
explain the nature of this repulsion, focusing on the simpler
case of constant forcing.

1. Two self-aligning objects

Let us consider the time evolution of the following system,
depicted in Fig. 3: two identical self-aligning spheroids,
positioned initially along the x axis, and subjected to a constant

z Top view

Side view

FIG. 3. Left panel: system of two self-aligning, prolate spheroids. The tilt angle 6 is between the force and the major axis of the object, and &
indicates the shifted position of the forcing point. Right panel: system of two identical self-aligning objects made of four Stokeslets. In the absence
of interaction, the eigendirection of each object (—Z) would eventually align with the force that is along the (—2) axis (not drawn), and the object
would rotate about it with constant angular velocity. The hydrodynamic interaction tilts the objects by angles 6, and 6, while keeping a correlation
between the transversal direction of the eigendirections and the separation vector. This effect results in repulsion between the objects while they
continuously rotate in the xy plane. Here we show a snapshot of this terminal evolution. The main figure shows the projection of the system (the
objects and their eigendirections) onto the xz plane, whereas the inset shows the xy plane projection, together with the separation vector R.
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FIG. 4. Representative trajectories for systems of two uniform spheroids (dash-dotted green curves), a pair of self-aligning spheroids (dotted
blue curves), and two self-aligning Stokeslet objects (solid red curves), together with the asymptotic behaviors at short and long times (gray
dashed lines). The results are presented in dimensionless units by setting the parameters of length and time to/ = 1 and (AF/871)~' = 0.1, and
the additional parameters to the values detailed in Appendix C. The distance between the objects is shown in panel (a), exhibiting the effective
repulsion between the two objects. The inset demonstrates the correlation between the eigendirections and the separation vector in the case of
self-aligning irregular objects. Panel (b) shows the evolution of the tilt angle (the solid red curve corresponds to only one of the objects).

force along the (—Z) direction. Self-aligning spheroids are
achieved by separating the center of forcing from their
centroids, e.g., through a nonuniform mass density under
gravity. The configuration has an inversion symmetry about
the yz plane. It does not have an inversion symmetry about
the xy plane unless the spheroids are aligned along Z. Thus,
according to Sec. II, unless aligned, they are expected to
have an instantaneous relative velocity. We denote by 6
the angle between the force and the major axis of each
spheroid; / indicates the length of the major axis, and # is
the displacement of the forcing point from the centroid. For
given h and 6, the individual-object tensors that appear in
Egs. (9)-(11) can be found from the known tensors for 7 = 0
and 6 = 0 (e.g., Ref. [1]) by a change of origin and rotation
transformation. According to Sec. Il A, in the absence of
interactions and 6 # 0, two uniform prolate spheroids will
maintain their relative tilt and glide away from each other
with a constant velocity, whereas two self-aligning ones will
do the same but with velocity decreasing in time as they
become aligned with the force. To examine the effect of
hydrodynamic interactions, we take the initial condition (¢ =
0) = 0, for which relative translation vanishes in their absence.
Using the calculated individual-object tensors for self-aligning
spheroids, the equations of motion for the pair in the far-field
regime R > [ and 6 <« 1, Eqgs. (9)—(11), are then reduced to
the following simple form (recall that we set n/ = 1):

. I\’ F
R |:a6+§<ﬁ) ]g, (12)

10=|-x0 AN 13
= [+ (z) &= 42

where the dimensionless parameters «, ¢, and A (derivable
from the single-object tensors) depend on the spheroid’s aspect
ratio and h/l. (More details on the derivation of the above

equations are given in Appendix C.) Using the conventions of
Fig. 3, « > 0 and A > 0; hence, positive 6 implies increasing
separation and decreasing tilt. Differentiating Eq. (12), and
substituting 6 from Eq. (13), we obtain the equation for the
separation alone,

. L F L FY
X=—-A+2¢x )gx+(a+)xg)x 321 (14)

where we have set x = R/ .

The translational dynamics is dictated by (i) opposite
mutual glide of one object away from the other, and (ii) direct
hydrodynamic interaction, which decays as R~2. (We neglect
the higher-order correction of the interaction ~ # R~2.) The
evolution of the tilt angle 6 is governed by two competitive
effects—the vorticity, which increases it, and the tendency of
the individual spheroid to align with the force. The fact that
the effect of direct hydrodynamic interaction on the angular
velocities is independent of the object’s shape is specific to
configurations in which RLF, regardless of the object’s
geometry [36]. The effect of additional separation along the
force direction is discussed at the end of this section.

The dotted blue curves in Fig. 4 show an example of a
numerical solution of Egs. (12) and (13). Initially, 6 increases
linearly due to the vorticity term in Eq. (13). After a typical
time of ~ (AF/8m[)~! this increase is suppressed by the
alignability of each object, and at + — oo the separation
increases as t!/3 while 6 decreases to 0 according to a
t72/3 law. These asymptotic laws can easily be inferred
analytically. The growth in mutual separation is a combination
of a gliding term (o) and an interaction term ({ > 0). We
note, however, that the ¢'/3 law arises from the alignability
alone, whereas the direct interaction can only quantitatively
affect the dynamics. As seen from Eq. (14) in the limit of
large x, the equivalent system in classical mechanics is the
damped equation ¥ = —Bx + Ax~2. Atlong times, > B~,
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acceleration is negligible and we are left with the equation
x = (A/B)x~? for the velocity. This equation yields the
terminal x ~ ¢'/3 law of the dotted blue curve in Fig. 4(a).

Next, we consider the repulsive time-dependent trajectories
in the more general case of two self-aligning objects of
irregular shape. We emphasize that this general case is
expected to show a richer behavior; this has been illustrated
in Publication I for Stokeslet objects, where, for example,
attractivelike behavior was observed as well. The repul-
sive trend reported in Publication I occurs in the majority
(~ 80%) of our several dozens examples comprising randomly
constructed 4-Stokeslet objects. In addition, in the far-field
limit, it is independent of the initial separation along the force
direction, as well as the initial mutual orientation. Here, we
illustrate how the theoretical result derived for self-aligning
spheroids is evident also in the effective repulsion between
two self-aligning objects of arbitrary shape.

Self-aligning objects of irregular shape exhibit complex
dynamics already on the single-object level, as they acquire
ultimate rotation about their eigendirection. For example, their
terminal translation direction is not necessarily constant and
might rotate about the forcing direction. Here we consider
two identical arbitrarily shaped objects, in which the pair
configuration has no spatial symmetry. The coordinate space
includes the mutual separation R and the orientation variables
of each object, where we represent the latter with Euler-
Rodriguez 4-parameters (or unit quaternions) [3,27,37]. The
resulting equation of motion for this coordinate space is a set of
coupled nonlinear, first-order ODEs, which can be solved with
conventional techniques; see Appendix C for details of the
integration scheme. The objects are initially separated along
the x axis and aligned with the force (which, as before, is along
the negative z axis). These specific initial conditions are used
to emphasize the comparison with the pair of spheroids. As
opposed to the spheroid pair, where the eigendirections rotate
only about the y axis and the separation unit-vector R is fixed
to its initial direction £, here the former and the latter undergo
a complex, 3D rotational motion.

We follow the dynamics of each object’s eigendirection,
which is affixed to the object-reference frame and denoted
by —Z. For each object, we define a tilt angle cosd(r) =
Z(t) - £ and an azimuthal correlation with the separation vector
cosp(t) = —Zl(t) . ﬁL(t). A scheme of the configuration
with the relevant variables is depicted in Fig. 3. The two objects
can effectively glide away from each other, similar to the case
of two self-aligning spheroids, if the eigendirections are tilted
away from the separation direction, that is, cos ¢ “(¢) = 1 and
cos ¢’(t) = —1; see the inset in the right panel of Fig. 3. The
solid red curves in Fig. 4, which correspond to a representative
example consisting of two identical objects, demonstrate that
such a resemblance between the two cases does exist. In
particular, the solid red curve in Fig. 4(b) shows that 6(¢) of
object a follows the same trend as the dotted blue curve, which
represents the simple example of self-aligning spheroids. The
tiltangle of object b, which is not shown, has a similar behavior.
The inset in Fig. 4(a) shows the opposite correlations between
74, 7% and R. The gliding effect results in an effective
repulsion, R(¢) o t'/3, as can be seen in Fig. 4(a). The direct
interaction term in Eq. (9)—proportional to IT and decaying
as R~?—can also contribute to the #!/3 trend.
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The example of an arbitrarily shaped, self-aligning pair,
presented in Fig. 4, is a representative of a half-dozen
other examples not shown here. These randomly generated
examples correspond to initial conditions, which involve also
longitudinal separation and different mutual orientations. The
variance in the measured exponents is within a small numerical
error, of order 5%. The analytically predicted power law was
found to hold for all pairs of objects that drifted far apart in
the simulations (80% of the examples). This implies that the
1/3 exponent for the asymptotic repulsion is most probably
general for the class of self-aligning objects.

2. Two uniform prolate spheroids

A pair of uniform spheroids exhibits quite different be-
havior from that of two self-aligning objects. An individual
uniform spheroid (A = 0) does not rotate under forcing, and
it does not translate in response to a flow gradient, i.e., the
Ty matrices and IT tensors in Egs. (9)—-(11) vanish [38].
Hence, in the far-field dynamics of two uniform spheroids, the
alignability and direct interaction are absent,i.e., A = ¢ = 0in
Egs. (12) and (13). The resulting picture, arising from Eqs. (12)
and (13), is that 6 increases linearly with time until saturating
to a constant value, which depends on R(¢ = 0), and the objects
move away from each other with a constant terminal velocity
[39]; see also the dash-dotted green curves in Fig. 4. Hence,
the role of hydrodynamic interactions in this case is solely
the generation of opposite tilts between the objects, which, as
a result, move in opposite directions. In this case, Eq. (14)
becomes equivalent to the one-dimensional problem from
classical mechanics of two particles with a central repulsive
potential, ¥ = Ax72, and the initial conditions x(0) = xq
and x(0) = 0. The qualitative behavior is apparent from the

corresponding velocity equation x = ,/2A(x, '— x~1). The

positive velocity increases x, which in turn increases x toward
a constant value, whereby x continues to grow linearly with
time.

The two power laws—R(¢) ~ t'/°, derived theoretically
for self-aligning spheroids and demonstrated numerically for
irregular objects, and R(z) ~ ¢, derived in the symmetric case
of two uniform spheroids—are universal. Thus, the repulsive
dynamics of pairs of symmetric objects and self-aligning
objects are superficially similar, in that both arise from
opposite tilts of the two objects. However, the mechanisms of
the two repulsions differ qualitatively. The additional tendency
of the latter objects to align with the force leads to a decrease
in the relative velocity, as reflected by a weaker power law for
the increase of separation with time. In addition, the terminal
relative velocity in the case of two uniform spheroids is
sensitive to the initial separation, as well as to the initial tilts. By
contrast, the self-aligning pair has a stable asymptotic velocity
independent of the initial state of alignment (assuming that
R(t = 0) > [ such that the far-field equations, Egs. (9)—(11),
are valid).

1/3

3. Effect of longitudinal separation

Up until now we have examined the simple case of constant
force with initial separation perpendicular to its direction.
As explained below, a small additional separation along
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the direction of the force should not alter qualitatively the
transversal repulsion.

The evolution of the longitudinal separation differs from the
transversal one. The two components governing the far-field
transversal dynamics—mutual relative orientation between
the objects (the opposite tilt) and the direct interaction that
decays as R~2—are weaker, or even absent, in the longitudinal
dynamics. First, the direct interaction, originating from the
off-diagonal blocks of the pair-mobility A, vanishes due to
the constraint that A is a symmetric matrix [1,33,34]. The
components relating one object’s linear velocity along the
Z direction with forcing on the other, satisfy A%’ = Abe

7z°
which implies RZ = (A%’ — Afg)(—F ) = 0. Hence, relative
longitudinal dynamics is solely dictated by relative orientation
between the objects, which in the far-field regime corresponds
to the difference between the (unperturbed) self-responses of
each object.

When R, < R,, we can approximate the objects’ ori-
entations by two opposite tilts of their eigendirections. If
the object’s shape is invariant under rotations about the
eigendirection, e.g., a self-aligning spheroid, such relative
orientation cannot yield relative velocity along the z axis. In
the case of arbitrarily shaped self-aligning objects, we expect
that any asymmetry about the eigendirection approximately
averages out by the rotation of each object. Thus, the effect of
opposite tilts on the relative translation along the direction of
the force is weaker than that on the transversal one. Indeed,
the examples in Publication I showed that the longitudinal
separation evolves slowly in time and seems to saturate at long
times.

IV. DISCUSSION

This work, together with Publication I, aims to provide
a comprehensive description of the translational and orienta-
tional hydrodynamic interactions between two forced objects,
focusing on the generic features of these interactions. In
particular, we have derived a formalism to predict from the
system’s symmetry whether the hydrodynamic interactions
create relative motion (orientational or translational) between
the objects. Where relative motion is present, we have analyzed
its multipole expansion. While our symmetry-based results
for the instantaneous interaction are rigorous, we could
provide only qualitative general trends concerning the time-
dependent relative motion, focusing particularly on irregular,
self-aligning objects, and on the asymptotic dynamics at long
times.

The present article has been devoted to the relative motion
between two equally forced objects. The first part (Sec. II) has
established the basic geometry dependence of the effective
interaction. We have proven that invariance under spatial
inversion precludes any instantaneous relative translation.
In the second part (Sec. IlI), we have treated the effect
of hydrodynamic interactions on time-dependent trajectories.
We have demonstrated how the characteristic R, (z) ~ t!/3
repulsion between two self-aligning objects differs qualita-
tively from the counterpart, asymptotic R (¢) ~ ¢t behavior,
which corresponds to two uniform spheroids. The preferred
alignment of the individual objects reduces the relative
tilt as they get further apart, thus decreasing their relative
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translation compared to the constantly tilted spheroids. This
case highlights the sharp contrast between motion conditioned
by current configuration and time-integrated motion. Two
initially aligned spheroids do not have instantaneous relative
velocity, while two self-aligning objects do (due to the direct
interaction, ~ R~2, term). Yet, the orientational interaction
between the spheroids makes them tilt oppositely and achieve
with time an asymptotic translational velocity that exceeds that
of the self-aligning objects.

We have applied our general symmetry criterion to systems
with confining boundaries, which break inversion symmetry.
This geometrical consideration, without any further detail,
accounts for the apparent interactions originated in hydro-
dynamic coupling, which were observed in optical-tweezer
experiments involving two confined configurations [6,8].
Previous works [5,8] examined these apparent interactions for
two pointlike objects. Our treatment shows that the existence of
the effect can be inferred by symmetry. It is present, therefore,
in more general situations, such as nonspherical objects [e.g.,
Fig. 2(a)] and arbitrary separations, including objects in close
proximity.

The general theory presented here can be used to obtain
simple qualitative predictions, which are readily testable in
experiment. A particularly simple example is the sedimenta-
tion of two identical spheres, positioned one above the other
parallel to a vertical planar wall. This configuration will result
in one sphere instantaneously approaching the wall while the
other is repelled from it. Another example is a modification of
the experiment presented in Ref. [8]. Two identical spheres
placed in a ring and forced in the radial direction will
develop relative translation in the tangential direction. We
note that the general symmetry criterion concerns only the
existence or absence of interaction. To determine the sign of
the interaction, whether it is repulsive or attractive, one needs
additional information such as the Green’s function of the
given hydrodynamic problem.

The symmetry arguments, which we have applied in the
first part of the paper, can be useful in the examination of
orientational dynamics. In a system with spatial inversion
symmetry, object a has the same translational response as
object b, and an opposite rotational response. Hence, when the
objects are subjected to opposite forces, e.g., in the presence of
a central force of interaction between them, they must rotate
in the same sense, and spatial inversion symmetry will be
maintained at all times. This means that, in the dynamics of an
enantiomorphic pair under opposite drive, relative orientations,
possessing a spatial inversion symmetry, are fixed points in the
orientational space, preserving a constant phase difference.
The study of this effect and its applications is postponed to a
future publication.

Another result, which can be verified in a simple experimen-
tal setup, is the asymptotic power-law time dependence of the
separation between two self-aligning objects. For the particular
system comprising a pair of self-aligning (nonuniform) prolate
spheroids, we have shown analytically a #'/? trend (Sec. III).
In the case of two arbitrarily shaped self-aligning objects,
where repulsion is not a general law (see Publication I), we
have reported several examples with a similar trend. These
examples, which are represented by the red curve in Fig. 4,
are not sensitive to initial conditions. For spheroids, the
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effect of opposite tilts on the mutual repulsion is captured
by the positive glide parameter o in Eq. (12). The sign
of « is dictated by the elongated shape of the individual
spheroid. (An oblate spheroid has a negative «.) Therefore,
good candidates for arbitrarily shaped repulsive pairs may
be elongated objects, whose properties, when averaged over
rotations about the eigendirection, resemble those of self-
aligning spheroids. A suggestion for an experiment includes
tracking the sedimentation of two micron-sized, self-aligning
objects in a viscous fluid, where optical traps can be used to
place the objects at a fixed initial separation, perpendicular to
gravity. The effect should not depend on the initial orientations
of the objects, as their alignability guarantees that after a short
transient they will be close to their aligned state.

Finally, the distinction between irregular objects and regular
ones, on the level of a pair of objects, should be significant
in driven suspensions with many-body interactions. Tradi-
tionally, theories and simulations of fluidized beds focused
on colloidal objects of spherical or rodlike shape (see the
reviews in Refs. [4] and [40] and references therein); however,
the case of self-aligning irregular objects might give rise
to new phenomena. For example, sedimentation of spheres
involves only three-body effective interactions, whereas a
suspension of sedimenting irregular objects will include
effective pair-interactions. Such pair-interactions should affect
the objects’ velocity correlations, as will be addressed in a
future publication.
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APPENDIX A: NOTATION

The dynamics of arbitrarily shaped objects is complex and
involves mathematical structures of various dimensions. To
facilitate the readability of the formalism, we use the following
notation regarding vectors, tensors, and matrices:

(i) 3-vectors are denoted by an arrow, U, and unit 3-vectors
by a hat, 0.

(i1) Matrices are marked by an open-face letter, e.g., M,
where the dimension of the matrix is understood from the
context.

(iii) Tensors of rank 3 are denoted by an upper-case Greek
letter, e.g., ®.

(iv) [,,x,, is the n X n identity matrix.

(v) Tensor multiplication—the centered-dot notation—
denotes a contraction over one index. The double-dot notation
denotes a contraction over two indices. Thus, given a tensor Y
of rank N and a tensor E of rank M > N, the tensors Y - &
and Y : Earetensorsofrank N + M —2and N + M — 4.For
example, for Y of rank 2 and E of rank 3, (E - 1)ix; = Yis Egxj
and (Y : E); = Yy, Egyj-
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(vi) The matrix Y* obtained from the vector Y is defined as
(Y*)ij = €ikj Yy, suchthat, for any vector X, Y - X =Y x X.

APPENDIX B: PAIR-MOBILITY MATRIX OF TWO
SPHERES NEAR A WALL

Here we provide more details regarding the pair-mobility
matrix of a system comprising two spheres near a wall. We
write down the blocks structure of the corresponding A and
provide the explicit expressions known for the case of pointlike
objects. A schematic description of the system is given in
Fig. 2(b). Without loss of generality, we assume that the
spheres are located along the x axis, where R = xX points from
the origin of sphere a to the origin of sphere b, and the wall
is placed parallel to them at height z = A. The spheres’ radii
are denoted by p. Hereafter, we consider the projection of A
onto the xz plane. The properties of the y-axis components can
be deduced from the additional symmetry of reflection about
the xz plane, which was not included in our analysis above.
According to the discussion in Sec. II B 2, the pair-mobility
matrix of this system has the following form:

li li

A,Svexlf Afcezlf Afc‘,’rup ng Ai‘;up ng

If If coupling coupling

a| s A am el
~ | geoupling Acoupling el Aself (BD)
XX —Axz XX T xz
coupling coupling self self
—A X A 2z —A X A 2z

The number of independent components can be reduced further
by using the fact that A is symmetric. This property is not
related to the system geometry, which is the issue of Sec. II B 2,
but rather results from Onsager relations or conservation of
angular momentum in the system [1,33,34]. The symmetry of
A connects between the xz and zx components: A5 = Aslf

li li .
and Aff;“p ne — —AgiuP ne Finally, we get
[ i coupli couplin
A;scexlt A;Scezlt Axxup e A;zupl £
A A)sce}f Aievlf _A)c;upling Ag;upling
= couplin, couplin, (B2)
A pling A pling Aself Aself
XX —xz xx — A,y
coupling coupling self self
Ax; 2z —AY A%

In the case of pointlike objects, i.e., spheres with infinitely
small radius, the blocks can be calculated explicitly. The self-
blocks are given by the self-mobility of a single sphere near a
plane wall (first-order in p/ h) [1],

9
self __ 1 (1 - E% 0 )

= — e

67 np 0 132
The coupling blocks, which correspond to the direct hydro-
dynamic interaction between the spheres, are given by the

Green function of the Stokes equation with a no-slip, plane
wall boundary [41],

2x%(4h2 X212 =2(12h* +4h* x> +x*)|x | 12h3x

Acoupling _ (4h24+x2)52|x 3

8mn B
(4h2+x2)5/2

T @2 +x2p

(h2+4x2)52—48h* x| —10h2|x P —|x|°
@hx2)72)x|
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The component Amuleg is the one that was used in Ref. [5]

to explain the effective attraction between two like-charged
spheres near a similarly charged wall.

APPENDIX C: SPHEROID PARAMETERS AND
INTEGRATION SCHEME FOR IRREGULAR OBJECTS

Here we provide more details on the derivation of Egs. (12)
and (13), together with indicating the specific parameters used
for Fig. 4. In addition, we introduce the integration scheme for
the far-field dynamics of two irregular objects.

Equations (9)—(11) contain the single-object-dependent
tensors and the derivatives of the Oseen tensor, G; j(ﬁ) =
1/(87 R*)(8;; + R; R;/R?). We calculate the object-dependent
tensors of self-aligning spheroids as follows: In the case of a
uniform prolate spheroid, these tensors can be found explicitly,
using the results in Ref. [42]. For example, when the major
axis is parallel to the z axis, we have A ,—¢ = diag(a,,a, ,ay),
where the parameters a; and a; depend on the aspect ratio,
and T p—o,ITo,s=0 = 0 [the components of ¥ do not enter
into Eq. (13); see Ref. [36]]. Then, the properties of self-
aligning prolate spheroids (& # 0), Ao, To , and Ig j, are
derived by a change of origin transformation; see Ref. [1]
for transformations that correspond to the tensors of rank 2,
and Appendix C in Ref. [3] for transformations concerning
the tensors of rank 3. Eventually, for a tilted spheroid, the
corresponding tensors are given by a rotation transformation.

The parameters «, A, and ¢ in Egs. (12) and (13) depend
on the components of Ay, To, and Iy, respectively. In
particular, A and ¢ change linearly with h. The trajectories
presented in Fig. 4 correspond to spheroids with an aspect
ratio of 4. The dash-dotted green and dotted blue curves,
respectively, are solutions to Eqs. (12) and (13) with 4 =0
(which gives « &~ 1, A, ¢ =0) and & =~ 0.31(e¢ = 0.6, A =~
1.25, ¢ =~ 0.95).
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The dynamics of a symmetric system comprising two
spheroids (Fig. 3) can be described by the reduced equations
(12) and (13) for one angle 6(¢) and one-dimensional separa-
tion x(¢). However, in the general case of two irregular objects,
we are compelled to integrate the full far-field equations
(9)—(11). Below we describe the details of the integration
scheme. .

The coordinate space includes the separation vector R
and orientational parameters for each object; these are repre-
sented by Euler-Rodriguez 4-parameters (or unit quaternions),
(I'*,Q4) and (I'*,Q"). The tensorial properties of a given
object, such as the matrix A or the tensor of rank 3 II,
are calculated only once, in a reference frame affixed to the
object. For Stokeslet objects, these properties can be derived
self-consistently as described in Sec. V A in Publication I.

Knowing the properties in the body reference frame, e.g.,
A9 or T1°, one can use a ro}ation transformation to calculate
them in any orientation (I, 2):

Ay(,Q) = Ry(N.A), R (I,<),

n,»,-k(r,fz) Rim (T, Q)H le(l" Q)R (T Q)

mls
where
R;j(T,2) = (1 — 292%)8;; + 2T e Q% + 22Q;

is the rotation matrix that is a polynomial in the orientational
parameters.

Fmally, the equations for the evolution of
(R, T, T %) can be written using Eq. (9) and Egs. (10)
and (11) together with the linear relation between angular
velocity and time derivative of the orientation parameters,

s ]l==l- . NE (C1)
Q 2\ o~ Q

where @ = €;jwi.
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