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Miscibility phase diagram of ring-polymer blends: A topological effect
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The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both
of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field
theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While
the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward
demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of
critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the
linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the
topological constraints could be represented as an effective excluded-volume effects, in which the topological
length plays a role of the screening factor.
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I. INTRODUCTION

Ring polymers constitute a class of macromolecules that
do not possess chain ends [1,2]. They could be constructed by
just closing ends of linear polymers. Such a tiny difference
in the molecular architecture, however, may influence the
physical properties of polymers, which could be substantial
in certain situations. Here, one speaks of the topological
constraint, i.e., the molecules cannot spontaneously change
their topology due to the noncrossability of bonds. Melts
and concentrated solutions of ring polymers are expected
to be examples where the topological constraints manifest
themselves most drastically [3].

If we look at individual rings in the melt of nonconcatenated
(unlinked) and unknotted rings, their conformation is much
different from that of Gaussian statistics expected for linear
polymer counterparts. Its clarification has been a subject
of intense research for the past several decades [4–17].
Such a nontrivial conformation would affect the various
macroscopic physical properties of the system. The rheology
of concentrated solutions would be one of primal examples
in the list [18–24]. Another example is the phase behavior of
polymer blends, which is the subject of the present study.

The phase behavior, i.e., mixing or demixing in multicom-
ponent system, is a fundamental subject in various fields of
condensed matter physics. It is also relevant to many practical
applications, such as material engineering and the nutrition
industry. Thus, seeking for a way to control the phase behavior
is an interesting challenge. This motivates us to clarify the
topological effect, if any, in the phase behavior in ring polymer
systems. To get a feeling of the problem, it is instructive to
consider the miscibility of the binary blend of ring polymers
A and linear polymers B, the former being unlinked and
unknotted. The topological constraints in A-rings becomes
tighter with the increase in their local concentration. As was
pointed out by Khokhlov and Nechaev, this may lead to an
enhanced compatibility in comparison with the corresponding
linear polymer blends, since B-polymers play the role of a dilu-
ent softening the topological constraints in the homogeneous
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phase [25]. However, it is not obvious how to develop the
above intuitive picture toward more quantitative predictions.
One may also ask what happens in the ring-ring blends.

Our approach to the problem is to represent the constraints
in ring polymers through the mean-field theory based on
the idea of the topological volume [10,11]. Such a strategy
turned out to be rather successful to describe the topological
constraints in a single-component system, which will be
reviewed in Sec. II (with some revision). Although applying
the same framework to blend involves some delicate point, we
shall proceed with the simplest assumption. Most notably, we
shall adopt the conventional Flory-Huggins theory to represent
the nontopological part of the free energy. This allows us
to investigate how the balance between the intermolecular
unlinking and intramolecular unknotting constraints affects the
phase behavior of ring-ring as well as ring-linear blends in a
systematic way. We shall identify several scenarios depending
on the combination of molecular weights NA, NB of respective
components, the topological length (see below), and the type
of the blend (ring-linear or ring-ring). Such an analysis puts
forward a view that the topological constraints could be
represented as an effective excluded-volume effects, in which
the topological length plays a role of the screening factor. In
addition, our theory predicts that the topological constraints
enhance the phase separation in the ring-ring blends; the
opposite trend to the ring-linear blends. We discuss its physical
origin and derive scaling formulas on the shift of critical point
in several different regimes. Finally, we critically reexamine
the use of Flory-Huggins theory and estimate the range of
validity of the present theory.

A. Topological length

As a rule, the topological effects manifest themselves
in scale larger than some empirically known characteristic
lengths. The simplest example would be the average size R0

of zero-thickness (no excluded-volume) unknotted polymer
ring (with N segments of size a) in its dilute solution [26],

R0 �
{
aN1/2 (N < N0)
aN

1/2
0 (N/N0)ν (N � N0)

, (1)
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with N0 ∼ 300 and ν � 0.59 being the critical exponent for
the self-avoiding walk. Similarly, the average size of unknotted
and unlinked polymer ring in their melt is R � aN1/2 for
N < Ne and R ∼ N1/3 for N � Ne, where Ne ∼ 100 is an
analog of the entanglement length familiar in the rheology
of linear chain melts [22]. In both cases, there is no real
excluded-volume effect (either by the model definition or by
the screening in the melt state). Nevertheless, the ideal (random
walk) regime is restricted only to the small N range, and the
topologically controlled new regimes emerge for larger N .
Note that the fact Ne < N0 may be important when we discuss
the onset of the topological effect in concentrated solutions.
But, as will be shown below, in the evaluation of the free
energy associated with topological constraints, the ratio N0/Ne

just adds a constant factor, implying that the strict distinction
between N0 and Ne seem not to be crucial in the current level
of discussion. Whenever convenient, we will therefore absorb
the ratio into the numerical coefficients in the scaling formulas.

II. TOPOLOGICAL VOLUME-BASED
MEAN-FIELD THEORY

A. Basic formulation

We first review the mean-field theory originally proposed
to describe the size of individual molecules in concentrated
solution of one-component rings [10,11]. Here, on one hand,
rings tend to shrink their size to obey the unlinking constraint
with their surrounding rings. But, on the other hand, the
unknotting constraint within the ring itself acts against it. The
equilibrium size of rings is determined by the competition
between these two constraints. Such an approach dates back
to a seminal paper by Cates and Deutsch [4]. Our topological
volume-based theory may be regarded as its revised version.
For clarity, we assume melt, i.e., the segment volume fraction
φ ∼ 1 condition. φ dependence in semidilute solution will be
discussed in Sec. II B.

The idea of the topological volume has been well docu-
mented in the context of the interaction between two closed,
mutually unlinked rings in dilute solution. Here, the close
approach results in the loss of conformational entropy, as
some conformations are forbidden by the topology (unlinking
constraint) [27]. Therefore, even in the absence of the segment

repulsion, the second virial coefficient, i.e., an effective
excluded volume takes a positive value on the order of the cube
of the ring’s size R. In concentrated solution, with the segment
volume fraction φ, we similarly assume the excluded-volume
of topological origin scales as the cube of ring’s size,

V = R3Y, (2)

where a factor Y (assumed to be independent of N and φ)
accounts for the fact that, unlike a rigid impenetrable spheres,
the polymer rings are very soft object, allowing a certain degree
of spatial overlapping: rings are in an intense “push and shove”
ambiance. One may then recall a sort of the packing problem,
in which the free energy increases with the decrease in the
“free volume.” The simplest way to account for this would be
by following the idea of van der Waals, to assume the free
energy per ring,

Funlink(�)

kBT
= − ln (1 − �), (3)

which sharply diverges as the topological volume fraction
� = VX /R3 = XY approaches the dense packed limit. Here
the coordination number X = R3/(Na3) (also called as the
overlapping parameter in the context of polymer entangle-
ment) is the number of neighboring rings, which invades the
volume R3 of a reference ring.

In this way, Eq. (3) represent a tendency that the rings favor
shrinkage to satisfy the unlinking constraint. The more shrunk,
however, the more severely the rings have to negotiate the
unknotting constraint within individual rings. A simple dimen-
sional analysis suggests the following form for this penalty,

Funknot(�; N )

kBT
�

(
R0

R

)β

, (4)

where the reference size R0 is given by Eq. (1). The exponent
β can be determined by requiring the osmotic pressure to be
intensive quantity, leading to β = 6 for N < N0 or 3/(3ν − 1)
for N > N0. Here, we have rederived the confinement free
energy of the self-avoiding chain into cavity [29,30], but with
one difference, that is the presence of the topological length
scale N0.1 Equation (4) is rewritten as

Funknot(�; N )

kBT
�

{
N

( Y
�

)2
(N < N0)

N
( Y

�

)1/(3ν−1)
N

3(1−2ν)/[2(3ν−1)]
0 = (√

NY
�

)1/(3ν−1)( N
N0

)3(2ν−1)/[2(3ν−1)]
(N � N0)

. (5)

Each ring optimizes its size to reduce the total topological
free energy Ftop = Funlink + Funknot.

We now determine the factorY from the physical argument.
When � is small enough (� < �e), the topological free energy
becomes irrelevant in the thermal fluctuation. This observation
is naturally connected to the topological length scale Ne. From
the condition Funlink(�e) � Funknot(�e; Ne) � 0.5 kBT , one
finds �e � 0.4 and can fix the softness factor,

Y � �e√
Ne

, (6)

to be related to the entanglement length.

For longer rings, the topological constraints become pro-
gressively important, which are to be optimized. One finds
via the minimization of Ftop with respect to �(= XY) that X
slowly increases with N . This yields R ∼ N1/3 for N > Nc.
But the crossover to this asymptotic is very slow Nc � Ne,
and for medium length rings (Ne � N � Nc), the power-law
fit may give the effective exponent close to 0.4.

1The introduction of N0 into the functional form of Funknot is
the revised point in the present paper. In the original treatment in
Refs. [10,11], this point was missing, which amounts to say ν = 1/2.
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Equation (6) leads to

X =
√

Ne �/�e. (7)

This is one of the key relations born of the present theory, which
relate the geometrical quantity (X ) and the topological length
Ne, and bears some similarity to the so-called Kavassalis-
Noolandi criterion on the entanglement length in dense linear
polymer solutions (cf. Eq. (5) in Ref. [31]). A rough estimate
Ne ∼ 70 (a typical value for flexible linear polymer melts)
yields Xe ≡ X (Ne) ∼ 8 at the onset of the topological effect
toward an eventual saturation Xc ≡ X (Nc) ∼ 20, which sig-
nals the onset of the compact statistics. The onset length of the
compact statistics is estimated as Nc � NeX 3

c /X 2
e � 100Ne

[10,11].
At this point, it is instructive to gaze back at the outcome

from the viewpoint of a packing problem. Take randomly
packed jammed particles, and ask what is the coordination
number X (more precisely, the average number of contacts per
particle). Insight from the marginal stability argument suggests
that, for frictionless rigid particles, it is equal to twice the
number of degrees of freedom per particle, i.e., the isostatic
conjecture. This yields the average contact number 2 × 6 = 12
for an ellipsoid, which well approximates the average shape
of individual rings in melts. The fact that the estimated value
of X falls in the range suggested by isostatic argument may
support the view of the concentrated ring polymer systems as
a sort of the packing problem, where Eq. (7) provides a link to
the topological constraint.

B. Concentration dependence

In semidilute solution of rings, the topological lengths
would become concentration dependent, which are denoted
as N

(φ)
0 and N

(φ)
e . Here, we envision rings made from

the succession of concentration blobs with size ξ (φ) �
ag(φ)ν � aφν/(1−3ν) (screening length of the excluded-volume
effect). Then, N0 would be replaced by N

(φ)
0 � N0g(φ) �

N0φ
−1/(3ν−1). The ring size is now

R0 �
{

ξ (φ)[N/g(φ)]1/2�aφ(2ν−1)/[2(1−3ν)]
(
N<N

(φ)
0

)
aN

1/2
0 (N/N0)ν

(
N�N

(φ)
0

).
(8)

Keeping a factor φ in the coordination number X =
R3φ/(Na3), and following the same line of argument from
Eqs. (4) to (5), we find

Funknot(�; N )

kBT

�
⎧⎨
⎩

N
g(φ)

( Y
�

)2 (
N < N

(φ)
0

)
N

g(φ)

( Y
�

)1/(3ν−1)
N

3(1−2ν)/[2(3ν−1)]
0

(
N � N

(φ)
0

). (9)

By requiring Funlink(�e) � Funknot(�e; N (φ)
e ) � 0.5kBT , we

find Eqs. (6) and (7) for Y and X , respectively, and

N (φ)
e � Neφ

−1/(3ν−1). (10)

With Eq. (6), one can rewrite Funknot as

Funknot(X ; N )

kBT
�

⎧⎨
⎩

N

N
(φ)
e

(Xe

X
)2 (

N < N
(φ)
0

)
N

N
(φ)
e

(Xe

X
)1/(3ν−1) (

N � N
(φ)
0

). (11)

Note X = Xe at N = N
(φ)
e ∼ N

(φ)
0 , which ensures a crossover

between the above two expressions.

III. BLEND WITH RING POLYMERS

A. Free energy

We aim at constructing the free energy of ring-ring blends,
the suitable limit of which reduces to the free energy of the
ring-linear blends.

1. Ring-ring blend

Consider a binary blend of A and B rings. The total numbers
of respective rings are MA and MB , which are contained in the
volume �. The chain length, the overall average composition
of α-ring are denoted as Nα and φα = v0NαMα/�, where the
monomer volume v0 � a3 is assumed to be common to both
types of ring, and φA + φB = 1.

One complication in the blend is that N0 and Ne, which
are defined in the respective single-component systems, can
be different for A and B rings depending on their molecular
structures. We assume here that these are common to A and B

rings. With this simplifying assumption, we can construct the
free energy associated with the topological constraints in the
following way.

Let us first hypothetically switch off all the unlinking
constraints in the blend. Then, the size R0 of individual A and
B rings is described by Eq. (1), since the excluded-volume
effect is screened at the monomer scale, and the unknotting
constraint within individual rings induces swelling at N > N0.
In the real blend, however, the rings are squeezed by unlinking
constraints, thus Rα < R0, where Rα is the size of α ring.
Following the argument from Eqs. (4) to (5), this squeezing
leads to a free energy penalty per one α-ring,

Funknot

kBT
�

[
Nα

(
φαYα

�α

)1/(3ν−1)]
N

3(1−2ν)/[2(3ν−1)]
0 , (12)

which is identified to be associated with the unknot-
ting constraint. Here �α = VαMα/� = XαYα and Xα =
R3

αφα/(Nαa3), and we focus on the case NA, NB > N0 ∼ Ne

(otherwise, the topological effect would be negligibly small).
With the spatial size Rα of the α ring, we introduce the

associated topological volume Vα = R3
αYα . The assumption

of the common Ne to both components implies the softness
factor YA = YB is common as well, which is given by Eq. (6).
The presence of the “volume” Vα implies the reduction
of the associated “free volume” � → � − MAVA − MBVB ,
yielding a factor [1 − (MAVA + MBVB)/�]MA+MB in the
partition function.

From above considerations, we obtain the free energies,
associated with the unlinking and unknotting constraints,
respectively, per monomeric volume as

funlink

kBT
= − 1

N∗ ln (1 − �), (13)
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funknot

kBT
�

[ ∑
α=A,B

φα

(
φαYα

�α

)1/(3ν−1)
]
N

3(1−2ν)/[2(3ν−1)]
0

�
∑

α=A,B

[
φα

Ne

(
φα�e

�α

)1/(3ν−1)]
. (14)

In the above equations, N∗ is a weighted harmonic mean of
chain length defined as

1

N∗ ≡ φA

NA

+ φB

NB

, (15)

and � = �A + �B is the total topological volume fraction.
The use has been made of Eq. (6) to reach the last expression
in Eq. (14). The total free energy is

f (φA,�A,�B) = fFH(φA) + ftop(φA,�A,�B), (16)

where ftop = funlink + funknot, and we adopt the conventional
Flory-Huggins free energy,

fFH

kBT
= φA

NA

ln φA + φB

NB

ln φB + χφAφB, (17)

for the nontopological part with χ parameter to represent the
nature of two-body interactions [28].

2. Ring-linear blend

For blends with ring (A) and linear (B) polymers, there is no
contribution from linear polymers to the topological constraint,
so we just need to set �B = φB = 0 in Eq. (13) and remove
the unknotting contribution from B component in Eq. (14):

funlink

kBT
= −

(
φA

NA

)
ln (1 − �A), (18)

funknot

kBT
� φA

Ne

(
φA�e

�A

)1/(3ν−1)

� φA

N
(φA)
e

(
�e

�A

)1/(3ν−1)

. (19)

Note that Ne(∼N0) in the above equation is the topological
length in the melt of rings. In the presence of finite fraction
of linear B polymer, the onset of the topological effect on the
conformation of A ring should be delayed, hence, the corre-
sponding length scale N

(φA)
e becomes longer. To determine

N
(φA)
e , we again require the condition Funknot(
e; N (φA)

e ) �
0.5kBT (see the argument around Eq. (6) and Sec. II B), where
Funknot = funknot × �/(v0MA) is the unknotting free energy
per A ring. One finds

N (φA)
e � Ne φA

1/(1−3ν), (20)

which leads to the last expression in Eq. (19).

B. Phase behavior of ring-linear blend

To find the equilibrium state, we first minimize ftop with
respect to �A. The optimum �A,min is determined from the
following algebraic equation

g(�A,min) � NA

Ne

φA
1/(3ν−1), (21)

with a function g(x) ≡ x3ν/(3ν−1)/(1 − x). It turns out that
ftop(�A = �A,min) is a function of φA through the dependence

FIG. 1. Phase diagrams of the ring (A) and linear (B) polymer
blends with the length ratio θ ≡ NA/NB = 1/4 and Ne = 70. Note
that χ (vertical axis) is rescaled in unit of χ (FH)

c so that the phase
boundaries of linear polymer blends with a given θ but with different
molecular weights superimpose a master curve (labeled as FH). The
locations of critical point are marked by the cross symbols.

of �A,min on φA. A graphical representation of Eq. (21) easily
shows that the increase in φA leads to the increase in �A,min,
which in turn results in the increase in ftop. This is the point
at which the topological constraints enter the problem of
miscibility phase behavior. The phase diagrams calculated
from our free energy are shown in Fig. 1. Qualitatively, one
can say that the system tends to avoid the high-concentration
state of ring polymers, which is unfavorable in terms of the
topological constraints. In the rescaled phase diagram, the
miscibility domain enlarges with the increase in the molecular
weight.

We now develop the above qualitative picture to quantify
the structure of the free energy. Under the condition NA �
N

(φA)
e , one finds 1 − �A,min � (Ne/NA)φ1/(1−3ν)

A � 1, which
approximates the topological free energy as

ftop

kBT
∼ φA

NA

ln φA + φ
3ν/(3ν−1)
A

Ne

, (22)

aside from the term linear in φA. While the effect of the first
term is just slightly to modify the translational entropy term
in fFH, the second term causes a qualitative change in the free
energy profile f (φA).

The critical point can be found from the usual procedure
∂2f/∂φ2

A = ∂3f/∂φ3
A = 0. One finds the critical composition

φA,c and the critical χc as

φA,c ∼
(

NA

Ne

)1−3ν

, (23)

χc ∼
{

1
NA

(
NA

Ne

)3ν−1 [
NB

Ne
� (

NA

Ne

)2−3ν]
1

NB

[
NB

Ne
� (

NA

Ne

)2−3ν]. (24)

042502-4



MISCIBILITY PHASE DIAGRAM OF RING-POLYMER . . . PHYSICAL REVIEW E 93, 042502 (2016)

Compared to the above is the classical result from the
analysis of the Flory-Huggins free energy (17),

φ
(FH)
A,c = (1 + θ1/2)−1 (25)

χ (FH)
c = [

2NA

(
φ

(FH)
A,c

)2]−1 = (
√

NA + √
NB)2

2NANB

, (26)

where θ = NA/NB . For the critical point to be substantially
shifted, the blend should be already topologically tight at φA =
φ

(FH)
A,c . This condition �A,min(φ(FH)

A,c ) > �e is cast as

NA(1 +
√

θ )1/(1−3ν) � Ne. (27)

C. Phase behavior of ring-ring blend

As a new element in the ring-ring blend problem, one has to
take account of the intense topological interaction between A

and B rings in the blends, implying that the conformations of
A and B rings are not independent in reducing the topological
free energy. Indeed, from ∂ftop/∂�A = ∂ftop/∂�B = 0 (and
φA + φB = 1), we find

�A

φA

= �B

φB

(=�). (28)

With this condition, Eq. (14) can be simplified as

funknot

kBT
� 1

Ne

(
�e

�

)1/(3ν−1)

. (29)

The optimum �min is determined from the following
algebraic equation:

g(�min) � N∗(φA)

Ne

. (30)

Unlike the ring-linear blend [cf. Eq. (21)], the φA-dependence
of �min, thus ftop, is controlled by the φA-dependence of
N∗ in Eq. (15). For a symmetrical blend NA = NB , the φA

dependence vanishes, resulting in no topological effect on the
phase behavior.

The phase diagrams calculated from our free energy are
shown in Fig. 2. Contrary to the ring-linear blend, the
miscibility is now suppressed, and the shift of phase boundary
saturates at high molecular weight.

To clarify the point, we analyze the structure of the free
energy and the shift of the critical point. Under the condi-
tion 1 − �min � Ne/N

∗ � 1, the topological free energy is
approximated as

ftop

kBT
∼ 1

N∗ ln N∗, (31)

aside from the terms linear in φA. The critical point is obtained
as

φA,c � φ
(FH)
A,c (32)


χc � − 
2

2NB

(
1−φ

(FH)
A,c 


) ∼
{
0 (θ = 1)
−χ (FH)

c (θ�1, θ�1)
,

(33)

FIG. 2. Phase diagrams of the ring (A) and ring (B) polymer
blends with the length ratio θ ≡ NA/NB = 1/4 and Ne = 70. The
locations of critical point are marked by the cross symbols.

where 
χc ≡ χc − χ (FH)
c and 
 ≡ (NA − NB)/NA = 1 −

θ−1. The condition corresponding to Eq. (27) is

NA

θ − √
θ + 1

� Ne. (34)

IV. APPLICABILITY OF THE FLORY-HUGGINS
APPROXIMATION

So far, we have adapted the conventional Flory-Huggins
theory for the nontopological part of the free energy without
assessing its validity. In Flory-Huggins theory, polymers are
supposed to overlap strongly in the concentration regime. In
linear chain melt (in three dimensional space), chains take ideal
Gaussian conformation and strongly overlapped with others
[32]. In melt of rings, however, the Gaussian conformation
is limited only up to the scale of Ne. In larger scales, the
rings get more compact and exhibit a tendency of mutual
segregation. This observation makes the use of Flory-Huggins
theory questionable.

In this section, we will analyze the problem of the blend
miscibility from (essentially the same but) a slightly different
approach. In addition to rederiving the results obtained so
far, this analysis allows us to get the condition under which
Flory-Huggins-type approximation can be valid, and more
importantly, to clarify various length scales relevant to the
polymer collapse and phase-separation.

Let us assume NA � NB and consider the A-ring polymers
in the sea of B-linear polymers, and expand the free-energy
density (per monomeric volume v0) as

f

kBT
� φA

NA

ln φA + τφ2
A + B3φ

3
A + ftop

kBT
, (35)

where (dimensionless) virial coefficients are τ = 1/(2NB ) −
χ , B3 = 1/(6NB) from Eq. (17), and we omitted an
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unimportant linear term in φA. The factor ∼N−1
B in τ and

B3 represents a screening effect due to the B-polymer matrix
[28]. The osmotic pressure � is given by

�v0

kBT
� φA

NA

+ τφ2
A + 2B3φ

3
A + �topv0

kBT
. (36)

In the following, we shall first review the phase behaviors
of linear polymer blends. The purpose here is to identify the
length scales (so called the thermal blob and the mesh size), and
to see how these lengths are associated to the phase behaviors
of the polymer blends. Then, we shall proceed to show how
the topological effect alters those length scales.

A. Reminder on linear-linear blend

When two-body attraction becomes sufficiently large, the
homogeneous state becomes unstable and the blend separates
into A-rich and A-poor phases. The A-rich and A-poor phases
are stabilized by the three-body repulsive interaction and
the translational entropy, respectively, which determines the
respective phase boundaries. Therefore, by comparing the first
and the third terms in osmotic pressure, we get the critical
composition φA,c � (NB/NA)1/2, which agrees with Eq. (25).
To find the reduced temperature τc at the critical point, we look
at a section of a ring with n monomers, whose spatial extent is
r � an1/2. The free energy of that section is

Fn

kBT
� τv0

(
n

r3

)2

r3 + B3v
2
0

(
n

r3

)3

r3 � τn1/2 + N−1
B .

(37)

When τ < 0, the above equation leads to a length scale ξth �
ag

1/2
th � a/(|τ |NB), with

gth � (|τ |NB)−2. (38)

This so-called thermal blob signifies the scale, above which
the effect of attractive interaction prevails. Another im-
portant length scale is the composition dependent mesh
size, determined by the relations a3g(φA)/ξ 3(φA) � φA and
ξ (φA) � ag1/2(φA); hence, ξ (φA) � aφ−1

A , g(φA) � φ−2
A . The

homogeneous state is stable as long as gth > g(φA). Thus, the
condition gth = g(φA) signifies the point at which the demixing
takes place, thus, determines the phase boundary in A-rich side,

|τ |NB � φA. (39)

At the critical concentration, this leads to τc � −(NANB)−1/2,
which again agrees with the Flory-Huggins prediction Eq. (26).

B. Topological effect in ring-linear blends

For the topological contribution, we adopt the asymptotic
form [Eq. (22)],

ftop

kBT
� φA

N
(φA)
e

� φ
3ν/(3ν−1)
A

Ne

� �topv0

kBT
. (40)

From Eqs. (35) and (40), we see that the topological effect acts
as the stabilization similar to the three-body repulsive term. If
ν = 1/2, it has a cubic dependence on φA, thus, acts as an
effective third virial coefficient, and we would have a simple
conclusion that the topological effect prevails when Ne < NB .

However, as suggested by Eq. (1), the large-scale behavior of a
trivial knot without excluded-volume effect is described by the
exponent of the self-avoiding walk ν � 3/5, and this makes
the whole analysis more complicated as sketched below.

We first look for the critical composition φA,c. This can be
done by comparing the first and the last terms in Eq. (36),
leading to the rederivation of Eq. (23). We then look at
the section (with n monomers) of A ring, and evaluate the
corresponding free energy,

Fn

kBT
� τn1/2 + N−1

B + nq

Ne

, (41)

where the last term is evaluated from Eq. (40) and we introduce
an exponent q = 3(2ν − 1)/[2(3ν − 1)] just to simplify the
notation (note that q = 3/8 for ν = 3/5, while q = 0 for
ν = 1/2). Here it is assumed that the chain conformation is
Gaussian at the length scale of interest, i.e., n < N0,N

(φA)
e .

Equation (41) suggests a length scale g∗ � (Ne/NB)1/q be-
yond which the topological effect plays a dominant role for
the stabilization. Under the situation where the demixing is
controlled at the length scale larger than g∗, the thermal blob
scale ξ

(top)
th � a[g(top)

th ]1/2 is determined by the balance between
the first and the third terms in Eq. (41) with

g
(top)
th � (|τ |Ne)2/(2q−1). (42)

As before, the phase boundary at A-rich side is obtained from
the condition g

(top)
th � g(φA):

|τ |Ne � φ
1−2q

A . (43)

We find that, compared to the normal case, Eq. (39), the
topological effects lead to a peculiar shape of the phase
boundary, which can be seen by rewriting the phase diagram
(Fig. 1) in φA-τ plane; see Fig. 3. In addition, the role of NB

as a screening factor is replaced by Ne. By substituting the
critical composition, we find the critical reduced temperature:

τcNe � −
(

Ne

NA

)2−3ν

. (44)

With the relation between τ and χ [see below Eq. (35)], we
find its equivalence to Eq. (24).

1. Crossover to a classical scenario

When the length of either ring or linear polymer is not
long enough, the topological effect would not affect the phase
behaviors of ring-linear blends substantially, and the crossover
to a classical scenario is expected. The condition for the ring
length is

NA > N (φA)
e ⇔ φA > (Ne/NA)3ν−1, (45)

where N
(φA)
e is given in Eq. (20). This condition is required

for the topological free energy to be approximated by its
asymptotic form, Eq. (22).

The condition for the linear chain length is obtained as
follows. By comparing gth and g

(top)
th , we find the condition

|τ |Ne � (NB/Ne)(1−2q)/(2q). This signifies the crossover to the
Flory-Huggins scenario with negligible topological effects.
Indeed, for the topologically controlled thermal blob to be
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FIG. 3. Phase diagrams of the ring (A) and linear (B) polymer
blends in φA-τ plane. Parameters are the same as those described
in the caption of Fig. 1. Note that in this representation, the lower
part (below coexisting curve) corresponds to the two-phase region.
The dashed curve on the top is a guide to |τ |Ne � φ

1/4
A , which is

the asymptotic phase boundary (in high φA side) valid in long rings
NA > N (φA)

e .

meaningful, g
(top)
th should be larger than g∗. This condition is

satisfied only when

|τ |Ne < (NB/Ne)(1−2q)/(2q). (46)

Otherwise, the thermal blob follows a classical scaling
[Eq. (38)], which leads to the demixing described by the
Flory-Huggins theory. On can check the above condition
reduces Ne < NB if ν = 1/2.

2. Range of validity

Our analysis above relies on the assumption of the Gaussian
conformation up to, at least, the length scale g(φA),g(top)

th .
Therefore, for the description to be valid, the condition
g(φA),g(top)

th < N
(φA)
e ,N0 should be required. We now bring

the above condition into focus. First consider the case

N0 < N (φA)
e ⇔ φA < (Ne/N0)3ν−1. (47)

In this case, the required conditions are

g(φA) < N0 ⇔ N
−1/2
0 < φA, (48)

g
(top)
th < N0 ⇔ |τ |Ne > N

(2q−1)/2
0 . (49)

In the case opposite to Eq. (47), i.e., N0 > N
(φA)
e ⇔ φA >

(Ne/N0)3ν−1, then the condition g(φA) < N
(φA)
e is automati-

cally satisfied, so the required condition is

g
(top)
th < N (φA)

e ⇔ |τ |Ne >
(
Neφ

1/(1−3ν)
A

)(2q−1)/2
.

(50)

If Eqs. (48) or (49) is not satisfied, a part of A ring swells
even inside the mesh or inside the thermal blob. On the other

φA

τ

0
(47)(48)

(49) (50)

(45)

(46)

FIG. 4. Schematic diagram in (φA-τ ) plane illustrating regions
for various regimes in ring-linear blend phase behaviors. Numbers
in the figure refer to the corresponding equations in the text. The
present theory would be applicable in the central white region,
where the topological constraints are relevant and the nontopological
part of the free energy can be taken into account through Flory-
Huggins approximation. In the left and lower shaded region, the
topological constraints are irrelevant, so the classical Flory-Huggins
approximation would be valid for the description of blend phase
behavior. In the top or the most left hatched region, the assumption
of Gaussian conformation would not be appropriate to determine the
thermal blob or the mesh size, where Flory-Huggins approximation
needs to be modified to take into account the nontrivial statistics
of binary contacts. Using the typical numbers Ne ∼ 80, N0 ∼ 300,
NA = NB = 500 and the exponent ν = 3/5, we have the following
estimates for borders: Eq. (45) φA � (Ne/NA)4/5 ∼ 0.23; Eq. (46)
−τ � N−1

e (NB/Ne)1/3 ∼ 0.023; Eq. (47) φA � (Ne/N0)4/5 ∼ 0.35;
Eq. (48) φA � N

−1/2
0 ∼ 0.05; Eq. (49) −τ � N−1

e N
−1/8
0 ∼ 0.006;

and Eq. (50) −τ � N−9/8
e φ

5/32
A → N−9/8

e (at φA → 1) ∼ 0.007. For
very long A ring, the locations of the vertical lines of Eqs. (45) and
(48) are interchanged.

hand, if Eq. (50) is not satisfied, a part of A ring starts to get
compact even in the small scale where the attraction is yet
a weak perturbation. In either case, one has to take account
of the non-Gaussian conformation to discuss the blend phase
behavior.

The above conditions in (φA-τ ) plane are summarized in
Fig. 4. The central white region exists when the vertical line of
Eq. (45) is located to the left side of φA = 1 line and the border
of Eqs. (49) and (50) lies above the border of Eq. (46). These
conditions can be expressed as NA > Ne and NB > N

5/8
e . Note

that the latter condition would be NB > Ne if the exponent
introduced in Eq. (1) was ν = 1/2.

C. Topological effect in ring-ring blends

For the topological contribution, we adopt the asymptotic
form [Eq. (31)],

ftop

kBT
∼ 1 − φA


NB

ln

[
NB

1 − φA


]
, (51)

where 
 ≡ 1 − θ−1 was defined below Eq. (33). It is evident
that there is no topological effect on the phase behavior for the
symmetrical blends NA = NB . In the case θ = NA/NB � 1,
we expand Eq. (51) into power series and obtain the total
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free-energy density [see Eq. (35)],

f

kBT
� φA

NA

ln φA + τ̃ φ2
A + B̃3φ

3
A. (52)

Therefore, we see that the topological constraints affect
shifting the effective virial coefficients

τ̃ = τ − c2

2

NB

, (53)

B̃3 = B3 − c3

3

NB

. (54)

Note that the unknown numerical constants c2, c3 in the
shift factors are due to the scaling estimate of the topo-
logical free-energy Eq. (51). The shift of τ in the negative
direction indicates the enhancement of the phase separation.
The equivalent expression in term of χ parameter is χ̃ =
χ + c2


2/NB , which is consistent with Eq. (33). Unlike the
ring-linear blend case, the size of thermal blob follows the
normal scaling, that is the number of monomers inside blob
g̃th � (B̃3/|τ̃ |)2 [cf. Eq. (38)], and in this sense, the phase
behavior of the ring-ring blends are qualitatively described
by the normal Flory-Huggins theory with the shifted χ

parameter.

1. Range of validity

In ring-ring blends, we may disregard the composition
dependence of Ne (at least, in the simplest situation we
consider, where Ne is common to both components). Since
Ne is numerically smaller than N0, the required conditions are

g(φA) < Ne ⇔ N−1/2
e < φA, (55)

g̃th < Ne ⇔ |τ̃ |Ne > B̃3N
1/2
e . (56)

If Eqs. (55) or (56) is not satisfied, one has to take account
of the non-Gaussian conformation to discuss the blend phase
behavior.

V. SUMMARY AND PERSPECTIVES

In summary, the topological constraints in the blends with
long ring polymers are generally relevant ingredients for their
phase behaviors. The present theory, based on the idea of
the topological volume, enables one to treat the ring-ring
blends and the ring-linear blends on the same footing. In
both cases, we have argued that it is the balance of unlinking
and unknotting constraints that eventually affects the phase
behaviors. This naturally allows us to quantify the disparity
between ring-ring and ring-linear blends that leads to opposite
trends for the shift of phase diagram.

The general trend in ring-linear blends is the enhancement
of miscibility. Here, the topological interactions among A

rings may play a dominant role to stabilize their dense phase.
While this stabilization in normal case is realized by the three-
body interactions whose strength is controlled by the inverse
length N−1

B of B polymers [Eqs. (35) and (37)], the topo-
logical stabilization has a fractional power dependence on the
composition and its strength is controlled by N−1

e [Eqs. (40)
and (41)]. This leads to a qualitative change in the shape of

the A-rich side phase boundary, hence, a large shift of the
critical point. In ring-ring blend, on the other hand, the net
effect of the topological interactions is to shift the effective
virial coefficients (hence, the χ -parameter) in such a way that
the miscibility will be suppressed. For the NA � NB case,
this shift factor is controlled by 
2N−1

B , implying that the
relative shift of the critical χc is, at most, on the order of
unity [see Eq. (33)]. The effect disappears for the symmetrical
blend 
 = 0. Note that the analytical predictions in Sec. IV
are based on the asymptotic forms of topological free energy
valid for sufficiently long chains [see Eqs. (40) and (51)].
A prominent crossover behavior expected for medium length
chains is clearly seen in Fig. 3.

It may be interesting to observe that the topological
constraints could be represented as effective excluded-volume
effects, where the topological length acts as the screening
factor. Indeed, the size behavior in Eq. (1) may be described
by the following free energy:

Fchain

kBT
� R2

Na2
+ Ã2

N2

R3
, (57)

with Ã2 = A2 + a3/
√

N0. Under the condition of negligible
excluded volume A2 � 0, the topological term due to the
unknotting constraint dominates the effective second virial
coefficient. The screening factor 1/

√
N0 signifies the scale N0,

beyond which the perturbation due to the topological repulsion
becomes substantial. The topological volume due to the unlink-
ing constraints introduced in Eq. (2) has the similar structure,
i.e., the volume multiplied by a factor �e/

√
Ne (which may be

numerically close to 1/
√

N0). As already summarized above,
in the ring-linear blend, under the condition NA � N

(φA)
e ⇔

1 − � � 1, the balance between the unlinking and unknotting
constraints leads to the free-energy density, where Ne plays an
analogous role as the screening factor of excluded volume
interactions.

To focus on the most salient feature in the problem, we
have considered the binary polymer blends with a common
topological length Ne. In future work, it should be interesting
to relax this condition, which may be important for various real
situations. But the difference in Ne may often be linked to the
difference in the segmental properties (stiffness, etc.), which
implies much richer behaviors. Other interesting questions
include the kinetics of the phase separation, which is expected
to be different from the linear-linear blends, and the phase
behavior in confined space, where the geometrical constraints
matters, too. The rheology of the blends can be also controlled
by the phase separation, the effect of which would be most
prominent in the case of ring-linear blends. The experimental
verification of the topological effect on the phase behaviors
should be an interesting challenge.2 Indeed, experimental or
numerical test of the prediction may serve as a touchstone for
the relevance of the notion of topological volume in dense ring
polymer solutions, which should be an important step toward

2Recently, Nagoya group has observed the topological effects on
the phase behaviors of ring-linear and ring-ring blends, which are
in qualitative agreement with our prediction (private communication
with A. Takano and Y. Doi).
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our improved understanding of the topological constraints in
polymer systems.

ACKNOWLEDGMENTS

T.S. thanks A. Grosberg for discussion on the entropy
associated with the unknotting constraint. This work was

supported by KAKENHI [Grant No. 16H00804, “Fluctua-
tion and Structure,” Grant No. 24340100, Grant-in-Aid for
Scientific Research (B)], Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan, and JSPS
Core-to-Core Program (Nonequilibrium Dynamics of Soft
Matter and Information).

[1] T. McLeish, Science 297, 2005 (2002).
[2] D. Richter, S. Gooßen, and A. Wischnewski, Soft Matter. 11,

8535 (2015).
[3] J. D. Halverson, J. Smrek, K. Kremer, and A. Y. Grosberg,

Rep. Prog. Phys. 77, 022601 (2014).
[4] M. E. Cates and J. M. Deutsch, J. Phys. 47, 2121 (1986).
[5] S. P. Obukhov, M. Rubinstein, and T. Duke, Phys. Rev. Lett. 73,

1263 (1994).
[6] M. Müller, J. P. Wittmer, and M. E. Cates, Phys. Rev. E 53, 5063

(1996).
[7] A. Takano, Polym. Prepr. Jpn. 56, 2424 (2007).
[8] T. Vettorel, A. Yu. Grosberg, and K. Kremer, Phys. Biol. 6,

025013 (2009).
[9] J. Suzuki, A. Takano, T. Deguchi, and Y. Matsushita, J. Chem.

Phys. 131, 144902 (2009).
[10] T. Sakaue, Phys. Rev. Lett. 106, 167802 (2011).
[11] T. Sakaue, Phys. Rev. E 85, 021806 (2012).
[12] M. Lang, J. Fischer, and J.-U. Sommer, Macromolecules 45,

7642 (2012).
[13] S. Y. Reigh and D. Y. Yoon, ACS Macro Lett. 2, 296 (2013).
[14] A. Y. Grosberg, Soft Matter 10, 560 (2014).
[15] A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).
[16] S. Obukhov, A. Johner, J. baschnagel, H. Meyer, and J. P.

Wittmer, Europhys. Lett. 105, 48005 (2014).
[17] S. Gooßen, A. R. Brás, M. Krutyeva, M. Sharp, P.

Falus, A. Feoktystov, U. Gasser, W. Pyckhout-Hintzen, A.

Wischnewski, and D. Richter, Phys. Rev. Lett. 113, 168302
(2014).

[18] J. Roovers, Macromolecules 18, 1359 (1985).
[19] G. B. McKenna et al., Macromolecules 20, 498 (1987).
[20] M. Kapnistos et al., Nat. Mater. 7, 997 (2008).
[21] S. T. Milner and J. D. Newhall, Phys. Rev. Lett. 105, 208302

(2010).
[22] J. D. Halverson, G. S. Grest, A. Y. Grosberg, and K. Kremer,

Phys. Rev. Lett. 108, 038301 (2012).
[23] Y. Doi et al., Macromolecules 48, 3140 (2015).
[24] T. Ge, S. Panyukov, and M. Rubinstein, Macromolecules 49,

708 (2016).
[25] A. R. Khokhlov and S. K. Nechaev, J. Phys. II (France) 6, 1547

(1996).
[26] A. Yu. Grosberg, Phys. Rev. Lett. 85, 3858 (2000).
[27] M. D. Frank-Kamenetskii, A. V. Lukashin, and A. V. Vologod-

skii, Nature 258, 398 (1975).
[28] P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell

University Press, Ithaca, 1979).
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