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On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics
of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations
of variables from the equilibrium such as in common experimental operations. This algorithm provides an
alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs’ rhythm
by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs
in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-
dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization
among complex signals related to calcium oscillations, and show different correlation relations between calcium
and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses
indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote
cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating
modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves
across inhomogeneous SMCs.
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I. INTRODUCTION

Rhythmical contractions in smooth muscle have been
observed in many different tissues, e.g., in the gastrointestinal
tract, urinary tract, and lymphatic vessels [1–3]. In blood
vessels, this activity, named for vasomotion, is found in
larger arteries and in low-resistance vessels in microcirculation
[4,5], where vascular rhythmicity is apparently synchronous
over considerable lengths of arteries [6]. While the literature
has investigated the underlying mechanism for many years,
it has only been recently that, through images of confocal
microscopy, the vasomotion is argued as critically depending
on calcium waves originating from intracellular stores [7]
and on cell coupling via gap junctions. In addition to these
vasomotion phenomena observed in isolated arteries and in
some intact mammals (e.g., humans, dogs, rabbits, and rats)
[8–11], some operations by in vitro experiments indicate that
vascular rhythmicity can be enhanced with the help of agonists:
noradrenaline (NE), acetylcholine (ACh), phenylephrine (PE),
neuropeptide Y, and KCl solution [12–15]. These studies
showed that the vasomotion spreads over an increasing
distance of the arteriole by raising the dosages of agonists, and
tonic contraction can be induced without calcium oscillations
at very high concentrations of NE, KCl, and PE; otherwise,
the spread of vasomotion is much faster than the movement of
molecules by normal diffusion [16], and can be eliminated by
clamping the voltage [15].
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These physiological reactivities of vascular rhythmicity
corresponding to experimental observations are not fully
understood. One such inference is that the functionality
of vasomotion can be for low-energy-consumption tissue
perfusion (1.7 to 8.0 times more efficient than in vessels
without vasomotion) [17–19] and could be protective of
pathological conditions (e.g., hypertension, via regulating
vascular resistance) [20,21]. In this work we investigate
vascular rhythmicity by means of mesenteric microcirculation,
which is a region of easy-regulating resistance against blood
flow. Due to its accessibility, the rat mesenteric artery is
one of the most thoroughly studied vascular beds [22,23],
bringing forth a vast amount of experimental data. The
literature has recognized the need for mathematical models
in vasomotion studies and has developed many mathematical
models. However, most studies investigated either mem-
brane potential changes or changes in calcium concentrations
[24–31], while few works systemically looked at the resonance
mechanisms underlying voltage oscillation and the correlated
experimental observations with the synchronization of calcium
oscillation for smooth muscle cells in rat mesenteric arterioles.

On the basis of experimental data and mathematical equa-
tions in the literature, we remodel the ionic dynamics of smooth
muscle cells as an eigensystem formulation. By using the first-
order Taylor approximation, our approach accurately depicts
the characteristic frequencies (eigenvalues) of smooth muscle
cells (SMCs) and the correlations of signaling pathways
(eigenfunctions) under finite variations of model variables,
such as in common experimental conditions. This algorithm
provides an alternate viewpoint on frequency-domain analysis
and enables one to probe the functionalities of SMCs’ rhythm
by means of a resonance-related mechanism. However, the
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first-order approximation could introduce significant numeric
inaccuracy if there exist violent fluctuations of variables.
Our work mainly investigates the underlying mechanisms
of SMCs’ rhythmicity by varying dosages of agonists, i.e.,
potassium, that can diffuse from muscle fibers at the onset
of exercise and the responses to evident changes of vascular
rhythm [32]. Our calculations show three types of calcium
oscillations of SMCs in mesenteric arterioles: spontaneous
calcium oscillation, agonist-dependent calcium oscillation,
and agonist-dependent calcium spike. For simple single and
double SMCs, we demonstrate properties of synchronization
among complex signals related to calcium oscillations, and
show different correlations between calcium and voltage
signals for various synchronization and resonance conditions.
For practical cell clusters [30], our analyses indicate that
the rhythm of SMCs could (1) benefit enhancements of
signal communications among remote cells, (2) respond to
a significant calcium peaking against transient stimulations
for triggering globally oscillating modes, and (3) characterize
the globally oscillating modes via frog-leap (non-molecular-
diffusion) calcium waves across inhomogeneous SMCs.

Our conclusions interpret experimental phenomena in
the literature and provide materials for understanding other
functionalities of calcium dynamics (e.g., appearance of
the significant calcium peaking). Our algorithm also offers
preliminary considerations for the inherent rhythm of rat
mesenteric arterioles at the cell level, which are proposed to
have a relation to efficient energy transports and the heart rate
[33].

II. MATHEMATICAL ALGORITHMS

A. Basic mathematical modelings

The model is composed of three categories: plasma mem-
brane, cytosol, and intracellular calcium store. Relevant exper-
imental parameters and mathematical equations are derived on
the basis of Tsoukias’s previous developments for rat mesen-
teric smooth muscle [22,23]. Figure 1 illustrates a schematic
diagram of the model: (i) The dynamics of plasma membrane
include ion channels, pumps, exchangers, and receptors, for
all the major transmembrane currents that have been identified
in SMCs of rat mesenteric arterioles. The ion channels
contain a large conductance calcium-activated K+ channel
(BKCa), voltage-dependent K+ channel (Kv), unspecified leak
K+ channel (Kleak), calcium-activated Cl− channel (ClCa),
nonselective cation channel (NSC), store-operated cation
channel (SOC), voltage-operated Ca2+ channel (VOCC), the
nonselective gap-junction ion channel (GJ), and the IP3

gap-junction flux. Specific mathematical descriptions are
included for the Na+-K+-ATPase pump (NaK), the plasma
membrane Ca2+-ATPase pump (PMCA), the Na+-K+-Cl−

cotransport (NaKCl), and the Na+-Ca2+ exchanger (NCX).
(ii) The intracellular calcium store, representing the sarcoplas-
mic reticulum, contains sarcoplasmic reticulum Ca2+-ATPase
pumps (SERCA), IP3 receptor Ca2+ channel (IP3R), ryanodine
receptor Ca2+ channel (RyR), the leak current (leak), and
the Ca2+ buffering with calsequestrin (CSQN). (iii) The
cytosol includes the processes of α1-adrenoceptor activation
and IP3 formation, incorporated with the effects of NE. The
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FIG. 1. Schematic diagram of model components for mesenteric
smooth muscle cell. BKCa: Large conductance calcium-activated K+

channel; Kleak: unspecified K+ leak channel; Kv: voltage-dependent
K+ channel; ClCa: calcium-activated Cl− channel; NSC: nonselective
cation channel; SOC: store-operated calcium-permeable nonselective
cation channel; VOCC: L-type voltage-operated Ca2+ channel; NaK:
Na+-K+-ATPase; PMCA: plasma membrane Ca2+-ATPase; NaKCl:
Na+-K+-Cl− cotransport; NCX: Na+-Ca2+ exchange; SR: sarcoplas-
mic reticulum; IP3R: IP3 receptor; RyR: ryanodine receptor; SERCA:
SR Ca2+-ATPase pumps; CSQN: calsequestrin; CM: calmodulin; R:
α1-adrenoceptor; G: G protein; PLC: phospholipase C; sGC: soluble
guanylate cyclase; GJ: nonselective gap-junction channel.

vasodilatory action of NO is modeled through a direct effect
on the BKCa channel and through the formation of cGMP. The
whole dynamics are integrated by ionic balances for calcium,
sodium, potassium, and chloride ions and are described in the
Appendix F.

B. Eigensystem formulation for a single SMC

We first consider a single SMC. The 26 transient variables
νi∈{1...26}(t), having time-dependent evolutions, are re-defined
by the function νi(t) = ν̄i + δνi

(t). Here, ν̄i denotes the time
average value for variable νi , and δνi

(t) denotes its transient
variation. In this work, 26 transient variables for a single
SMC are grouped into a vector, i.e., �ν(t) = ([Ca]i [Ca]r [Ca]u
[Na]i [K]i [Cl]i Vm dL fL pf ps pK q1 q2 PSOC R10 R11

R01 hIP3 [RS
G] [RS

P,G] [G] [IP3] [PIP2] VcGMP [cGMP])T .
The 20 relevant ionic currents are also arranged as vector
�I (t) = (IVOCC IBKCa IKv IKleak ICaNSC INaNSC IKNSC ISOCCa

ISOCNa IClCa IPMCA INCX INaK INa
NaKCl IK

NaKCl ICl
NaKCl ISERCA

Itr Irel IIP3)T for convenience. Considering finite variations
such that the higher-order contributions of variables converge
(δn

νi
→ 0 at n � 1), ionic currents as well as relevant nonlinear

equations can be validly expressed by a Taylor series, e.g.,
Ij (t) = Īj + �Ij (ν̄i ,δ

n
νi(t)) for the j th vector component of

�I (t). Here, Īj denotes the time average value for component
Ij (t).

For the quasiequilibrium conditions, the transient variables
νi(t) and ionic currents Ij (t) are stable and their time-
average terms (ν̄i and Īj ) remain constant. All time-dependent
behaviors can be attributed to variant terms δνi

(t), i.e.,

Ij (t) = Īj + �Ij (ν̄i ,δνi(t))

� Īj +
∑

i

�I
νi

j δνi(t) (1)
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for first-order approximation of ionic currents, and

d

dt
νi(t) = d

dt

[
νi + δνi

(t)
]

�
∑

j

�
νj

νi
δνj

(t) +
∑
j,k

�I
νj

k δνj
(t),

d

dt
δνi(t) =

∑
j∈{1,...,26}

⎡
⎣�

νj

νi
+

∑
k∈{1,...,20|}

�I
νj

k

⎤
⎦δνj

(t) (2)

for the first-order approximation equations of components
νi∈{1,..,26}(t), in which relevant variables �I

νj

k and �
νj

νi
are

derived in more detail in Appendixes B–E. Alternatively,
Eqs. (1) and (2) can be formulated in matrix forms:

�I (t) = �I + ��δν(t), (3)

d

dt
�δν(t) = ��δν(t). (4)

Obviously, Eq. (4) has an analytical solution:

�δν(t) = e�(t−t0)�δν(t0), (5)

where exp(�t) represents the matrix exponential of �t . With
the given initial conditions, the transient properties of �I (t) can
otherwise be straightforwardly obtained by substituting Eq. (5)
into Eq. (3).

With the eigensolution of the matrix � in Eq. (4), the
transient characteristics of variables �δν(t) can be conve-
niently demonstrated from the viewpoint of eigenvalues ωi

and eigenfunction �θi(δνj
) for eigenmode i. Without loss of

generality, the time evolution of the ith eigenmode can be
expressed as exp(ωit)�θi(δνj

) ≡ exp(ωi,r t + iωi,ct)�θi(δνj
) with

j ∈ {1, . . . ,26}. The positive (negative) real part ωi,r of the
eigenvalues denotes the growing (decaying) time by 1/ωi,r ,
and the imaginary part ωi,c denotes its period of oscillation
by 2π/ωi,c. The component amplitude of eigenfunction
|θi,j | = |�θi(δνj

)| indicates the oscillating amplitude of the
j th variable νj in the ith eigenmode, and the phase angle
(ϑi,j ) = angle[�θi(δνj

)] indicates its lag phase in the oscillation
period. Since � is a nonsymmetric matrix, eigenfunctions of
SMC systems are not mutually orthogonal in our case.

C. Eigensystem formulation for multiple SMCs

We next consider the condition for multiple (m) SMCs
coupled via gap junctions. For this case, Eq. (4) is straightfor-
wardly extended to be

d

dt

⎡
⎣ �δν,1(t)

. . .
�δν,m(t)

⎤
⎦ =

⎡
⎢⎢⎣

�̃1 �1j 0

�j1 �̃j . . .

0 . . . �̃m

⎤
⎥⎥⎦

⎡
⎣ �δν,1(t)

. . .
�δν,m(t)

⎤
⎦ (6)

with matrix components

�̃pq,i = �pq,i +
∑

j

�I
νq

GJ,j δνq,i
, (7)

�pq,iC =
∑

j

�I
νq,C

GJ,j δνq,C
. (8)

Here, �IGJ,j corresponds to gap junction currents for ion j

(or [IP3]) that are in connection with δνp,i , and C indexes the
nearby SMC coupled to the local one. The component �̃pq,i

in Eq. (7) includes additional contributions of the gap junction
currents by the terms �I

νq

GJ,j , which are associated with

variations of δνq,i
(qth component of �δν,i) in the local SMC i.

The component �pq,iC in Eq. (8) includes the contributions of
the gap junction currents by the terms �I

νq,C

GJ,j , that is associated
with variations of δνq,C

in the nearby SMC C. Since the format
of the matrix in Eq. (6) remains the same as that in Eq. (4), the
same process for solving a single SMC is applied for multiple
SMCs.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, (i) we first carry out the frequency-domain
analysis on a control condition of SMCs. We study how the
eigenvalue and eigenfunction correspond to time evolutions of
transient variables. (ii) Continuing with the frequency-domain
approach, we investigate properties of calcium oscillations at
different concentrations of potassium; otherwise, we perform
the corresponding time-domain analysis to get intuitional
ideas of synchronization among complex signals. Another
exemplar of two coupled SMCs is prepared to elucidate more
realistic (intracellular and intercellular) calcium dynamics and
resonance effects. (iii) Lastly, we explore practical finite SMC
clusters. With an input delta-function calcium pulse in this
resonance medium, we observe physiological functionalities
of rhythmic oscillations of SMCs.

Mathematical algorithms were implemented in Visual C++
and were executed on a HP Z800 workstation with 48 GB
of RAM. Relevant default values of the variables and initial
parameters are defined in Appendix A. Source codes of
the C++ language for time-domain and frequency-domain
analyses are available online [34]. We also refer to JSim
computations for time-domain programming [35].

A. Frequency-domain analysis on the control set of SMCs

Default parameters for the control condition of SMCs are
defined in Appendix A, except [K]e = 35.8 mM, [NE] =
2.0 × 10−4 mM, ISERCA,0 = 20.4 pA, and Rleak = 0.0000535.

We obtain the equilibrium parameters �δν necessary for
frequency-domain analysis after running the time-domain
simulation for 105 s. Relevant parameters of the SMC model
are taken from known experimental measurements [36]: 25 s
period calcium oscillation in rat mesenteric arterioles and
the threshold value of [K+]e = 20 nM for triggering calcium
oscillation for instance.

Figure 2 shows numerical results of eigenvalues and
eigenfunctions for a single SMC on the control condition. The
figure is divided into four parts: (a) real parts of eigenvalues
that decide the growing time or decaying time of eigenmodes,
corresponding to positive or negative values, respectively;
(b) imaginary parts of eigenvalues that indicate the oscillation
periods of eigenmodes; (c) oscillating amplitude of transient
variables in eigenmodes M22 and M23; and (d) oscillating
phase of transient variables in eigenmodes that tells the phase
lags regarding oscillations. Each oscillating amplitude value in
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FIG. 2. Numerical analysis of eigenvalues and eigenfunctions for a single SMC on the control condition: (a) real parts of eigenvalues,
(b) imaginary parts of eigenvalues, (c) oscillating amplitude of transient variables in eigenmodes 22 and 23, and (d) oscillating phase of transient
variables in eigenmodes 22 and 23.

Fig. 2(c) is divided by its own average to show the percentage
of variations and is dimensionless.

In Figs. 2(a) and 2(b) for a single SMC model, we obtain
two sets of mutually complex-conjugate eigenvalues, with
values −0.028 ± 0.011i and −8 × 10−7 ± 0.000264i ms−1,
corresponding to eigenmodes (5,6) and (22,23), respectively.
We select the set of eigenmodes (22,23), which signify a longer
decay time of 1250 s and an oscillation period of 23.8 s, for
studying the properties of transient variables.

For the set of eigenmodes (22,23), Figs. 2(c) and 2(d)
illustrate the oscillating amplitude and phase of transient vari-
ables. Several quantities are discussed here for the following
study: the oscillation amplitude of [Ca]i is 22%, the oscillation
amplitude of [Ca]u is 10%, and the phase difference between
[Ca]i and [Ca]u is 105◦.

To apply the quantities from frequency-domain analysis, we
study the time-domain calculations. Figure 3 shows numerical
results for the time evolutions of several transient variables.
Figure 3(a) presents the temporal variation of [Ca2+]i to arrive
at the equilibrium after t = 4 × 104 s. After equilibrium, we
add an input of delta-function calcium stimulation at t =
4.8 × 104 s. Responses to this stimulation illustrate a calcium
oscillation having decaying time 1/ω22,r = −1250 s [green
curve in Fig. 2(a)] and oscillation period 2π/ω22,c = 24 s
[blue curve in Fig. 2(b)], which agree with the values from
frequency-domain analysis. An extra calculation for SMCs
in experimental conditions ([K+]e = 40 mM; red curve) is
appended here to explain the high dosages of agonists and is
in the paragraph below.

Figures 3(c) and 3(d) characterize oscillating amplitudes
and phases for several transient variables in eigenmodes
(22,23). Here, each curve is divided by its average of variables
in order to compare the results with Figs. 2(c) and 2(d):
22% oscillation amplitude of [Ca]i relatively compared to

10% oscillation amplitude of [Ca]u, and 105◦ phase lags
between [Ca]i and [Ca]u, which agree with those in Figs. 2(c)
and 2(d).

B. Time-domain and frequency-domain analyses
for a single SMC

Continuing with the frequency-domain approach, we inves-
tigate properties of calcium oscillations at different concentra-
tions of potassium. Figure 4 gives the eigenvalue spectrum of
a single SMC in response to different extracellular potassium
concentrations. The spectrum is depicted in units of time,
instead of frequency, for convenient descriptions. For real
parts of eigenvalues in Fig. 4(a), the positive (negative) value
denotes the growing (decaying) time ∼(1/ωi,r ). We find two
sets of complex-conjugate solutions corresponding to rhythmic
oscillations by frequency-domain analysis: (i) the set of eigen-
mode (5,6) (green curves) characterizes a short oscillation
period (∼0.1–1 s), fast decay time (∼0.1 s), and insensitivity
against agonist. This mode exists even under very low dosages
of agonists. According to the literature [6], rat mesenteric
arteries are resistant to spontaneous vasomotion. Moreover,
only sparse observations of spontaneous vasomotions with
periods ∼2 s are noted in our experiments of mesenteric
arterioles. For these reasons, we identify eigenmodes (5,6)
as spontaneous vasomotions and observe them infrequently in
realistic mesenteric arterioles due to their fast decay. (ii) The
set of eigenmode (22,23) (red and blue curves in Fig. 4),
however, exhibits strong dependence on the extracellular
potassium concentrations and has different behaviors in
regions I, II, and III. In region I, an oscillation-deactivation
section, eigenvalues of modes 22 and 23 are real and distinctly
separate, and no oscillating actions appear. In region II,
an oscillation-activation section, the decay time of modes
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FIG. 3. Time evolutions of several transient variables in eigenmodes (22,23) for a single SMC: (a) time evolution of [Ca2+]i with given
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(22,23) prolongs exponentially when increasing extracellular
potassium concentrations, and is present as a dominant
eigenmode at [K]e � 36 mM. Around [K]e � 36 mM, the
set of eigenmode (22,23) can be realized as experimental
observations due to the robustness of its lifetime. For [K]e 

36 mM, eigenmode (22,23) could be smeared due to the nature
of nonorthogonality to other nonoscillating eigenmodes (gray
curves). In region III, as shown in Fig. 4(a), the real part of the
eigenvalues turns into a positive value, and hence eigenmode
(22,23) transfers to a transient growing type. The oscillating
amplitude could rise violently along the temporal curve as
the red curve (experimental set) in Fig. 3(b). In this region,
the significant deviations from equilibrium values of transient

variables invalidate the precision of our algorithm except for
qualitative inferences. In summary, numerical results of Fig. 4
show three types of calcium oscillations for a single SMC in
mesenteric arterioles: spontaneous calcium oscillation (green
curves), agonist-dependent calcium oscillation (blue curves in
region II), and agonist-dependent calcium spike (blue curves
in region III) as shown in Fig. 4.

In addition to eigenvalue analysis in Fig. 4, eigenfunctions
also provide explicit information as discussed below. Figures 5
and 6 show the oscillating amplitude δ̂νi ≡ |δνi/δ̄νi | and
oscillating phase ϑνi for eigenmode (22,23) in response
to extracellular potassium concentrations, respectively. By
Eq. (3), we transform the eigenfunction associated with �δν
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FIG. 4. Eigenvalue spectrum of a single SMC in response to extracellular potassium concentrations. (a) Real parts of eigenvalues for
evolution time ∼1/ωi,r , and (b) imaginary parts of eigenvalues for oscillation periods ∼2π/ωi,c.
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FIG. 5. Oscillating amplitude δ̂νi ≡ |δνi/δ̄νi | of variables in eigenmode (22,23) in response to extracellular potassium concentrations.

into an eigenfunction associated with currents � �I ∼ ��δν .
Figures 7 and 8 illustrate numerical results for the oscillating
amplitude and phase of currents in eigenmode (22,23) versus
extracellular potassium concentrations, respectively. We note
that the definitions of phase lag here refer to the calcium
oscillation in cytosol.

Previous studies of signal inhibitions and vascular mechan-
ics have in fact suggested a diverse mechanism (in addition
to the known intracellular stores) for rhythmic contractions of
SMCs. For instance several mechanical measurements [37–42]
have demonstrated mandatory or modulatory roles of K+

channels for vasomotion in arteries. The activation of cGMP
and the calcium-dependent chloride current for vasomotion
have been found in endothelium-denuded mesenteric arteries.
In a voltage-dependent coupled oscillator model, the litera-
ture has also proposed the depolarization and the involve-

ment of voltage-dependent calcium current to be responsi-
ble for agonist-dependent vasomotion in mesenteric arteries
[43–45].

To investigate the interplays of a diverse mechanism for
rhythmic contractions of SMCs, we study the correlations and
synchronizing timings of signal pathways from Figs. 5–8.
We find the following: (i) By increasing [K]e, electrical
oscillations in cytosol gradually change from the cyclic
(K+

i + Na+
i ↔ Ca2+

i + Cl−i ) configuration toward the cyclic
(K+

i + Na+
i + Ca2+

i ↔ Cl−i ) configuration as in Fig. 6. This is
in response to the growing strength of oscillations by alternate
positive and negative charge accumulations in cytosol at high
[K]e. (ii) By increasing [K]e, the oscillating amplitude related
to transmembrane currents decreases, while the oscillating
amplitude related to intracellular stores (�Itr,�Irel,�ISERCA)
increase as in Fig. 7. (iii) By increasing [K]e, the oscillating
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FIG. 6. Oscillating phase ϑνi of variables in eigenmode (22,23) in response to extracellular potassium concentrations.
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FIG. 7. Oscillating amplitude of current �Ii in eigenmode (22,23) in response to extracellular potassium concentrations, in which [δCa]i =
2 × 10−5 mM.

amplitude of [δCa]r rapidly increases while that of [δCa]i and
[δCa]u almost remains constant as in Fig. 5. This fact causes
the evolvement of the temporal wave form of [Ca]i from being
a sinelike [e.g., blue curve in Fig. 3(b)] to a spikelike [e.g., red
curve in Fig. 3(b)] function, while keeping the accumulation
of [Ca]i (integral area of wave form) relatively stable. (iv) By
increasing [K]e, the discordance between the increasing
amplitudes of [δpf ] and [δps] (Fig. 5) and the decreasing
amplitude �IBKCa (Fig. 7) is symbolized as desynchronization
effects for this pathway. This inference can also be deduced
from another discordance between �IBKCa/ĪBKCa ∼ 1.5% and
δpf

/p̄f = δps
/p̄s ∼ 19% at [K]e = 35.8 mM.

On the basis of these eigenfunction analyses, we further
investigate how synchronizing timings among signal pathways
differentiates the spontaneous and agonist-dependent calcium
oscillation. For simplicity, we categorize time flows of signal-

ing pathways into two streams: one stream for the cycle of
cytosol ions, and the other stream for the cycle of intracellular
store. Figure 9 depicts the schematic sketch of coupled time
flows of signaling pathways for (a) spontaneous calcium
oscillation and (b) agonist-dependent calcium oscillation on
the control condition. The curves show the timings of maxi-
mum values of ionic concentrations δνi∈{1...6} and membrane
potential δνi∈{7}. The positions of the arrows schedule the
time when the maximal amplitudes of current variations
occur, and the lengths of the arrows indicate the oscillation
amplitudes of channel currents. Arrows are colored as relevant
ions. The opposite-direction current variations occur after a
time lag Tperiod/2 = π/ω22,i and are not shown here. For the
fast decaying spontaneous calcium and long-lasting agonist-
dependent calcium oscillation at [K]e = 35.8 mM, we find
that (i) the cycle of cytosol ions through transmembrane

24 28 32 36 40 45
−180

−90

0

90

180

(a)    [K]
e
 (mM)

ph
as

e 
di

ff
er

en
ce

 (
de

gr
ee

)

ΔI
VOCC

ΔI
BKCa

ΔI
Kv

ΔI
Kleak

ΔI
ICaNSC

24 28 32 36 40 45
−180

−90

0

90

180

(b)    [K]
e
 (mM)

ph
as

e 
di

ff
er

en
ce

 (
de

gr
ee

)

ΔI
NaNSC

ΔI
KNSC

ΔI
SOCCa

ΔI
SOCNa

ΔI
ClCa

24 28 32 36 40 45
−180

−90

0

90

180

(c)    [K]
e
 (mM)

ph
as

e 
di

ff
er

en
ce

 (
de

gr
ee

)

ΔI
PMCA

ΔI
NCX

ΔI
NaK

ΔI
NaKCl,Na

ΔI
NaKCl,K

24 28 32 36 40 45
−180

−90

0

90

180

(d)    [K]
e
 (mM)

ph
as

e 
di

ff
er

en
ce

 (
de

gr
ee

)

ΔI
NaKCl,Cl

ΔI
SERCA

ΔI
tr

ΔI
rel

ΔI
IP3
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FIG. 9. Schematic sketch of coupled time flows of signaling pathways for (a) spontaneous calcium oscillation and (b) agonist-dependent
calcium oscillation. The curves show the timings of the maximum values of ionic concentrations δνi∈{1..6} and membrane potential δνi∈{7}. The
positions of the arrows schedule the time when the maximal amplitudes of current variations occur, and the lengths of the arrows indicate the
oscillation amplitudes of channel currents. Arrows are colored as relevant ions. The opposite-direction current variations occur after a time
lag Tperiod/2 = π/ω22,i and are not shown here. It is emphasized that the positive and negative arrows represent the relatively increasing and
decreasing concentration to the values in equilibrium, respectively, and not the absolute values of concentrations.

currents is dominant in the former condition, while the cycle
of intracellular store is dominant in the latter condition; (ii) the
time lag between calcium and voltage oscillations is finite in
the former condition, while the oscillating phases of calcium
and voltage oscillations are exactly synchronous in the latter
condition; (iii) aside from the Ca2+ itself, K+ oscillation plays
the primary role in the former condition, while Na+ and Cl−

oscillations are relatively intense in the latter condition. All
these findings above interpret the significance of synchronizing
timings for vasomotions on different conditions [7,9], and
conclude with inevitable involvements of Na+,K+,Cl− ions
as well as other relevant channels [43–45].

We also append time-domain calculations corresponding
to analyses in Fig. 9(b) to validate our algorithms. Figure 10
shows the time-lag cross-correlation between calcium oscilla-
tion [δCa]i and current oscillations �Ii . Figure 11 illustrates the
time-lag cross-correlation between calcium oscillation [δCa]i

and other transient variables δνi . With the given oscillation
period of 24 s on the control condition, for instance, the 8
s time lag for �INaK in Fig. 10(c) is equivalent to the shift
−(8/24)Tperiod of �INaK from [Ca]i in Fig. 9(b).

Before studying multiple SMCs, we consider an example
of two coupled SMCs (cells I and II), including intracellular
and intercellular (see the next section) calcium dynamics, for
synchronizing and resonance effects. Extra parameters for the
2-SMCs are defined for inhomogeneous cell volumes, with
volI = 1.6 p
 and volII = 1.1 p
. A numerical calculation
of frequency-domain algorithm gives three sets of complex-
conjugate eigenvalues for the 2-SMCs: (i) mode S with
ωS = −0.028 ± 0.011i, (ii) mode A with ωA = −4.96e −
07 ± 2.46e − 04i, and (iii) mode B with ωB = −1.49e −
05 ± 1.98e − 04i. Mode S is responsible for the spontaneous
calcium oscillation, and modes A and B present two kinds of
globally agonist-dependent calcium oscillations. Figures 12
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FIG. 10. Time-lag cross-correlation between calcium oscillation [δCa]i and current oscillations �Ii .
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FIG. 11. Time-lag cross-correlation between calcium oscillation [δCa]i and other transient variables δνi .

and 13 show the schematic sketch of time flows of signaling
pathways for mode A and B, respectively. One can refer to
Fig. 9 for the definitions of the curves and arrows. For mode
A in Fig. 12, we observe that cell II shows more prevailing
calcium oscillation than cell I, while the oscillating phases of
calcium and voltage are synchronous in cell II but have a time
lag in cell I. Oppositely for mode B in Fig. 13, we observed that
cell I shows more prevailing calcium oscillation than cell II,
while the oscillating phases of calcium and voltage are almost
synchronous in cell I but have a time lag in cell II. We notice
that oscillations of voltage in both cells always remain exactly
synchronous in the studied cases.

To explore the influences of synchronizing timings, we
further carry out time-domain calculations to study 2-SMCs’
responses to the external signal, delivered from nerve activity
or blood flow, for example [32]. With mode A, we consider
three kinds of cyclic calcium stimulations (with frequency ω)
to cell I: (a) on-resonance condition with ω = ωA,i , (b) near-
resonance condition with ω = 0.9ωA,i , and (c) off-resonance
condition with ω = 10ωA,i as in Fig. 14. Figure 14 shows
time evolutions of [Ca]i and Vm for cells I and II in these

conditions. For the on-resonance condition, the stimulation
signals in cell I transfer through gap junction to cell II, and
bring both cells into calcium oscillation at mode A; otherwise,
the oscillating amplitudes in cell II are more intense than those
in cell I, and the oscillating phase of [Ca]i in cell I has a time
lag (∼Tperiod/5) to Vm, agreeing with that in Fig. 12. For the
near-resonance condition, the stimulation signals from cell I
dissipate during transference, and cell II exhibits incomplete
synchronization with cell I. During the period of in-phase
oscillations, the oscillating amplitude of [Ca]i in cell II is
strong. During the period of out-phase oscillations, however,
the oscillating amplitude of [Ca]i in cell II is relatively weak.
The time lags among [Ca]i of cell II and the other three
variables vary with time. For the off-resonance condition, the
stimulation signals from cell I are mostly blocked from cell II.
Calcium and voltage oscillations are not observed in cell II, and
are significantly suppressed in cell I. With this case of 2-SMCs,
we conclude that two factors are essential for efficient signaling
communications among cells: (i) correct synchronizing tim-
ings among signal pathways occur in SMCs, i.e., the existence
of oscillating eigenmodes, and (ii) stimulation signals having
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similar frequency to the eigenmode. On the basis of synchro-
nizing and resonance concepts, we investigate functionalities
of SMCs’ rhythm for practical cell clusters in the next
section.

C. Frequency-domain analysis for finite SMC clusters

We now explore physiological functionalities of SMCs’
rhythmic oscillations, especially for signaling communica-
tions among cells. For intercellular communication, we include
the electrodiffusion coupling [23], which uses the Goldman-
Hodgkin-Katz (GHK) equation for ionic currents through
the gap junctions. These ionic currents were added to the
membrane potential equation and corresponding ionic flux
equations as in Appendices B 12, D, and F. We assume
permeability to be the same for all ions. Gap junction
resistance values from experiments were used to calculate
the permeability [46]; otherwise, 15% variations of SMC

volumes, as indicated in Ref. [47], were introduced to realize
the inhomogeneity of cells.

Figure 15 shows the frequency spectrum for homogeneous
1D clusters at varying cell numbers. Every cell is set in
the control condition (except for [K]e = 34.8 mM), and only
neighbor cells establish gap junctions. As indicated by green
(spontaneous oscillating mode) and red (agonist-dependent
oscillating mode) lines in Fig. 15, the oscillation level
gradually evolves into a spread band along with increasing
cell numbers. This fact infers that a broader-range timing
or synchronization among cells is acceptable for rhythmical
oscillations in longer clusters. Moreover, properties of red
curves in Fig. 15(a) suggest that, due to including more in-
teractions among cells, more transient growing states (positive
frequency values) are excited, resulting in the prolongation
of duration periods of vasomotions. With an input of delta-
function calcium pulse in this resonance medium, we observe
functionalities of SMCs’ rhythmic oscillations by time-domain
calculations.
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As illustrated in Fig. 16(a), with the same modeling
parameters for Fig. 15, the temporal changes of [Ca2+]i of
a 6-SMC cluster are evaluated. In this case, [K]e is reduced
to be 34.6 mM (oscillation activation; see Fig. 4) so as to
initially prepare in-equilibrium cells. Another 6-SMC cluster,
with [K]e = 20 mM (oscillation-deactivation; see Fig. 4) is
computed in Fig. 16(b). Before calcium-pulse stimulation both
6-SMC clusters remain in equilibrium and are indistinguish-
able by observations. With the given stimulation (suddenly
raising the calcium concentration on SMC1 by 35%), the
cluster under the oscillation activation first arouses significant
calcium peaking by transient resonance in SMC1 [48] [see
Fig. 16(a)], and continuously brings calcium signaling toward
other SMCs. Numerical results (not shown in the figure)
indicate that calcium peaking arises from the activation of
ryanodine receptors, which cause [Ca2+]i to be released from
the sarcoplasmic reticulum of cell I. For the cluster under
oscillation deactivation in Fig. 16(b), the stimulation from
SMC1 dissipates fast and no signaling communications among
cells occur, conforming with the observation in experiments
of rat mesenteric arterioles [49].

We next include the inhomogeneity of SMCs for biolog-
ical complexity. Here, 15% stochastic variations of SMC

volumes [47] are introduced. Figure 17(a) depicts similar
properties on the agonist-dependent oscillating modes (red
lines), although the growing mode seems to be more easily
excited due to the fluctuation of cell volumes. It is noted
that the spontaneous oscillating modes (green lines) remain
relatively insensitive to cell number as well as cell uniformity.
Figure 17(b) exhibits a broader but less dense level spectrum,
versus Fig. 15(b). This fact could imply that the vasomotion
in inhomogeneous clusters can decay faster than that in
homogeneous ones due to less-overlapping oscillating levels.

We carry out time-domain analysis to study the influences
of cell uniformity. Figure 18(a) presents one inhomogeneous
6-SMC cluster with oscillation activation (region II in Fig. 4),
while Fig. 18(b) helps analyze another inhomogeneous cluster
with oscillation deactivation (region I in Fig. 4). In the case
of Fig. 18(a), [K]e is set to be 35.0 mM in preparation for
the initial in-equilibrium cells. In the case of Fig. 18(b),
[K]e is reduced to be 20 mM to achieve the oscillation-
deactivation condition. For the oscillation-deactivation con-
dition, the stimulation from SMC1 dissipates fast and no
signal communications among cells occur. For the oscillation-
activation condition, we find that the signaling transference
in inhomogeneous clusters decays relatively faster than that
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FIG. 16. Calcium responses against delta-function calcium stimulation to SMC1 for homogeneous 6-SMCs: (a) at [K]e = 34.6 (oscillation
activation; see region II in Fig. 4), and (b) at [K]e = 20.0 (oscillation deactivation; see region I in Fig. 4).
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FIG. 17. Frequency spectrum of inhomogeneous SMC clusters at different cell numbers: (a) real parts of eigenvalues related to growing or
decaying time, (b) imaginary parts of eigenvalues related to oscillation periods.

in homogeneous ones; otherwise, the signaling delivery
among cells presents properties differing from the molec-
ular diffusions and characterizes a frog-leap manner (from
SMC1 to SMC3), depending on the specific inhomogeneity.
Our calculations explain the observations in the literature
[14,16].

IV. CONCLUSION

We have developed herein a detailed biophysical algorithm
that intuitionally investigates characteristics of rhythmicity
and synchronization related calcium regulation in SMC. Im-
plemented with frequency-domain and time-domain analyses
for a single cell, this work recognizes the inherent properties of
rhythmical calcium oscillations and validates the utilizations of
the eigensystem formulation. In the case of finite SMC clusters,
we study the influences of synchronization and resonance
conditions, and look at functionalities of cell rhythmicity, cal-
cium peaking, and calcium waves. Relevant calculations offer
information underlying the present experimental observations
found in the literature. In the future, accompanied by abundant
pathological data, this approach could pave an alternate avenue
toward physiological and pathological determinations.
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APPENDIX A: COMMON VARIABLES

1. Standard parameter values and definitions

zK = 1, zNa = 1, zCa = 2,

zCl = −1, NAv = 6.022 × 1023,

R = 8341.47 mJ/molK, F = 96 485.34 C/mol,

T = 293.0 K, Cm = 25 pF, Am = 10−6Cm cm2,

[Ca]e = 2.0 mM, [Na]e = 140.0 mM,

[K]e = 5.0 mM, [Cl]e = 129.0 mM,

voli = 1 p
, volCa = 0.7 p
,

volSRu = 0.07 p
, volSRr = 0.007 p
.
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FIG. 18. Calcium responses against delta-function calcium stimulation to SMC1 for inhomogeneous 6-SMCs: (a) at [K]e = 35.0 (oscillation
activation; see region II in Fig. 4), and (b) at [K]e = 20.0 (oscillation deactivation; see region I in Fig. 4).
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On the quasiequilibrium condition, the ionic concentrations
that we are interested in can be expressed by a time-
independent constant term plus a time-dependent fluctuation:

[Ca]i = [Ca]i + [δCa]i , [Ca]r = [Ca]r + [δCa]r ,

[Ca]u = [Ca]u + [δCa]u, [Na]i = [Na]i + [δNa]i ,

[K]i = [K]i + [δK]i , [Cl]i = [Cl]i + [δCl]i ,

Vm = V m + δVm
.

Herein, X represents the equilibrium average constant of X

and δX represents the deviation from the equilibrium. Similar
representations are adopted for variables involved in transient
processes, including dL, fL, pf , ps , pK, q1, q2, PSOC, R10, R11,
R01, hIP3, [RS

G], [RS
P,G], [G], [IP3], [PIP2], VcGMP, and [cGMP],

and they are introduced in the relevant paragraphs below.
Relevant mathematical equations [22], e.g., reversal potentials
for ion X, can hence be obtained by using the Taylor series
expansion to the first order of fluctuation δX at equilibrium:

EX � RT

zXF
ln([X]e/[X]i) − RT

zXF

[δX]i
[X]i

≡ EX + δEX.

(A1)

Herein, we take X ∈ {Ca,Na,K,Cl} for example.

2. Initial values of variables

[Ca]i = 68.0 × 10−6 mM,

[Ca]r = 0.57 mM, [Ca]u = 0.66 mM,

[Na]i = 8.4 mM, [K]i = 140.0 mM,

[Cl]i = 59.4 mM, Vm = −59.4 mV,

[cGMP] = 0.0 mM, [IP3] = 0.0 mM,

Cm = 25 pF, Am = Cm × 10−6 cm2,

[NO] = 10−5 mM, constant,

[NE] = 2 × 10−4 mM, constant,

dL = dL0, fL = fL0,

RcGMP = [cGMP]2

[cGMP]2 + (0.55 × 10−3 mM)2
,

pf = ps = po,

pK = pKo, q1 = q2 = q0,

pSOC = 0.0, R10 = 0.0033,

R11 = 0.000004, R01 = 0.9955,

hIP3 = Kinh,IP3/([Ca]i + Kinh,IP3),[
RS

P,G

] = 0,
[
RS

G

] = [RT,G]ξG,

[PIP2] = [PIP2,T ] − (1 + kdeg,G/rr,G)γG[IP3],

rh,G0 = kdeg,GγG[IP3]/[PIP2],

[G] = rh,G0(Kc,G + [Ca]i)/(αG[Ca]i),

VcGMP = 0.0.

APPENDIX B: MATHEMATICAL MODEL EQUATIONS
FOR MEMBRANE ELECTROPHYSIOLOGY

1. L-type voltage-operated Ca2+ channels

IVOCC = 106AmPVOCCdLfLVm

z2
CaF

2

RT

× [Ca]e − [Ca]ieVmzCaF/(RT )

1 − eVmzCaF/(RT )
[pA]

� IVOCC + �I
Vm

VOCCδVm
+ �I

Cai

VOCC[δCa]i

+�I
dL

VOCCδdL
+ �I

fL

VOCCδfL
, (B1)

ddL

dt
= dL0 − dL

τdL

� dδdL

dt
≡ �

Vm

dL
δVm

+ �
dL

dL
δdL

, (B2)

dfL

dt
= fL0 − fL

τfL

� dδfL

dt
≡ �

Vm

fL
δVm

+ �
fL

fL
δfL

, (B3)

on quasiequilibrium conditions (i.e., ddL/dt = ddL/dt +
dδdL

/dt � dδdL
/dt ; dfL/dt = df L/dt + dδfL

/dt � dδfL
/

dt) with relevant variables

PVOCC = 1.88 × 10−5 cm/s,

dL0 = [1 + e−Vm/8.3 mV]−1, (B4)

fL0 = [1 + e(Vm+42.0 mV)/9.1 mV]−1, (B5)

τdL
= 2.5e−(Vm+40 mV)2/(30 mV)2 + 1.15 ms, (B6)

τfL
= 65e−(Vm+35 mV)2/(25 mV)2 + 45 ms, (B7)

and the fluctuation terms

�I
Vm

VOCC = 106 AmPVOCCz2
CaF

2

RT

×
[
α1

β1
+ ([Ca]e − [Ca]i)γ1V mzCaF

β1[1 − γ1]RT

]
, (B8)

�I
Cai

VOCC = −106 AmPVOCCz2
CaF

2

RT

V mγ1

β1
, (B9)

�I
dL

VOCC = 106 AmPVOCCz2
CaF

2

RT

α1V m

β1
[1 + e−V m/8.3], (B10)

�I
fL

VOCC = 106 AmPVOCCz2
CaF

2

RT

α1V m

β1
[1 + e(V m+42)/9.1],

(B11)

�
Vm

dL
= e−V m/8.3

8.3η1(1 + e−V m/8.3)2
, (B12)

�
dL

dL
= − 1

η1
, (B13)

�
Vm

fL
= − e(V m+42)/9.1

9.1κ1[1 + e(V m+42)/9.1]2
, (B14)

�
fL

fL
= − 1

κ1
. (B15)

Herein,

α1 = [Ca]e − [Ca]ie
V mzCaF/(RT ), (B16)
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β1 = [1 + e−V m/8.3][1 + e(V m+42)/9.1][1 − eV mzCaF/(RT )],

(B17)

γ1 = eV mzCaF/(RT ), (B18)

η1 = 2.5e−(V m+40)2/(30)2 + 1.15, (B19)

κ1 = 65e−(V m+35)2/(25)2 + 45. (B20)

2. Large conductance Ca2+-activated K+ channels

IBKCa = AmNBKCaPKCaiKCa [pA]

� IBKCa + �I
Vm

BKCaδVm
+ �I

Ki

BKCa[δK]i

+�I
pf

BKCaδpf
+ �I

ps

BKCaδps
, (B21)

dpf

dt
= po − pf

τpf

� dδpf

dt
≡ �cGMP

pf
[δcGMP]

+�Vm

pf
δVm

+ �
pf

pf
δpf

+ �Cai
pf

[δCa]i , (B22)

dps

dt
= po − ps

τps

� dδps

dt
≡ �cGMP

ps
[δcGMP]

+�Vm

ps
δVm

+ �ps

ps
δps

+ �Cai
ps

[δCa]i , (B23)

on quasiequilibrium conditions (i.e., dpf /dt = dpf /dt +
dδpf

/dt � dδpf
/dt ; dps/dt = dps/dt + dδps

/dt � dδps
/

dt) with relevant variables

NBKCa = 6.6 × 106 1/cm2,

PBKCa = 3.9 × 10−13 cm3/s,

τpf
= 0.84 ms, τps

= 35.9 ms, (B24)

dV1/2KCaNO = 46.3 mV, dV1/2KCacGMP = 76 mV,

po = [
1 + e− Vm−V1/2KCa

18.25 mV
]−1

,

PKCa = 0.17pf + 0.83ps, (B25)

V1/2KCa = −41.7 log10 ([Ca]i) − dV1/2KCaNORNO

−dV1/2KCacGMPRcGMP − 128.2, (B26)

RNO = [NO]

[NO] + 2 × 10−4 mM
, (B27)

RcGMP = [cGMP]2

[cGMP]2 + (1.5 × 10−3 mM)2
, (B28)

iKCa = 106PBKCaVm

F 2

RT

[K]e − [K]ie
VmF/(RT )

1 − eVmF/(RT )
, (B29)

and the fluctuation terms

�I
Vm

BKCa = 106 AmNBKCaPBKCaF
2

RT

×
[

γ2

(1 − α2)(1 + β2)
+ α2FV m([K]e − [K]i)

(α2 − 1)2(1 + β2)RT

]
,

(B30)

�I
Ki

BKCa = 106 AmNBKCaPBKCaF
2

RT

α2V m

(α2 − 1)(1 + β2)
, (B31)

�I
pf

BKCa = 1.7 × 105 AmNBKCaPBKCaF
2

RT

γ2V m

1 − α2
, (B32)

�I
ps

BKCa = 8.3 × 105 AmNBKCaPBKCaF
2

RT

γ2V m

1 − α2
, (B33)

�Vm

pf
= 4

73

β2

(1 + β2)2τpf

, (B34)

�
pf

pf
= −1

τpf

, (B35)

�Cai
pf

= 834

365 ln(10)

β2

(1 + β2)2τpf
[Ca]i

, (B36)

�cGMP
pf

= 9

3.65 × 107

β2

(1 + β2)2τpf

× dV1/2KCacGMP[cGMP]

([cGMP]2 + 2.25 × 10−6)2
, (B37)

�Vm

ps
= 4

73

β2

(1 + β2)2τps

, (B38)

�ps

ps
= −1

τps

, (B39)

�Cai
ps

= 834

365 ln(10)

β2

(1 + β2)2τps
[Ca]i

, (B40)

�cGMP
ps

= 9

3.65 × 107

β2

(1 + β2)2τps

× dV1/2KCacGMP[cGMP]

([cGMP]2 + 2.25 × 10−6)2
. (B41)

Herein,

α2 = eV mF/(RT ), (B42)

β2 = exp

[
− 4

73
V m − 166.8

73
log10([Ca]i)

]

× exp

[
− 4

73
(128.2 + dV1/2KCaNORNO)

]

× exp

[
− 4

73
dV1/2KCacGMP × κ2

]
, (B43)

κ2 = [cGMP]2

[cGMP]2 + (1.5 × 10−3 mM)2
, (B44)

γ2 = [K]e − [K]ie
V mF/(RT ). (B45)

3. Voltage-dependent K+ channels

IKv = gKvpK(0.45q1 + 0.55q2)(Vm − EK) [pA]

� IKv + �I
Vm

Kv δVm
+ �I

Ki

Kv[δK]i

+�I
pK
Kv δpK + �I

q1
Kvδq1 + �I

q2
Kvδq2 , (B46)

dpK

dt
= pko − pK

τpK

� dδpK

dt
≡ �Vm

pK
δVm

+ �pK
pK

δpK , (B47)
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dq1

dt
= qo − q1

τq1

� dδq1

dt
≡ �Vm

q1
δVm

+ �q1
q1

δq1 , (B48)

dq2

dt
= qo − q2

τq2

� dδq2

dt
≡ �Vm

q2
δVm

+ �q2
q2

δq2 , (B49)

on quasiequilibrium conditions with relevant variables

gKv = 1.35 nS,

τq1 = 371.0 ms, τq2 = 2884.0 ms,

τpK = 61.5e−0.027Vm ms,

pKo = [
1 + e− Vm+11 mV

15 mV
]−1

, (B50)

qo = [
1 + e

Vm+40 mV
14 mV

]−1
, (B51)

and the fluctuation terms

�I
Vm

Kv = gKv

(1 + α3)(1 + β3)
, (B52)

�I
Ki

Kv = gKvRT

[K]izKF (1 + α3)(1 + β3)
, (B53)

�I
pK
Kv = gKv(V m − EK)

(1 + β3)
, (B54)

�I
q1
Kv = 9gKv(V m − EK)

20(1 + α3)
, (B55)

�I
q2
Kv = 11gKv(V m − EK)

20(1 + α3)
, (B56)

�Vm

pK
= 2e− 11

15 − 119
3000 V m

1845(1 + α3)2 , �pK
pK

= −2e0.027V m

123
, (B57)

�Vm

q1
= −β3

14τq1 (1 + β3)2 , �q1
q1

= −1

τq1

, (B58)

�Vm

q2
= −β3

14τq2 (1 + β3)2 , �q2
q2

= −1

τq2

. (B59)

Herein,

α3 = e
−1
15 (V m+11), β3 = e

1
14 (V m+40). (B60)

4. Unspecified K+ leak channels

IKleak = gKleak(Vm − EK) [pA]

� IKleak + �I
Vm

KleakδVm
+ �I

Ki

Kleak[δK]i , (B61)

on quasiequilibrium conditions with relevant variables

gKleak = 0.067 nS

and the fluctuation terms

�I
Vm

Kleak = gKleak, (B62)

�I
Ki

Kleak = gKleakRT

[K]izKF
. (B63)

5. Nonselective cation channels

ICaNSC = 106AmdNSCPoNSCPCaNSCVm

z2
CaF

2

RT

× [Ca]e − [Ca]ieVmzCaF/(RT )

1 − eVmzCaF/(RT )

� ICaNSC + �I
Vm

CaNSCδVm
+ �I

Cai

CaNSC[δCa]i , (B64)

INaNSC = 106Am

[
[DAG]

[DAG] + KNSC
+ dNSC

]
Vm

× PoNSCPNaNSCF 2

RT

[Na]e − [Na]ie
VmF/(RT )

1 − eVmF/(RT )

� INaNSC + �I
Vm

NaNSCδVm
+ �I

Nai

NaNSC[δNa]i , (B65)

IKNSC = 106Am

[
[DAG]

[DAG] + KNSC
+ dNSC

]
Vm

× PoNSCPKNSCF 2

RT

[K]e − [K]ie
VmF/(RT )

1 − eVmF/(RT )

� IKNSC + �I
Vm

KNSCδVm
+ �I

Ki

KNSC[δK]i , (B66)

on quasiequilibrium conditions with relevant variables

dNSC = 0.0244, KNSC = 3 × 10−3 mM,

PNaNSC = 5.11 × 10−7 cm/s,

[DAG] = [IP3], (B67)

PKNSC = 1.06PNaNSC, PCaNSC = 4.54PNaNSC,

PoNSC = 0.57

1 + e− Vm−47.12 mV
24.24 mV

+ 0.43, (B68)

and the fluctuation terms

�I
Vm

CaNSC = 0.43η5β5PCaNSC

1 − γ
zCa
5

+ ([Ca]e − [Ca]i)γ
zCa
5 PCaNSCβ5FV mzCa

100
(
1 − γ

zCa
5

)2
RT/43

+ 0.57η5β5PCaNSC(
1 − γ

zCa
5

)
(1 + ζ5)

+ ([Ca]e − [Ca]i)γ
zCa
5 PCaNSCβ5FV mzCa

100
(
1 − γ

zCa
5

)2
(1 + ζ5)RT/57

+ 19ζ5β5PCaNSCV mη5

808(1 + ζ5)2
(
1 − γ

zCa
5

) , (B69)

�I
Cai

CaNSC = γ
zCa
5 PCaNSCβ5V m

γ
zCa
5 − 1

(
0.43 + 0.57

1 + ζ5

)
, (B70)

�I
Vm

NaNSC = 0.43λ5α5PNaNSC

1 − γ5

+ ([Na]e − [Na]i)γ5PNaNSCα5FV m

100(1 − γ5)2RT/43

+ 0.57λ5α5PNaNSC

(1 − γ5)(1 + ζ5)
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+ ([Na]e − [Na]i)γ5PNaNSCα5FV m

100(1 − γ5)2(1 + ζ5)RT/57

+ 19ζ5α5PNaNSCV mλ5

808(1 + ζ5)2(1 − γ5)
, (B71)

�I
Nai

NaNSC = γ5PNaNSCα5V m

γ5 − 1

(
0.43 + 0.57

1 + ζ5

)
, (B72)

�I
Vm

KNSC = 0.43κ5α5PKNSC

1 − γ5

+ ([K]e − [K]i)γ5PKNSCα5FV m

100(1 − γ5)2RT/43

+ 0.57κ5α5PKNSC

(1 − γ5)(1 + ζ5)

+ ([K]e − [K]i)γ5PKNSCα5FV m

100(1 − γ5)2(1 + ζ5)RT/57

+ 19ζ5α5PKNSCV mκ5

808(1 + ζ5)2(1 − γ5)
, (B73)

�I
Ki

KNSC = γ5PKNSCα5V m

γ5 − 1

(
0.43 + 0.57

1 + ζ5

)
. (B74)

Herein,

α5 = 106AmF 2

RT

[
[DAG]

[DAG] + KNSC
+ dNSC

]
, (B75)

β5 = 106AmdNSC
z2

CaF
2

RT
, (B76)

γ5 = e
V mF
RT , ζ5 = e− V m−47.12

24.24 , (B77)

η5 = [Ca]e − [Ca]ie
V mzCaF/(RT ), (B78)

λ5 = [Na]e − [Na]ie
V mF/(RT ), (B79)

κ5 = [K]e − [K]ie
V mF/(RT ). (B80)

6. Store-operated nonselective cation channels

ISOCCa = gSOCCaPSOC(Vm − ECa)

� I SOCCa + �I
PSOC
SOCCaδPSOC

+�I
Vm

SOCCaδVm
+ �I

Cai

SOCCa[δCa]i , (B81)

ISOCNa = gSOCNaPSOC(Vm − ENa)

� I SOCNa + �I
PSOC
SOCNaδPSOC

+�I
Vm

SOCNaδVm
+ �I

Nai

SOCNa[δNa]i , (B82)

dpSOC

dt
= pSOC,o − pSOC

τSOC
� dδpSOC

dt

≡ �Cau

pSOC
δCau

+ �pSOC
pSOC

δpSOC , (B83)

on quasiequilibrium conditions with relevant variables

gSOCCa = 0.0083 nS, gSOCNa = 0.0575 nS,

τSOC = 100.0 ms,

PSOC,o =
(

1 + [Ca]u
10−4 mM

)−1

, (B84)

and the fluctuation terms

�I
Vm

SOCCa = gSOCCa

1 + 104[Ca]u
, (B85)

�I
Cai

SOCCa = gSOCCaRT

[Ca]i(1 + 104[Ca]u)FzCa
, (B86)

�I
PSOC
SOCCa = gSOCCa(V m − ECa), (B87)

�I
Vm

SOCNa = gSOCNa

1 + 104[Ca]u
, (B88)

�I
Nai

SOCNa = gSOCNaRT

[Na]i(1 + 104[Ca]u)F
, (B89)

�I
PSOC
SOCNa = gSOCNa(V m − ENa), (B90)

�Cau

pSOC
= −104τ−1

SOC

(1 + 104[Ca]u)2
, �pSOC

pSOC
= −1

τSOC
. (B91)

7. Calcium-activated chloride channels

IClCa = CmgClCaPCl(Vm − ECl) [pA]

� IClCa + �I
Vm

ClCaδVm
+ �I

Cai

ClCa[δCa]i

+�I
Cli
ClCa[δCl]i + �I cGMP

ClCa [δcGMP], (B92)

on quasiequilibrium conditions with relevant variables

gClCa = 0.23 nS/pF, nClcGMP = 3.3,

KClCa = 3.65 × 10−4 mM, nClCa = 2,

RClcGMP = 0.0132,

KClcGMP = 6.4 × 10−3 mM,

PCl = RClcGMP
([Ca]i)nClCa

([Ca]i)nClCa + (KClCa)nClCa

+αCl
([Ca]i)nClCa

([Ca]i)nClCa + (KClCa,cGMP)nClCa
, (B93)

αCl = ([cGMP])nClcGMP

([cGMP])nClcGMP + (KClcGMP)nClcGMP
, (B94)

KClCa,cGMP = (1 − 0.9αCl) × 4 × 10−4 mM (B95)

and the fluctuation terms

�I
Vm

ClCa = CmgClCa[α7RClcGMP + β7γ7], (B96)

�I
Cai

ClCa =CmgClCanClCa(V m − ECl)[Ca]−nClCa−1
i

×
[
α2

7RClcGMP(KClCa)nClCa+β2
7γ7

(
1−0.9γ7

2500

)nClCa
]
,

(B97)
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�I
Cli
ClCa = −CmgClCaRT (α7RClcGMP + β7γ7)

[Cl]iF
, (B98)

�I cGMP
ClCa = CmgClCaβ

2
7nClcGMP(V m − ECl)

×
[
γ 2

7 (KClcGMP)nClcGMP

([cGMP])1+nClcGMP

+ (KClcGMP)nClcGMPγ 2
7

( 1−0.9γ7

2500

)nClCa

([Ca]i)nClCa ([cGMP])1+nClcGMP

+ 9nClCaγ
2
7 κ7

( 1−0.9γ7

2500

)nClCa

([Ca]i)nClCa [cGMP]

]
. (B99)

Herein,

α7 = ([Ca]i)nClCa

([Ca]i)nClCa + (KClCa)nClCa
, (B100)

β7 = ([Ca]i)nClCa

([Ca]i)nClCa + ( 1−0.9γ7

2500

)nClCa
, (B101)

γ7 = ([cGMP])nClcGMP

([cGMP])nClcGMP + (KClcGMP)nClcGMP
, (B102)

κ7 = (KClcGMP)nClcGMP

([cGMP])nClcGMP + 10(KClcGMP)nClcGMP
. (B103)

8. Plasma membrane Ca2+ pump

IPMCA = IPMCA,0
[Ca]i

[Ca]i + Km,PMCA

� I PMCA + �I
Cai

PMCA[δCa]i , (B104)

on quasiequilibrium conditions with relevant variables

IPMCA,0 = 5.37 pA,

Km,PMCA = 1.7 × 10−4 mM,

and the fluctuation terms

�I
Cai

PMCA = IPMCA,0
Km,PMCA

([Ca]i + Km,PMCA)2
. (B105)

9. Plasma membrane Na+-Ca2+ exchange

INCX = gNCXRNCX,cGMP

× [Na]3
i [Ca]eφF − [Na]3

e [Ca]iφR

1 + dNCX
(
[Na]3

e [Ca]i + [Na]3
i [Ca]e

)
� INCX + �I

Vm

NCXδVm
+ �I

Cai

NCX[δCa]i

+�I
Nai

NCX[δNa]i + �I cGMP
NCX [δcGMP], (B106)

on quasiequilibrium conditions with relevant variables

gNCX = 0.000487 pA,

dNCX = 0.0003, γNCX = 0.45,

RNCX,cGMP = 1 + 0.55[cGMP]

[cGMP] + 0.045 mM
, (B107)

φF = exp

[
γNCXVmF

RT

]
, (B108)

φR = exp

[
(γNCX − 1)VmF

RT

]
, (B109)

and the fluctuation terms

�I
Vm

NCX = γ9F

α9RT

{
β−1

9 [Ca]i[Na]3
e(1 − γNCX)

+ [Ca]e[Na]3
i γNCX

}
, (B110)

�I
Cai

NCX = −γ9

α2
9

{
β−1

9 [Na]3
e + dNCX[Na]3

e[Ca]e[Na]3
i

+ dNCXβ−1
9 [Na]3

e[Ca]e[Na]3
i

}
, (B111)

�I
Nai

NCX = 3γ9

α2
9

{
dNCX[Ca]e[Ca]i[Na]3

e[Na]2
i

+β−1
9 dNCX[Ca]e[Ca]i[Na]3

e[Na]2
i + [Ca]e[Na]2

i

}
,

(B112)

�I cGMP
NCX = 990gNCX × β

γNCX
9

α9(9 + 200[cGMP])2

{
[Ca]e[Na]3

i

−β−1
9 [Ca]i[Na]3

e

}
. (B113)

Herein,

α9 = 1 + dNCX
(
[Na]3

e [Ca]i + [Na]3
i [Ca]e

)
, (B114)

β9 = exp[V mF/(RT )], (B115)

γ9 = gNCX × κ9 exp[γNCXV mF/(RT )], (B116)

κ9 = 1 + 0.55[cGMP]

[cGMP] + 0.045
. (B117)

10. Sodium-potassium pump

INaK = CmINaK,0Q
[Na]nHNai

i

[Na]nHNai
i + NanHNai

dNai

× [K]nHKe

e

[K]nHKe

e + KnHKe

dKe

Vm + 150 mV

Vm + 200 mV

� INaK + �I
Vm

NaKδVm
+ �I

Nai

NaK[δNa]i , (B118)

on quasiequilibrium conditions with relevant variables

nHKe = 1.1, nHNai = 1.7,

KdKe = 1.6 mM, NadNai = 22 mM,

INaK,0 = 2.3083 pA/pF,

Q = Q
(T −309.15 K)/(10 K)
10 , Q10 = 1.87, (B119)

and the fluctuation terms

�I
Vm

NaK = 50CmINaK,0Q[K]nHKe
e [Na]nHNai

i

α10β10γ
2
10

, (B120)

�I
Nai

NaK = CmINaK,0Q

α10β
2
10γ10

nHNai(V m + 150)

× [K]nHKe

e NanHNai
dNai [Na]nHNai−1

i . (B121)
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Herein,

α10 = [K]nHKe

e + KnHKe

dKe , (B122)

β10 = [Na]nHNai
i + NanHNai

dNai , (B123)

γ10 = (V m + 200). (B124)

11. Sodium-potassium-chloride cotransport

ICl
NaKCl = −109zClRNaKCl,cGMPAmLNaKClRFT

× ln

(
[Na]e
[Na]i

[K]e
[K]i

[Cl]2
e

[Cl]2
i

)
[pA]

� I
Cl
NaKCl + �I

Cl,Nai

NaKCl [δNa]i + �I
Cl,Ki

NaKCl[δK]i

+�I
Cl,Cli
NaKCl[δCl]i + �I

Cl,cGMP
NaKCl [δcGMP], (B125)

INa
NaKCl ≡ −1

2
ICl

NaKCl

� I
Na
NaKCl + �I

Na,Nai

NaKCl [δNa]i + �I
Na,Ki

NaKCl[δK]i

+�I
Na,Cli
NaKCl [δCl]i + �I

Na,cGMP
NaKCl [δcGMP], (B126)

IK
NaKCl ≡ −1

2
ICl

NaKCl

� I
K
NaKCl + �I

K,Nai

NaKCl[δNa]i + �I
K,Ki

NaKCl[δK]i

+�I
K,Cli
NaKCl[δCl]i + �I

K,cGMP
NaKCl [δcGMP], (B127)

on quasiequilibrium conditions with relevant variables

LNaKCl = 1.79 × 10−17 mole2/(s J cm2),

RNaKCl,cGMP = 1 + 3.5[cGMP]

[cGMP] + 6.4 × 10−3 mM
, (B128)

and the fluctuation terms

�I
Cl,Nai

NaKCl = α11β11

[Na]i
, (B129)

�I
Cl,Ki

NaKCl = α11β11

[K]i
, (B130)

�I
Cl,Cli
NaKCl = 2α11β11

[Cl]i
, (B131)

�I
Cl,cGMP
NaKCl = −8750α11γ11

(4 + 625[cGMP])2
, (B132)

�I
Na,Nai

NaKCl = �I
K,Nai

NaKCl = −�I
Cl,Nai

NaKCl

2
, (B133)

�I
Na,Ki

NaKCl = �I
K,Ki

NaKCl = −�I
Cl,Ki

NaKCl

2
, (B134)

�I
Na,Cli
NaKCl = �I

K,Cli
NaKCl = −�I

Cl,Cli
NaKCl

2
, (B135)

�I
Na,cGMP
NaKCl = �I

K,cGMP
NaKCl = −�I

Cl,cGMP
NaKCl

2
. (B136)

Herein,

α11 = 109zClAmLNaKClRFT, (B137)

β11 = 1 + 3.5[cGMP]

[cGMP] + 6.4 × 10−3
, (B138)

γ11 = ln

(
[Na]e
[Na]i

[K]e
[K]i

[Cl]2
e

[Cl]2
i

)
. (B139)

12. Intercellular ionic communication

IS,GJ = −Pz2
S

VGJF
2

RT

[S]C − [S]ie−zSVGJF/RT

1 − e−zSVGJF/RT

� I S,GJ + �ISC
S,GJ[δS]C + �I

Si

S,GJ[δS]i + �I
VmC

S,GJδVmC

+�I
Vm

S,GJδVm
+ �I

Cai

S,GJ[δCa]i + �I
Nai

S,GJ[δNa]i

+�I
Ki

S,GJ[δK]i + �I
Cli
S,GJ[δCl]i (B140)

on quasiequilibrium conditions with relevant variables

GGJ = 2 nS,

VGJ = VmC − Vm, (B141)

P = GGJRT

F 2
∑

S ′
(
z2
S ′ [S ′]i

) , (B142)

where S and S ′ represent all accessible ions: Ca2+, Na+,
K+, Cl−. The suffix C denotes the variables of nearby SMCs
coupled to the local one. The fluctuation terms are given by

�ISC
S,GJ = −GGJγ12z

2
S(

1 − α
zS

12

)
β12

, (B143)

�IS
S,GJ = GGJγ12z

2
Sα

zS

12(
1 − α

zS

12

)
β12

, (B144)

�I
VmC

S,GJ = GGJz
3
Sα

zS

12γ12F
(
[S]C − [S]i

)
(
1 − α

zS

12

)2
β12RT

− GGJz
2
S

(
[S]C − [S]iα

zS

12

)(
1 − α

zS

12

)
β12

, (B145)

�I
Vm

S,GJ = −�I
VmC

S,GJ, (B146)

�I
Cai

S,GJ = GGJγ12z
2
Caz

2
S

(
[S]C − [S]iα

zS

12

)(
1 − α

zS

12

)
β2

12

, (B147)

�I
Nai

S,GJ = GGJγ12z
2
Naz

2
S

(
[S]C − [S]iα

zS

12

)(
1 − α

zS

12

)
β2

12

, (B148)

�I
Ki

S,GJ = GGJγ12z
2
Kz2

S

(
[S]C − [S]iα

zS

12

)(
1 − α

zS

12

)
β2

12

, (B149)

�I
Cli
S,GJ = GGJγ12z

2
Clz

2
S

(
[S]C − [S]iα

zS

12

)(
1 − α

zS

12

)
β2

12

. (B150)
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Herein,

α12 = exp

[−F (V mC − V m)

RT

]
, (B151)

β12 = z2
Ca[Ca]i + z2

Na[Na]i + z2
K[K]i + z2

Cl

[
Cl

]
i
, (B152)

γ12 = V mC − V m. (B153)

APPENDIX C: MATHEMATICAL MODEL EQUATIONS
FOR SARCOPLASMIC RETICULUM

1. Calcium-induced calcium-release mechanism
of sarcoplasmic reticulum

ISERCA = ISERCA,0
[Ca]i

[Ca]i + Km,up

� I SERCA + �I
Cai

SERCA[δCa]i , (C1)

Itr = ([Ca]u − [Ca]r )
zCavoluF

τtr

� I tr + �I
Cau

tr [δCa]u + �I
Car

tr [δCa]r , (C2)

Irel = ([Ca]r − [Ca]i)
(R2

10 + Rleak)zCavolrF

τrel

� I rel + �I
Cai

rel [δCa]i + �I
Car

rel [δCa]r + �I
R10
rel δR10 , (C3)

on quasiequilibrium conditions with relevant variables

ISERCA,0 = 6.68 pA, Km,up = 10−3 mM,

τtr = 1000.0 ms, τrel = 0.0333 ms,

Rleak = 1.07 × 10−5,

and the fluctuation terms

�I
Cai

SERCA = ISERCA,0Km,up

([Ca]i + Km,up)2
, (C4)

�I
Car

tr = −zCavoluF

τtr
, (C5)

�I
Cau

tr = zCavoluF

τtr
, (C6)

�I
Car

rel = zCavolrF

τrel

(
R

2
10 + Rleak

)
, (C7)

�I
Cai

rel = −zCavolrF

τrel

(
R

2
10 + Rleak

)
, (C8)

�I
R10
rel = 2zCavolrFR10

τrel
([Ca]r − [Ca]i). (C9)

2. Ryanodine receptor

dR10

dt
= Kr1[Ca]2

i R00 − (K−r1 + Kr2[Ca]i)R10 + K−r2R11,

(C10)

dR11

dt
= Kr2[Ca]iR10 − (K−r1 + K−r2)R11 + Kr1[Ca]2

i R01,

(C11)

dR01

dt
= Kr2[Ca]iR00 − (

K−r2 + Kr1[Ca]2
i

)
R01 + K−r1R11,

(C12)

R00 = 1 − R01 − R10 − R11. (C13)

On the quasiequilibrium conditions, the equations can be rear-
ranged by defining Rij = Rij + δRij

as the time-independent
constant term (dRij /dt = 0) plus the time-dependent fluctua-
tion δRij

:

dδR10

dt
� �

Cai

R10
[δCa]i + �

R10
R10

δR10 + �
R11
R10

δR11 +�
R01
R10

δR01 , (C14)

dδR11

dt
� �

Cai

R11
[δCa]i + �

R10
R11

δR10 + �
R11
R11

δR11 +�
R01
R11

δR01 , (C15)

dδR01

dt
� �

Cai

R01
[δCa]i + �

R10
R01

δR10 + �
R11
R01

δR11 +�
R01
R01

δR01 , (C16)

with relevant variables

Kr1 = 2500.0 mM−2 ms−1,

Kr2 = 1.05 mM−1 ms−1,

K−r1 = 0.0076 ms−1, K−r2 = 0.084 ms−1,

and the fluctuation terms

�
R10
R10

= −K−r1 − [Ca]2
i Kr1 − [Ca]iKr2, (C17)

�
R11
R10

= K−r2 − [Ca]2
i Kr1, (C18)

�
R01
R10

= −[Ca]2
i Kr1, (C19)

�
Cai

R10
= 2[Ca]iKr1 − 2[Ca]iKr1R01 − Kr2R10

− 2[Ca]iKr1R10 − 2[Ca]iKr1R11, (C20)

�
R10
R11

= [Ca]iKr2, �
R01
R11

= [Ca]2
i Kr1, (C21)

�
R11
R11

= −K−r1 − K−r2, (C22)

�
Cai

R11
= 2[Ca]iKr1R01 + Kr2R10, (C23)

�
R10
R01

= −[Ca]iKr2, (C24)

�
R11
R01

= K−r1 − [Ca]iKr2, (C25)

�
R01
R01

= −K−r2 − [Ca]2
i Kr1 − [Ca]iKr2, (C26)

�
Cai

R01
= −2[Ca]iKr1R01 − Kr2R01 − Kr2R10

−Kr2R11 + Kr2. (C27)

3. IP3 receptor

IIP3 = IIP3,0zCavolCaF ([Ca]u − [Ca]i)

×
(

[IP3]

[IP3] + KIP3

[Ca]ihIP3

[Ca]i + Kact,IP3

)3

� I IP3 + �I
Cai

IP3 [δCa]i + �I
Cau

IP3 [δCa]u

+�I IP3
IP3 [δIP3] + �I

hIP3
IP3 δhIP3 , (C28)
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dhIP3

dt
= Kon,IP3[Kinh,IP3 − ([Ca]i + Kinh,IP3)hIP3]

� dδhIP3

dt
= �

Cai

hIP3
[δCa]i + �I

hIP3
hIP3

δhIP3 , (C29)

on quasiequilibrium conditions with relevant variables

IIP3,0 = 0.00288 ms−1, KIP3 = 1.2 × 10−4 mM,

Kact,IP3 = 1.7 × 10−4 mM, Kinh,IP3 = 10−4 mM,

Kon,IP3 = 1.4 ms−1 mM−1,

and the fluctuation terms

�I
hIP3
IP3 = 3α14h

2
IP3[Ca]3

i [IP3]3

β3
14γ

3
14

([Ca]u − [Ca]i), (C30)

�I
Cau

IP3 = α14h
3
IP3[Ca]3

i [IP3]3

β3
14γ

3
14

, (C31)

�I IP3
IP3 = 3α14h

3
IP3[Ca]3

i [IP3]2KIP3

β4
14γ

3
14

([Ca]u − [Ca]i), (C32)

�I
Cai

IP3 = α14h
3
IP3[IP3]3

β3
14γ

4
14

{−4[Ca]3
i Kact,IP3

− [Ca]4
i + 3[Ca]2

i [Ca]uKact,IP3
}
, (C33)

�
Cai

hIP3
= −hIP3Kon,IP3, (C34)

�I
hIP3
hIP3

= −Kon,IP3(Kinh,IP3 + [Ca]i). (C35)

Herein,

α14 = IIP3,0 × zCa × volCa × F, (C36)

β14 = [IP3] + KIP3, (C37)

γ14 = [Ca]i + Kact,IP3. (C38)

APPENDIX D: α1-ADRENOCEPTOR ACTIVATION
AND IP3 FORMATION

d[G]

dt
= ka,G(δG + ρr,G)([GT,G] − [G]) − kd,G[G]

� d[δG]

dt
= �

RS
G

G

[
δRS

G

] + �G
G[δG], (D1)

d[IP3]

dt
= rh,G

γG

[PIP2] − kdeg,G[IP3]

+PIP3

∑
C

([IP3]C − [IP3])

� d[δIP3]

dt
= �

Cai

IP3[δCa]i + �G
IP3[δG]

+�
PIP2
IP3

[
δPIP2

] + �IP3
IP3[δIP3]

+
∑
C

�IP3C
IP3 [δIP3]C, (D2)

d
[
RS

P,G

]
dt

= [NE]kp,G

[
RS

G

]
K1,G + [NE]

− [NE]ke,G

[
RS

P,G

]
K2,G + [NE]

�
d
[
δRS

P,G

]
dt

= �
RS

G

RS
P,G

[
δRS

G

] + �
RS

P,G

RS
P,G

[
δRS

P,G

]
, (D3)

d
[
RS

G

]
dt

= kr,GξG[RT,G] − kr,G

[
RS

P,G

]
−

(
kr,G + kp,G[NE]

K1,G + [NE]

)[
RS

G

]

� d
[
δRS

G

]
dt

= �
RS

G

RS
G

[
δRS

G

] + �
RS

P,G

RS
G

[
δRS

P,G

]
, (D4)

d[PIP2]

dt
= −(rh,G + rr,G)[PIP2] − rr,GγG[IP3] + rr,G[PIP2,T ]

� d
[
δPIP2

]
dt

= �
Cai

PIP2
[δCa]i + �G

PIP2
[δG]

+�
PIP2
PIP2

[
δPIP2

] + �IP3
PIP2

[δIP3], (D5)

on quasiequilibrium conditions with relevant variables

[RT,G] = 2 × 104, K1,G = 10−2 mM,

K2,G = 0.2 mM, kr,G = 1.75 × 10−7 ms−1,

ke,G = 6 × 10−6 ms−1, ka,G = 0.17 × 10−3 ms−1,

kdeg,G = 1.25 × 10−3 ms−1, ξG = 0.85,

kd,G = 1.5 × 10−3 ms−1, [PIP2,T ] = 5 × 107,

rr,G = 1.5 × 10−5 ms−1, Kc,G = 4 × 10−4 mM,

αG = 2.781 × 10−8 ms−1,

[GT,G] = 105, kp,G = 10−4 ms−1,

PIP3 = 0.53 × 10−3 ms−1,

γG = 10−15NAv × voli ,

δG = kd,G[G]

ka,G([GT,G] − [G])
, fixed at initial,

ρr,G = [NE]
[
RS

G

]
ξG[RT,G](K1,G + [NE])

, (D6)

rh,G = αG

[Ca]i
[Ca]i + Kc,G

[G], (D7)

and the fluctuation terms

�
RS

G

G = ([GT,G] − [G])ka,G[NE]

(K1,G + [NE])RT,GξG

, (D8)

�G
G = −kd,G − ka,G[NE]

[
R

S

G

]
(K1,G + [NE])[RT,G]ξG

− ka,GδG, (D9)

�
Cai

IP3 = Kc,G[G][PIP2]αG

([Ca]i + Kc,G)2γG

, (D10)

042415-20



INHERENT RHYTHM OF SMOOTH MUSCLE CELLS IN RAT . . . PHYSICAL REVIEW E 93, 042415 (2016)

�G
IP3 = [Ca]i[PIP2]αG

([Ca]i + Kc,G)γG

, (D11)

�
PIP2
IP3 = [Ca]i[G]αG

([Ca]i + Kc,G)γG

, (D12)

�IP3
IP3 = −kdeg,G −

∑
C

PIP3, (D13)

�IP3C
IP3 = PIP3, (D14)

�
RS

G

RS
P,G

= kp,G[NE]

K1,G + [NE]
, (D15)

�
RS

P,G

RS
P,G

= −ke,G[NE]

K2,G + [NE]
, (D16)

�
RS

G

RS
G

= −kr,G − kp,G[NE]

K1,G + [NE]
, (D17)

�
RS

P,G

RS
G

= −kr,G, �IP3
PIP2

= −rr,GγG, (D18)

�
Cai

PIP2
= −Kc,G[G][PIP2]αG

([Ca]i + Kc,G)2
, (D19)

�G
PIP2

= − [Ca]i[PIP2]αG

[Ca]i + Kc,G

, (D20)

�
PIP2
PIP2

= −rr,G − [Ca]i[G]αG

[Ca]i + Kc,G

. (D21)

Herein, the IP3 flux through gap junctions is also included, and
[IP3]C denotes the concentrations for nearby SMCs coupled to
the local one.

APPENDIX E: sGC ACTIVATION AND cGMP FORMATION

dVcGMP

dt
= VcGMP,0 − VcGMP

τsGC

� dδVcGMP

dt
= �

VcGMP
VcGMP

δVcGMP , (E1)

d[cGMP]

dt
= VcGMP − kpde,cGMP

[cGMP]2

[cGMP] + Km,pde

� dδcGMP

dt

= �
VcGMP
cGMPδVcGMP + �cGMP

cGMPδcGMP, (E2)

on quasiequilibrium conditions with relevant variables

k1,sGC = 2 × 103 mM−1 ms−1,

k−1,sGC = 15 × 10−3 ms−1,

k2,sGC = 0.64 × 10−5 ms−1,

k−2,sGC = 0.1 × 10−6 ms−1,

k3,sGC = 4.2 mM−1 ms−1,

kD,sGC = 0.4 × 10−3 ms−1,

kDτ,sGC = 10−4 ms−1, B5sGC = k2,sGC/k3,sGC,

kpde,cGMP = 6.95 × 10−5 ms−1, km,pde = 10−3 mM,

VcGMP,max = 1.26 × 10−7 mM/ms,

VcGMP,0 = VcGMP,max
B5sGC[NO] + [NO]2

A0sGC + A1sGC[NO] + [NO]2
, (E3)

A0sGC = (k−1,sGC + k2,sGC)kD,sGC

k1,sGCk3,sGC
+ k−1,sGCk−2,sGC

k1,sGCk3,sGC
, (E4)

A1sGC = (k1,sGC + k3,sGC)kD,sGC

k1,sGCk3,sGC

+ (k2,sGC + k−2,sGC)k1,sGC

k1,sGCk3,sGC
, (E5)

τmsGC = 1

k3,sGC[NO] + kDτ,sGC
, (E6)

τssGC = 1

k−2,sGC + kDτ,sGC
− τmsGC, (E7)

τsGC = τmsGC + τssGC

1 + e
−10

VcGMP−VcGMP,0
VcGMP,max

, (E8)

and the fluctuation terms

�
VcGMP
VcGMP

= 10α16(V cGMP − VcGMP,0)τssGC

VcGMP,max[τssGC + (1 + α16)τmsGC]2

− 1

τmsGC + τssGC
1+α16

, (E9)

�
VcGMP
cGMP = 1, (E10)

�cGMP
cGMP = − kpde,cGMP[cGMP]

([cGMP] + Km,pde)2
([cGMP] + 2Km,pde).

(E11)

Herein

α16 = exp

(
−10

V cGMP − VcGMP,0

VcGMP,max

)
. (E12)

APPENDIX F: IONIC BALANCES AND
MEMBRANE POTENTIAL

d[Ca]u
dt

= ISERCA − Itr − IIP3

zCavoluF
(F1)

� d[δCa]u
dt

=
∑

νi
�I

νi

SERCA − �I
νi

tr − �I
νi

IP3

zCavoluF
, (F2)

d[Ca]r
dt

= Itr − Irel

zCavolrF

[
1 + [CSQN]KCSQN

(KCSQN + [Ca]r )2

]−1

� d[δCa]r
dt

=
∑

νi
�I

νi

tr − �I
νi

rel

zCavolrF

[
1 + [CSQN]KCSQN

(KCSQN + [Ca]r )2

]−1

,

(F3)
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d[Ca]i
dt

= − ICa,tot

zCavolCaF

[
1 + [SCM]Kd

(Kd + [Ca]i)2
+ [BF ]KdB

(KdB + [Ca]i)2

]−1

� d[δCa]i
dt

= − �ICa,tot

zCavolCaF

[
1 + [SCM]Kd

(Kd + [Ca]i)2
+ [BF ]KdB

(KdB + [Ca]i)2

]−1

, (F4)

d[Na]i
dt

= − INa,tot

zNavoliF
� d[δNa]i

dt
= − �INa,tot

zNavoliF
, (F5)

d[K]i
dt

= − IK,tot

zKvoliF
� d[δK]i

dt
= − �IK,tot

zKvoliF
, (F6)

d[Cl]i
dt

= − ICl,tot

zClvoliF
� d[δCl]i

dt
= − �ICl,tot

zClvoliF
, (F7)

dVm

dt
= −IV,tot + Istim

Cm

� dδVm

dt
=

∑
νi

(−IV,tot) + Istim

Cm

, (F8)

for quasiequilibrium conditions with νi being the model component. Relevant variables are

[CSQN] = 15.0 mM, KCSQN = 0.8 mM,

[SCM] = 0.1 mM, Kd = 0.00026 mM,

[BF ] = 0.1 mM, KdB = 0.0005298 mM,

�ICa,tot =
∑
νi ,C

�I
νi

SOCCa + �I
νi

VOCC − 2�I
νi

NCX + �I
νi

PMCA + �I
νi

CaNSC + �I
νi

SERCA − �I
νi

rel − �I
νi

IP3 + �I
νi,C
Ca,GJ, (F9)

�INa,tot =
∑
νi ,C

�I
Na,νi

NaKCl + �I
νi

SOCNa + 3�I
νi

NaK + 3�I
νi

NCX + �I
νi

NaNSC + �I
νi,C
Na,GJ, (F10)

�IK,tot =
∑
νi ,C

�I
K,νi

NaKCl + �I
νi

Kv + �I
νi

BKCa + �I
νi

KNSC + �I
νi

Kleak − 2�I
νi

NaK + �I
νi,C
K,GJ, (F11)

�ICl,tot =
∑
νi ,C

�I
Cl,νi

NaKCl + �I
νi

ClCa + �I
νi,C
Cl.GJ, (F12)

IV,tot =
∑
νi ,C

�I
νi

VOCC + �I
νi

Kv + �I
νi

BKCa + �I
νi

Kleak + �I
νi

NSC + �I
νi

SOC + �I
νi

ClCa + �I
νi

PMCA + �I
νi

NaK

+�I
νi

NCX + �I
νi,C
Ca,GJ + �I

νi,C
Na,GJ + �I

νi,C
K,GJ + �I

νi,C
Cl.GJ. (F13)

Herein, �IC denotes the variation of current transferring from nearby cells to the local one.
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