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Modeling somite scaling in small embryos in the framework of Turing patterns
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The adaptation of prevertebra size to embryo size is investigated in the framework of a reaction-diffusion
model involving a Turing pattern. The reaction scheme and Fick’s first law of diffusion are modified in order to
take into account the departure from dilute conditions induced by confinement in smaller embryos. In agreement
with the experimental observations of scaling in somitogenesis, our model predicts the formation of smaller
prevertebrae or somites in smaller embryos. These results suggest that models based on Turing patterns cannot
be automatically disregarded by invoking the question of maintaining proportions in embryonic development.
Our approach highlights the nontrivial role that the solvent can play in biology.
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I. INTRODUCTION

Scaling of pattern formation with embryo size is a universal
feature observed in many organisms and the question of
maintaining proportions is relevant for both vertebrates [1–3]
and invertebrates [4–7]. However, the formation of patterns
that are proportional to the size of the embryos remains a
poorly understood property of development. The morphogen
gradient is a widely accepted feature by which a developing
tissue provides its cells with positional information [8,9]. The
ability of an embryo to adapt to size variations is often related
to the scaling of the morphogen gradient with global embryo
size [2,5–7]. We recently postulated that a reaction-diffusion
model based on a Turing pattern could account for prevertebra
or somite formation and nontrivial experiments have been
reproduced [10–13]. In order to further investigate the validity
of the model, we wish to examine if it could account for scaling
of pattern formation.

Since the observation of temporal oscillations of some
morphogens in the undifferentiated tissue or presomitic
mesoderm [14], the clock and wave-front model [15] has
been the most commonly admitted model of somitogenesis
[16–19]. Nevertheless, this model has been lately challenged
by recent experiments that show the formation of somites
without the need of gene oscillations and clocks [20]. As
an alternative to clock and wave-front-type models, reaction-
diffusion processes offer a minimal framework to model the
formation of somites without losing the molecular scale. In this
context, a Turing structure, i.e., a spatially periodic oscillation
of morphogen concentrations, is supposed to develop behind
a propagating chemical wave front. This prepattern is then
admitted to induce a complex cascade of pathways, eventually
leading to the differentiation of tissues and vertebra formation
[21–26]. However, the connection between spine development
and Turing instability remains a matter of debate [27]. The
main criticism against the Turing pattern is that it does not

*Corresponding author: anle@lptmc.jussieu.fr

a priori account for scaling of patterning and size adaptation
of the somites to the global size of an embryo. Indeed, the
wavelength of a Turing structure is fixed by dynamics, the
rate constants of the reactions, and the diffusion coefficients
of the chemical species and not by system size [28]. Different
ways to preserve proportion in the Turing pattern have been
achieved by introducing size-dependent dynamical parameters
or additional species whose concentration depends on system
size [29–32].

Furthermore, physiological media are known to suffer
from confinement [33–38] and we propose to address the
issue of size adaptation in the general context of molecular
crowding. We start from the intuitive statement that the
effect of confinement is stronger in smaller embryos. In these
conditions, the usual assumptions about dilute solutions may
fail and the role of water or solvent in the chemical scheme
may not be ignored [39]. Consequently, the rate constants
[33,34,40] and the diffusion coefficients [41] may both be
modified. More precisely, we propose to incorporate the
solvent in the chemical scheme and to examine the deviation
to the usual Fick law of diffusion in the framework of
linear irreversible thermodynamics [42,43]. The effects of
concentration-dependent diffusivity and enhancement of the
concentration of some reactant on Turing patterns have been
extensively investigated [44–48]. Specifically, our aim is to
determine whether a strengthening of confinement may induce
a decrease of structure wavelength and consequently somite
size in smaller embryos.

The paper is organized as follows. In Sec. II we present the
reaction-diffusion model and the modified partial differential
equations in the presence of confinement. The numerical
integration procedure is made precise in Sec. III. The results
are discussed in Sec. IV. Section V is devoted to a conclusion.
The detailed derivation of the modified laws of diffusion in the
presence of a departure from ideality is given in Appendix A.
Appendix B contains an analytical derivation of the perturbed
wavelength of the spatial structure in the limit where the
effect of confinement is stronger on the reaction than on
diffusion.
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II. MODEL: REACTION-DIFFUSION EQUATIONS
IN A CROWDED ENVIRONMENT

We recently studied the following reaction scheme, inspired
by the Schnakenberg model [49] and the Gray-Scott model
[50], to account for the formation of somites [10–13]:

A
k1→ R1, (1)

2A + B
k2→ 3A, (2)

B
k3�
k′
−3

R2, (3)

where the densities of species R1 and R2 are kept constant due
to appropriate exchanges with reservoirs. Species A, expressed
at the rostral end of the embryo, may be identified with retinoic
acid (RA) and genes involved in RA signaling, whereas species
B, present at the caudal end, may been related to the fibroblast
growth factor (FGF) and genes involved in the FGF pathway
[51]. Different couples of antagonist gradients can be found in
the literature and may play the role of the activator A and the
inhibitor B of the Turing structure, provided B diffuses faster
than species A [18,19]. In the absence of a perturbation, the
dynamics of the densities ρA and ρB of species A and B is
governed by the following reaction-diffusion equations:

∂ρA

∂t
= −k1ρA + k2ρ

2
AρB + D∗

A

∂2ρA

∂x2
, (4)

∂ρB

∂t
= k−3 − k3ρB − k2ρ

2
AρB + D∗

B

∂2ρB

∂x2
, (5)

where ki (i = 1,2,3,−3) are rate constants and D∗
A and D∗

B

are the diffusion coefficients of species A and B, respectively.
We have set k−3 = k′

−3ρR2 for the apparent rate constant of
the reverse step of Eq. (3). Provided species B diffuses faster
than species A, for well-chosen rate constant values, a Turing
pattern develops. We focused on the beginning of growth and
did not consider the termination process of somite formation
[10,12,13]. The reaction-diffusion system has been shown to
correctly mimic the alteration of the structure wavelength due
to the introduction of a local source of B in the undifferentiated
tissue [12,13,16,52]. However, the ability of Turing structures
to reproduce the fact that smaller embryos of the same animal
species show the same number of somites of smaller size
remains under debate.

To investigate this issue, we admit that the smaller size
of an embryo may induce spatial crowding and a departure
from the usual assumptions about dilute solutions. Indeed, both
retinoic acid and FGF signalings depend on maternal factors
[53–55] and it is reasonable to assume that the concentration
of maternal factors is higher in smaller embryos. Interestingly,
the concentration of another growth-promoting factor, the
insulinlike growth factor I, has been reported to be higher
in smaller embryos of pigs [56]. Hence, the smaller size of
an embryo leads to a strengthening of confinement. Then the
hypothesis according to which the solvent is in great excess
and does not need to be taken into account in the reaction
scheme may not be valid [43]. To be explicit, we introduce
the following interactions between the reactive species and the
solvent. We make the hypothesis that the supply of species B

from the reservoir R2 simultaneously drops the solvent into
the surroundings. Conversely, the elimination of A and B

through exchanges with the reservoirs is supposed to require an
interaction with the solvent. In the case of a dilute solution of
species A and B, the role of the solvent is hidden in the reaction
mechanism given in Eqs. (1)–(3), but when the solution is not
dilute enough for the density of the solvent to remain constant,
the schemes of supply and removal processes of species A and
B is completed as follows:

A + ∗ k∗
1→ R1, (6)

2A + B
k2→ 3A, (7)

B + ∗ k∗
3�

k′
−3

R2, (8)

where ∗ denotes a particle of the solvent and the autocatalytic
step given in Eq. (2) is unchanged. Hence, the density of the
solvent ρ∗ is likely to vary. The balance equation for the density
ρI of species I reads

∂ρI

∂t
+ �∇ · �jI = ∂ρI

∂t

∣∣∣∣
reac

, I = A,B, ∗ , (9)

where the right-hand side accounts for the variation of ρI

in the volume due to reactions and the flux �jI is the mass
flow of species I through a unit surface per unit time. The
exchanges with the reservoirs of R1 and R2 guarantee that
the fluxes �jR1 and �jR2 exactly compensate for the reactive

terms
∂ρR1
∂t

|reac and
∂ρR2
∂t

|reac, respectively, so ρR1 and ρR2

remain constant. Confinement is not supposed to interfere
with the performances of the reservoirs of chemical species.
We admit that the so-called chemostats are able to impose
that the densities ρR1 and ρR2 of species R1 and R2 remain
homogeneous and constant. In the following, the total density
is defined as

ρ = ρA(x,t) + ρB(x,t) + ρ∗(x,t), (10)

in which the invariant densities of species R1 and R2 can be
disregarded. The flux obeys

�jI = ρI (�uI − �u), (11)

where �uI is the velocity of the center of mass of species I and
�u = 1

ρ

∑
I=A,B,∗ ρI �uI , the velocity of the center of mass of the

fluid. Using Eq. (10) for the total density and the definition of
the velocity of the center of mass, we immediately show that
the sum of all the fluxes vanishes:

�jA + �jB + �j∗ = �0. (12)

Then, summing Eq. (9) over I = A,B,∗ and taking Eq. (12)
into account, we get

∂ρ

∂t
=

∑
I=A,B,∗

∂ρI

∂t

∣∣∣∣
reac

. (13)

In the absence of nuclear reactions, the right-hand side
vanishes due to the conservation of the total mass, so the
total density ρ is constant. A solution of species A and B

is said to be dilute if ρA(x,t)/ρ and ρB(x,t)/ρ tend to zero,
which amounts to neglecting the variations of the density of the
solvent ρ∗(x,t). In these conditions, the two chemical schemes
given in Eqs. (1)–(3) and Eqs. (6)–(8) are identical.

If the surroundings are crowded and the solution cannot
be considered sufficiently dilute, the laws of diffusion may
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be modified. Diffusion typically enters into the class of
phenomena that are described in the framework of linear
irreversible thermodynamics [42]. According to the second
law of thermodynamics, the entropy production is a positive
quantity that can be written as the sum of products of
thermodynamic fluxes and forces. In the linear domain of
irreversible thermodynamics, these fluxes and forces are linked
by linear relationships. Fick’s first law is an example of such a
linear relationship between a flux of matter and the conjugated
thermodynamic force. In the case of an ideal solution and for
reasonable assumptions, the diffusion of a chemical species
only depends on this species. In a nondilute solution, the linear
relationships between the fluxes and the conjugated forces of
all the species imply that the diffusion of a species depends on
the densities and the diffusion coefficients of the other species.
The resulting Fick first law, valid in a nondilute solution, is
derived in Appendix A.

Finally, the reaction-diffusion equations governing the
evolution of the densities of species A and B engaged
in the chemical scheme given in Eqs. (6)–(8) are de-
duced from the balance equation given in Eq. (9) and
Fick’s first law given in Eqs. (A13) and (A14). It reads

∂ρA

∂t
= −k1

ρA

ρ
(ρ − ρA − ρB) + k2(ρA)2ρB

+D∗
A

[(
1 − ρA

ρ

)
�ρA − ( �∇ρA)2

ρ

]

−D∗
B

[
ρA

ρ
�ρB +

�∇ρA · �∇ρB

ρ

]
, (14)

∂ρB

∂t
= k−3 − k3

ρB

ρ
(ρ − ρA − ρB) − k2(ρA)2ρB

−D∗
A

[
ρB

ρ
�ρA +

�∇ρA · �∇ρB

ρ

]

+D∗
B

[(
1 − ρB

ρ

)
�ρB − ( �∇ρB)2

ρ

]
, (15)

where � = �∇2 denotes the Laplacian. In a one-dimensional
system, we have � = ∂2

∂x2 and ∇ = ∂
∂x

. Hence, in a solution of
species A and B that cannot be considered dilute, the transport
by diffusion of a given species depends on the densities ρA

and ρB and the diffusion coefficients D∗
A and D∗

B of the two
species. It is worth noting that Eqs. (4) and (5) associated with
the unperturbed reaction-diffusion system in dilute conditions
are retrieved from Eqs. (14) and (15) in the limit where ρA/ρ

and ρB/ρ tend to zero.

III. NUMERICAL INTEGRATION PROCEDURE

In order to numerically solve the reaction-diffusion equa-
tions, a discrete-space variable i = x/�x and a discrete-time
variable s = t/�t are introduced, where �x is the length of a
spatial cell i and �t is the integration time step. The Euler
method is used to integrate Eqs. (4) and (5) for the ideal
solution and Eqs. (14) and (15) for the nondilute solution.
The discretized perturbed equation for species A is given to
illustrate the numerical procedure:

ρA(i,s + 1) = ρA(i,s) + �t

(
−k1

ρA(i,s)

ρ
[ρ − ρA(i,s) − ρB(i,s)] + k2ρA(i,s)2ρB(i,s) + D∗

A

ρ(�x)2
{[ρ − ρA(i,s)]

× [ρA(i + 1,s) + ρA(i − 1,s) − 2ρA(i,s)] − [ρA(i + 1,s) − ρA(i,s)]2} − D∗
B

ρ(�x)2
{ρA(i,s)[ρB(i + 1,s)

+ ρB (i − 1,s) − 2ρB(i,s)] + [ρA(i + 1,s) − ρA(i,s)][ρB(i + 1,s) − ρB(i,s)]}
)

, (16)

where ρI (i,s) is the density of species I in spatial cell
i at discrete time s. The parameter values are chosen in
the domain of stability of Turing pattern and set at k1 =
2.5673, k2 = 0.8793, k3 = 1.9255, k−3 = 7.7019, D∗

A = 2.7,
and D∗

B = 27 [12]. The rate constant values and the diffusion
coefficient values impose the wavelength of the Turing pattern
at λ = 12.7, as explained in Appendix B. In order to optimize
the accuracy of the numerical results, the length �x of a
spatial cell is adjusted in such a way that the wavelength of
the unperturbed structure corresponds to a sufficiently large
integer number of cells. Specifically, we choose λ/�x = 38,
which imposes �x = 0.335 27. The number of digits does
not reveal that the model suffers from a high sensitivity to
small variations of the parameters but simply results from
requiring that the wavelength exactly spans over an integer
number of spatial cells. It is to be noted that we studied
the effects of fluctuations on the structure and proved that,
instead of blurring it, noise sustains the pattern [10]. The
requirements of the numerical integration procedure impose

a sufficiently small integration time step �t = 0.000 345 such
that the numerical coefficients in front of the reactive terms and
the diffusive terms are smaller than 1 and 1

2 , respectively [57].
If the values of the rate constants and diffusion coefficients of
well-identified morphogens would be available for a specific
vertebrate embryo, the model could be checked by comparing
the wavelength of the Turing structure with the actual value of
somite size. However, such a quantitative analysis far exceeds
the scope of this study, in which the length scale and time scale
are arbitrary. In the following, lengths are scaled by the length
�x of a spatial cell and time is scaled by the integration time
step �t , so the accuracy of the discrete integration scheme
may be straightforwardly evaluated.

We denote by (ρh
A,ρh

B), for h = 1,2,3, the three homo-
geneous steady states of the unperturbed system and by
(ρ∗h

A ,ρ∗h
B ) the three steady states of the crowded system.

The initial conditions are analogous in the two situations.
Step functions are chosen for the initial density profiles
of species A and B prepared in n0 = 150 spatial cells
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for both the unperturbed system and the nondilute system.
The first ten spatial cells, supposed to mimic the vicinity
of the head of the embryo, are prepared in the steady
state {ρ1

A = [k2k−3 +
√

(k2k−3)2 − 4(k1)2k2k3]/2k1k2,ρ
1
B =

(k−3 − k1ρ
1
A)/k3}. In agreement with the preexistence of the

head, zero-flux boundary conditions are chosen at the rostral
end, so the density profiles of species A and B have an
extremum at this boundary, once the Turing pattern have
developed. The next n0 − 10 spatial cells are prepared in the
steady state (ρ3

A = 0,ρ3
B = k−3/k3 = 4) for the unperturbed

system and in the steady state

ρ∗3
A = 0, (17)

ρ∗3
B = ρ

2
(1 −

√
1 − 4k−3/k3ρ) � 4.143 (18)

for the crowded system.
Initially, the density of species A is higher than the density

of B at the rostral end and the contrary is observed at the
caudal end. The autocatalytic reaction given in Eq. (2) or (7)
produces A and consumes B so species A invades and replaces
species B. Hence, a traveling front emerges as a solution of
the equations and the density of species B tends to decrease
at a given distance from the caudal end. At this extremity,
the boundary conditions are different from those chosen in
Refs. [12,13] in which unlimited free growth was considered.
The growth of embryos of finite size is obtained as follows.
We add a spatial cell at the caudal end at a constant rate,
which we choose smaller than the propagation speed of the
wave front, imposed by the dynamical parameters. Hence,
the density of species B at a given distance from the caudal
end decreases. Such conditions correctly reproduce that the
presomitic mesoderm, comprised between the growing caudal
end and the faster traveling antagonist gradients of A (denoting
retinoic acid) and B (denoting FGF), gradually shrinks as
observed for many vertebrates, such as zebrafish, chickens,
mice, and snakes [1].

In order to stop the simulation before the traveling wave
reaches the very end of the medium, we introduce a threshold
ε, such that front propagation and somite growth are arrested
when the density of species B at a given distance from the
caudal extremity falls below this threshold. More precisely,
the dilute system continues to grow as long as ρB[(n −
100)�x,t] > ε. In other words, the numerical resolution is
stopped at time t = tstop for the unperturbed system when
the density of species B in the spatial cell n − 100 becomes
smaller than the threshold ε for an embryo of total size n.
Similarly, somite growth in the crowded system is arrested
at time t = t∗stop when ρB crosses the same threshold ε in
the spatial cell n∗ − 100. Figure 1 illustrates the boundary
conditions chosen to mimic the growth of an embryo as
long as the threshold ε has not been crossed. Periodic
spatial oscillations of the densities ρI of species I = A,B are
formed according to Turing instability that develops behind
the propagating wave front. Between the traveling gradients of
species A and B and the caudal end, the unstructured region
mimics the presomitic mesoderm. The values of n and n∗ are
chosen on the basis of a trial and error procedure in such a way
that the same number of wavelengths, fixed at 21, are formed in
the two cases when the numerical resolution stops, i.e., when

FIG. 1. Snapshot of the spatial density profiles ρA and ρB of
species A (red dashed line) and B (black solid line) at time t∗ =
350 000�t : solution of the equations in a crowded system [Eqs. (14)
and (15)] before the end of system growth. The parameters take
the following values in arbitrary units: k1 = 2.5673, k2 = 0.8793,
k3 = 1.9255, k−3 = 7.7019, D∗

A = 2.7, D∗
B = 27, �t = 0.000 345,

�x = 0.335 27, and ρ = 120. The growing caudal end has reached
the spatial cell n∗ = 592. The traveling gradients of species A and B

propagate faster than the system grows and the density of species B

at a given distance from the caudal end ρB [(n∗ − 100)�x,t∗] tends to
decrease. At time t∗, the threshold ε = 3.94 has not yet been crossed
in the spatial cell n∗ − 100 = 492 and growth has not stopped.

ρB crosses ε in the spatial cells n − 100 and n∗ − 100 in the
dilute and confined systems, respectively. Using this trick, we
are able to assign a length L = n�x to the ideal solution and
L = n∗�x to the nondilute system. A more refined termination
process could be envisaged to form smaller somites at the
caudal end, but this point is not the concern of the present
study.

As already pointed out, the ideal solution is retrieved in
the limit where the solvent is in great excess with respect to
the solutes A and B, i.e., when [ρA(x,t) + ρB(x,t)]/ρ → 0,
with ρ given in Eq. (10). In an inhomogeneous growing
system in which a spatial structure develops, the evaluation
of the departure from ideality by a single quantity requires
the choice of a location where the system remains in a
stationary state. To this goal, we choose the caudal end of
the embryo, characterized by the homogeneous steady state
(ρ∗3

A ,ρ∗3
B ) given in Eqs. (17) and (18). Hence, we define the

strength of confinement or departure from ideality by the ratio
between the sum of the densities of species A and B and the
total density evaluated at the steady state (ρ∗3

A ,ρ∗3
B ):

δ = ρ∗3
A + ρ∗3

B

ρ
. (19)

According to Eqs. (17) and (18), it reads

δ = 1
2 − 1

2

√
1 − 4k−3/k3ρ, (20)

which highlights that the total density ρ may be used
as a convenient parameter to control the departure from
ideality, without changing the rate constants and the diffusion
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coefficients, i.e., without affecting the unperturbed equations
given in Eqs. (4) and (5). In particular, Eq. (20) shows that the
parameter δ and the departure from ideality decrease as the
total density ρ increases. The ideal solution, where the solvent
is in great excess, is associated with the limit ρ → ∞ for which
δ → 0. In the next section we present the differences between
the spatial structures obtained in a more or less confined
system.

IV. RESULTS

We look for numerical solutions of the unperturbed equa-
tions (4) and (5) in a dilute solution and the modified equations
(14) and (15) for a crowded system. The results are given in
Fig. 2 for the unperturbed system associated with δ = 0 and a
small confined system associated with δ = 0.0345 according
Eq. (20) for the parameter values given in Fig. 1. At a given
time, the embryo is supposed to be oriented with the head on
the left and the caudal end on the right of the figure: In both
the unperturbed and confined systems, a stationary periodic
spatial pattern of Turing type develops behind a propagating
wave front. The periodic spatial oscillations between green
and blue colors reveal the succession of minima and maxima
of the density ρB of species B in the structured region, the red
region can be identified with the unstructured caudal tissue, and
the yellow region is outside the embryo. The same threshold
ε = 3.94 is reached earlier in the case of the confined system
and the length L of the system is smaller. In the following
we discuss the consequences of confinement on wave-front
propagation speed and morphogen gradient, growth rate (i.e.,
embryo size), and wavelength of the structure (i.e., somite
size).

A. Effect of confinement on wave-front propagation
speed and morphogen gradient

The propagation speed of the chemical wave front is given
by the slope of the blue line between the green and blue peri-
odic pattern and the red unstructured region in Fig. 2. We find
a wave-front propagation speed of vp = 0.934 × 10−3�x/�t

for the unperturbed system and v∗
p = 1.33 × 10−3�x/�t for

the confined system. One of the effects of confinement in this
model is thus to speed up somite formation process behind
the propagating front. Limited experimental evidence of the
correlation between growth speed and embryo size is reported
in the literature. Experiments on mouse embryos whose size
has been reduced by a treatment with mitomycin C reveal a
complex nonmonotonic variation of growth speed: Treated and
consequently smaller embryos show an early phase of growth
retardation but accelerate their growth after 9.5 days post
coitum (p.c.) and actually grow faster than normal embryos
after 10 days p.c. [58]. However, the correlation between
morphogen gradient size and embryo size has been repeatedly
observed for both vertebrates and invertebrates [2,4,5,7].

The morphogen gradient is defined as the slope of the
morphogen density profile at the inflection point of the
traveling wave front, located between the Turing pattern and
the steady state (ρ∗3

A ,ρ∗3
B ). The final density profiles of the two

species A and B, supposed to play the role of morphogens,
are given in Fig. 3 in the case of an unperturbed system and
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FIG. 2. Time-space evolution of the density ρB (x,t) of species
B (see color scale): (a) solution of the unperturbed equations (4)
and (5) and (b) solution of the equations (14) and (15) in a crowded
system. The parameter values are given in the caption of Fig. 1.
The threshold ε = 3.94 is reached in spatial cell n − 100 = 868 at
time tstop = 878 264�t in the unperturbed system and in spatial cell
n∗ − 100 = 795 at time t∗

stop = 591 836�t in the confined system.
The yellow regions are outside the simulated system.

a crowded one. The density profiles are used to evaluate the
morphogen gradients. For species B, the morphogen gradient
is found to increase from gB = 0.16/�x for the unperturbed
system to g∗

B = 0.18/�x for the confined system. Similar
results are obtained for species A. Hence, the increase of
the front propagation speed is directly correlated with the
increase of the traveling gradients of species A and B when
the solution departs from ideality. Hence, the model predicts
that an embryo, suffering from a strengthening of confinement
and of consequently smaller size, is associated with a wave
front of steeper gradient, in agreement with experiments on
vertebrates [2] and invertebrates [4,7].
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FIG. 3. Final spatial density profiles ρA and ρB of species A (red
dashed line) and B (black solid line): solutions of the unperturbed
equations (4) and (5) (top) at time tstop = 878 264�t and solutions
of the equations (14) and (15) in a crowded system (bottom) at time
t∗
stop = 591 836�t . The parameter values are given in the caption of

Fig. 1.

B. Effect of confinement on system length

We first examine the growth speed of the embryo in the two
limiting cases presented in Figs. 2 and 3 in the specific case
where the animal is supposed to have 21 somites. In Fig. 2,
the slope of the limit between the red presomitic mesoderm
and the yellow region, outside the embryo, represents the
growth speed of the embryo, denoted by vg and v∗

g for the
unperturbed and confined systems, respectively. We recall that
the termination of the spine formation process is reproduced
first, by imposing a smaller growth speed of the embryo
than the front propagation speed, and second, by arresting
somite formation as the density of species B in the spatial
cell n − 100 or n∗ − 100 falls below the threshold ε. In
both cases, we have vg < vp and v∗

g < v∗
p. Specifically, the

speed vg = 0.920 × 10−3�x/�t , at which the unperturbed
system grows, is chosen to obtain 21 somites when the
density ρB[(n − 100)�x,t] crosses the chosen threshold value
ε = 3.94, i.e., when growth is arrested. Then the growth rate of
the presomitic mesoderm in the nondilute system is adjusted
in such a way that the same threshold ε is crossed for ρB in cell
n∗ − 100 when the same number of somites has been formed.
It reads v∗

g = 1.27 × 10−3�x/�t . We find that the simulation
stops when the embryo reaches the length L = 968�x in the
unperturbed case and L = 895�x in the confined system.
In the two cases, 21 wavelengths supposed to correspond to
the formation of 21 somites are observed, but, in a confined
environment, the larger propagation speed v∗

p of the wave front

FIG. 4. Dimensionless system length L/�x versus departure

from ideality δ = ρ∗3
A

+ρ∗3
B

ρ
. The open squares are obtained by solving

Eqs. (14) and (15) for a crowded system for the parameter values
given in the caption of Fig. 1 and a variable total density ρ. The line
is a linear fit of the data in the domain δ ∈ [0,0.035]. The red closed
square gives the results of Eqs. (4) and (5) for the unperturbed system.

induces the faster growth of the embryo, which reaches earlier
the definitive number of somites for a smaller total length.

We then perform a systematic analysis of the variation of
system length L with the departure from ideality evaluated by
the parameter δ defined in Eqs. (19) and (20). Specifically, the
equations associated with a crowded system [Eqs. (14) and
(15)] are numerically solved for the same parameter values
except the total density ρ. Equation (20) is used to compute the
departure from ideality δ. The total number of cells n∗ that fixes
the length L = n∗�x of the system associated with different
values of δ is determined by trial and error until 21 somites
are formed when the threshold ε is reached in cell n∗ − 100.
The results are given in Fig. 4. Although the approach is
deterministic, the results look noisy because of the procedure
used to stop the numerical solution. With a finer spatial
discretization, i.e., more cells per wavelength, better accuracy
on the system length L would be obtained. As expected,
the behavior of the dilute solution obtained by solving the
unperturbed equations (4) and (5) is recovered when solving
the equations for a crowded system for a sufficiently small
value of δ. At the precision of the numerical solutions, the
unperturbed results are retrieved for δ = 0.0004. When the
departure from ideality is large, for δ > 0.035, the decrease of
system length is nonlinear. For such strong perturbations, the
hypotheses leading to Eqs. (A2) and (A9) are not supposed to
be valid. Interestingly, a linear relationship between the system
length L and the strength of confinement is obtained in the
interval δ ∈ [0,0.035], which defines the domain of validity
of the approach. An embryo of normal size L is supposed
to be associated with a departure δ from ideality inside the
interval [0,0.035]. In order to optimize the difference between
the system sizes observed in Figs. 2 and 3, we have chosen to
show the results obtained for the boundaries of the domain of
validity, i.e., the limit δ → 0 of a dilute solution, which leads
to the largest embryo, and the nonideal case δ = 0.035, which
leads to a small embryo.
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FIG. 5. Dimensionless wavelength λ∗/�x of the pattern versus
dimensionless system length L/�x. The open squares are obtained
by solving Eqs. (14) and (15) for a crowded system for the parameter
values given in the caption of Fig. 1 and a variable total density ρ

associated with a departure from ideality in the interval δ ∈ [0,0.035].
The red closed square is obtained by solving Eqs. (4) and (5) for the
dilute system. The line is a linear fit of the data.

C. Effect of confinement on the wavelength of the pattern

In the structured region shown in Figs. 2 and 3, the maxima
of ρB are supposed to initiate the formation of boundaries
between somites so that somite size may be evaluated by the
wavelength of the spatial structure. As shown by the final
density profiles in Fig. 3, we find that the wavelength λ∗ �
35.1�x in the crowded system is smaller than the unperturbed
value λ = 38�x. Hence, confinement in the smaller, nondilute
system leads to the formation of somites of smaller size than in
the unperturbed system. The connection between the departure
from ideality δ and system size L has been proven in Fig. 4.
Figure 5 shows the correlation between system size L and the
wavelength λ∗ of the structure. The linear relationship between
L and λ∗ clearly reproduces the scaling behavior observed
between embryo size and somite size. The main result of the
paper is that the departure from ideality in a smaller system
induces the decrease of the wavelength of a Turing structure.
Confinement can be reasonably considered as a phenomenon
participating in the adaptation of somite size to system size in
the framework of a Turing pattern.

An analytical evaluation of the wavelength in the confined
system is performed in Appendix B. In particular, we show
that the perturbation of diffusion due to confinement has a
smaller impact on the spatial structure properties than the
perturbation of the chemical reactions. This result is in line
with experimental measurements of diffusion coefficients in
different Diptera species. Contrary to the morphogen gradient,
effective diffusion is found to be essentially the same for
embryos of very different sizes [5].

Consequently, we derive the dispersion relations for the
confined system with unperturbed diffusion. The selected
wavelength of the structure is associated with the mode for
which the dispersion relation is maximum. The results are

FIG. 6. Dispersion relations. Real part of the eigenvalues of the
linear operator of Eqs. (4) and (5) associated with the unperturbed
system (black solid line) around the steady state (ρ1

A.ρ1
B ) versus square

of the mode q2. The parameter values are given in the caption of
Fig. 1. The selected wavelength is deduced from the maximum of
the curve: λ = 2π/qmax. Also shown are analogous results for the
perturbed chemical scheme given in Eqs. (6)–(8) and unperturbed
diffusion (red dashed line) around (ρc1

A ,ρc1
B ). The selected wavelength

λc = 2π/qc
max is smaller than λ and compares well with the numerical

value λ∗ observed in Fig. 3 when solving numerically Eqs. (14)
and (15).

given in Fig. 6. The selected mode qc
max in the confined system

with unperturbed diffusion is larger than the selected mode
qmax in the unperturbed system. The selected wavelength λc =
2π/qc

max � 35.3�x in the system with perturbed reactions
is smaller than the unperturbed wavelength λ = 2π/qmax �
38�x. The value of λc compares well with the numerical
value λ∗ � 35.1�x observed in Fig. 3 when solving Eqs. (14)
and (15), in which both reactions and diffusion are perturbed
by confinement.

Hence, a reaction-diffusion model, which takes into account
a departure from dilute conditions, is able to reproduce that
a smaller embryo faster presents a correct number of somites
of smaller size. The larger propagation speed of the wave
front observed as confinement increases is associated with a
steeper concentration gradient [2]. The results can be straight-
forwardly extended to the segmentation of invertebrates. In
agreement with experiments on Drosophila, our model based
on the Turing pattern correlates the scaling of patterning with
the modification of the steepness of the signaling gradient
[4,7].

V. CONCLUSION

In this paper we considered a reaction-diffusion model of
somitogenesis based on the mechanism of Turing instability
and dealt with the main concern of this kind of model, which
is its ability to account for pattern size adaptation to total
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embryo size. We assumed that in a smaller embryo, molecular
crowding is reinforced, so nonspecific interactions of the
reactive species with the solvent cannot be ignored in the
reaction scheme and in the transport by diffusion.

We derived a modified Fick first law in the framework
of linear irreversible thermodynamics and wrote perturbed
reaction-diffusion equations, valid in a nondilute system. We
found that confinement leads to a steeper traveling gradient
of morphogen, a larger propagation speed of the chemical
wave front, and consequently to the faster formation of the
total number of somites, but of smaller size. Hence, we
have developed a model based on the Turing pattern that
incorporates the effects of crowding and predicts the formation
of smaller somites in smaller embryos, in agreement with the
experimental observations.

Our results prove that Turing modeling of somitogenesis
cannot be discarded by invoking the question of scaling in em-
bryonic development. Moreover, the reaction-diffusion model
we proposed has the advantage of being based on elementary
microscopic processes and displaying some universal features,
insofar as it may be used to model spine formation as well as
segmentation of invertebrates. Our approach sheds light on
the role that the solvent can play in biological phenomena, in
which it is often disregarded.

APPENDIX A

This Appendix is devoted to the derivation of the modified
laws of diffusion in a nondilute solution. The linear irreversible
thermodynamics framework can be used to establish Fick’s
laws in a ternary mixture of A, B, and ∗ [42]. The entropy
production per unit mass due to isothermal diffusion is usually
given in the framework of the center of mass of the solution

σ = 1

T

∑
I=A,B,∗

�jI · (−�∇T μI ), (A1)

where �∇T denotes the spatial gradient at constant temperature
T and μI , the chemical potential of species I . The flux �jI

of species I is said to be conjugate to the opposite of the
gradient of the chemical potential of I . Fick’s first law is a
straightforward consequence of linear relationships between
the fluxes of species A and B and the conjugated forces
−�∇T μA and −�∇T μB . Specifically, the effect of confinement
is supposed to be sufficiently small to ensure that the chemical
potential μI of species I per unit mass is the same as in an
ideal solution:

μI = μ0
I + RT

MI

ln ρI , (A2)

where μ0
I is the standard chemical potential of species I per

unit mass, R the gas constant, and MI the molar mass of
species I .

The framework of the solvent ∗ is more convenient to
establish Fick’s laws in a crowded environment. The flux
of species I in the framework of the solvent is defined by
�j ∗
I = ρI (�uI − �u∗), where �u∗ is the velocity of the solvent. By

definition, the flux of the solvent vanishes in the framework of
the solvent:

�j ∗
∗ = �0. (A3)

In the case of isothermal diffusion in a nonviscous fluid,
mechanical equilibrium at constant ρ leads to �∇p = �0 and the
Gibbs-Duhem equation to �∇p = ∑

I=A,B,∗ ρI
�∇T μI , where p

is pressure [42]. Hence, we have∑
I=A,B,∗

ρI (−�∇T μI ) = 0. (A4)

The expression of entropy production given in Eq. (A1) can
be rewritten as

σ = 1

T

∑
I=A,B,∗

ρI (�uI − �u∗ + �u∗ − �u)(−�∇T μI ) (A5)

=
∑

I=A,B

�j ∗
I (−�∇T μI ), (A6)

where use has been made of Eqs. (A3) and (A4). Phe-
nomenological coefficients 
IJ are introduced to write linear
relationships between thermodynamic fluxes �j ∗

I and forces
− �∇T μJ :

�j ∗
I =

∑
J=A,B


IJ (−�∇T μJ ), (A7)

leading to Fick’s first law

�j ∗
I =

∑
J=A,B

D∗
IJ (−�∇ρJ ), (A8)

where the relationship between the diffusion coefficients D∗
IJ

and the phenomenological coefficients 
IJ can be easily
deduced from Eq. (A2). In a dilute solution, the diffusion
coefficients D∗

IJ are known to be nearly independent of the
densities ρI and to have negligible nondiagonal elements
D∗

IJ ∼ 0 for I �= J . Exactly as we used the expression of the
chemical potential of an ideal solution, we assume that the level
of confinement is sufficiently low to ensure D∗

IJ = D∗
I δIJ ,

where δIJ is the Kronecker symbol. Fick’s first law becomes

�j ∗
I = D∗

I (−�∇ρI ), I = A,B. (A9)

The fluxes �j ∗
I (I = A,B) in the framework of the solvent

are related to the fluxes �jI (I = A,B,∗) in the framework of
the center of mass by

�j ∗
I = ρI (�uI − �u) + ρI (�u − �u∗)

= �jI − ρI

ρ∗
�j∗. (A10)

The reverse relations are given by

�jA =
(

1 − ρA

ρ

)
�j ∗
A − ρA

ρ
�j ∗
B, (A11)

�jB = −ρB

ρ
�j ∗
A +

(
1 − ρB

ρ

)
�j ∗
B, (A12)

where Eqs. (10) and (12) have been used to eliminate ρ∗ and
�j∗. Hence, in the framework of the center of mass, Fick’s first
law given in Eq. (A8) leads to

�jA = −
(

1 − ρA

ρ

)
D∗

A
�∇ρA + ρA

ρ
D∗

B
�∇ρB, (A13)

�jB = ρB

ρ
D∗

A
�∇ρA −

(
1 − ρB

ρ

)
D∗

B
�∇ρB. (A14)
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These equations are used to derive the divergence of the fluxes
�∇ · �jI in the balance equations (9), which govern the dynamics
of the densities ρI for I = A,B in a nondilute solution.

APPENDIX B

In order to evaluate the wavelength of the spatial structure
in a confined environment, we first begin with the comparison
of different quantities numerically obtained when considering
that confinement only modifies either diffusion or reaction.
Hence, we start with Eqs. (14) and (15) and replace the
reaction terms with the one of the unperturbed system
given in Eqs. (4) and (5). For the system in which only
diffusion is supposed to be modified by confinement, we
obtain the following values of the stationary states: (ρd1

A =
1.843) � (ρ1

A = 1.848), (ρd1
B = 1.542) � (ρ1

B = 1.537), and
(ρd3

B = 4.000) � (ρ3
B = 4). The growth rate of the presomitic

mesoderm is vd
g = 9.70 × 10−4�x/�t and the propagation

speed of the chemical wave front is vd
p = 9.81 × 10−4�x/�t ,

where the exponent d stands for perturbed diffusion.
These different values are rather close to the unperturbed
results, but nevertheless prove that the perturbation of

diffusion has the tendency to increase wave-front propagation
speed.

When we numerically solve Eqs. (14) and (15) with
unperturbed diffusion we obtain ρr1

A = 2.060, ρr1
B = 1.376,

and ρr3
B = 4.143. In addition, vr

g = 1.20 × 10−3�x/�t and
vr

p = 1.265 × 10−3�x/�t , where the exponent r stands for
the perturbed reaction. These results agree with the values
ρ∗1

A = 2.050, ρ∗1
B = 1.380, and ρ∗3

B = 4.143, obtained when
numerically integrating Eqs. (14) and (15) associated with
the system in which confinement is supposed to modify both
diffusion and reaction. We conclude that the perturbation of
diffusion by confinement has the same qualitative impact on
the spatial structure formation as the perturbation of reaction,
but with a smaller amplitude.

Consequently, we may neglect the perturbation of diffusion
to evaluate the wavelength of the structure. Hence, we
consider Eqs. (14) and (15) with unperturbed diffusion. The
Fourier transforms Aq(t) = ∫ ∞

−∞ ρA(x,t)e−iqxdx and Bq(t) =∫ ∞
−∞ ρB(x,t)e−iqxdx of the densities are introduced to analyze

the linear stability of the homogeneous steady state ρr1
A ,ρr1

B

with respect to inhomogeneous perturbations of wave number
q [59]. The linear stability operator Mc is given by

Mc =
(

M11 = k1
(
1 − ρr1

B

/
ρ
) − D∗

Aq2 M12 = k1ρ
r1
A

/
ρ + k2

(
ρr1

A

)2

M21 = k3ρ
r1
B

/
ρ − 2k1

(
1 − ρr1

A

/
ρ − ρr1

B

/
ρ
)

M22 = −k−3/ρ
r1
B + k3ρ

r1
B

/
ρ − D∗

Bq2

)
. (B1)

The eigenvalues μ± of Mc are

μ± = [M11 + M22 ±
√

(M11 + M22)2 − 4(M11M22 − M12M22)]/2. (B2)

An analogous procedure is followed to find the eigenvalues of
the matrix M associated with the unperturbed system [Eqs. (4)
and (5)] [13]. The two dispersion relations for the unperturbed
and confined systems are compared in Fig. 6.

In addition to the increase of the mode qc
max in

the confined system with respect to the unperturbed
value qmax, the maximum value of the real part of the

eigenvalue Re(μ+) is found smaller. This last result shows
that confinement has the tendency to destabilize the Turing
pattern for the benefit of the homogeneous steady state,
which is corroborated by the decrease in the oscillation
amplitude of the spatial structure (�ρ∗

A = 2.734) < (�ρA =
3.144) and (�ρ∗

B = 0.960) < (�ρB = 1.224) observed in
Fig. 3.
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