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This works reports the use of a complex network approach to produce a phylogenetic classification tree of
a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant
organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used
evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation
through random mutations and population growth, but purposefully omits other realistic ingredients that are not
strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set
of parameters, controlling the mutation probability and the population of different species. Our results indicate
that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the
actual evolutionary history with a very high average degree of accuracy. This includes parameter values where
the species originated by the evolutionary dynamics have modular structures. In the more general context of
community identification in complex networks, our model offers a simple setting for evaluating the effects, on the
efficiency of community formation and identification, of the underlying dynamics generating the network itself.
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I. INTRODUCTION

Deciphering the evolutionary history of living organisms
is one of the major challenges of modern science [1]. The
beginning of life on Earth can be tracked to some 3.8 to 4 billion
years ago [2], and the first important attempts at reconstructing
this process date from the 19th century, when Darwin’s theory
of evolution was proposed and incorporated as one of the
cornerstones of science. Historically, theories and hypotheses
about evolution are closely related to the setup of phylogenetic
trees [2–4], which gather different extant species according to
a suitable measure of their relative proximity, and to the study
of fossils, which provided the first evidence of living species
throughout evolutionary history, including many extinct ones.

The discovery of the DNA structure and, some decades
later, the development of techniques to identify the genetic
sequence of organisms yielded a huge amount of new informa-
tion, with an impact on tasks, methods, and strategies of many
fields of science [5,6]. Nevertheless, despite the large base of
knowledge of genetic structures of extant and a few extinct or-
ganisms, phylogenies—and evolutionary reconstruction—are
still essentially based on data of similarities between species
alive nowadays [7]. There are, however, many limitations
to this approach. The large variability in mutation rates of
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different genes and of similar genes in different groups of
organisms, together with phenomena such as gene transposi-
tion and genome duplication, represent obstacles to a precise
identification of phylogenetic trees and, as a consequence, to
the reconstitution of evolutionary histories [8,9]. Moreover,
since in general the exact evolutionary history of a group of
species is unknown, there is no absolute way of checking
the adequacy of those reconstructions, and different methods
are validated by checking the mutual consistency of the corre-
sponding reconstructions [10]. Reconstructed histories are also
important in other fields such as linguistics (since language
evolution follows some pattern of reproduction, mutation, and
extinction) [11], but also in those cases validation is restricted
to comparisons between different reconstruction methods.

In order to obtain a controllable comparison between
evolutionary dynamics and phylogenetic classification, in the
context of a recently proposed method [10,12], the present
work considers a simple but well-defined computational evolu-
tionary model and investigates the possibility of retrieving the
corresponding phylogenetic communities from information on
the set of species present at the final stage of the simulation
process. The model contains the key ingredients of differen-
tiation through random mutations and population growth, but
we remark that other realistic ingredients were purposefully
not included, seeking the minimum set of variables needed
to mimic essential aspects of a phylogenetic tree. The idea
is to provide an estimate of the maximum reliability of a
phylogenetic reconstruction approach.

Our evolutionary model considers the microscopic evolu-
tionary dynamics of a set of organisms characterized by a
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genetic strand of binary bases. All organisms differentiate from
a single common ancestor through a cumulative process in
which random changes may occur in the strand. The model is
therefore neutral, i.e., no explicit selection acts on any species.
The phylogenetic classification is based on the identification
of modules (or communities) in complex networks, whose
structure is defined by the pairwise similarity index between
the strands of the resulting organisms. We employ a community
identification framework [10] that has already been used
to investigate actual phylogenetic and evolutionary aspects
based on molecular similarity in actual biological systems.
We emphasize that this framework yields a phylogenetic
classification in good agreement with other methods available
in the literature [7], such as distance, maximum likelihood,
maximum parsimony, and Bayesian methods, all of which,
however, are subject to limitations due to the fact that we do
not have full access to the actual evolutionary history.

On the other hand, since in our work we keep track of the
evolutionary dynamics of the model, we are able to provide
an absolute rather than relative estimate of the reliability
of the chosen community-identification algorithm. Therefore,
we are in a position to point out sources of errors between
the predictions of the phylogenetic result and the actual
evolutionary history. Of course this procedure can be used to
test and establish benchmarks for any classification procedure
and for any given evolutionary model. In the particular
case of the framework of Ref. [10], given the consistency
of the reconstructed phylogenies with those obtained from
other methods, our estimated maximum reliability would be
immediately applicable to those methods.

This paper is organized as follows: in the next section,
we discuss our simple evolutionary model, which depends
on four parameters; in Sec. III, we illustrate three possible
evolutionary scenarios that are obtained by selecting different
combinations of the model parameters. Section IV presents the
major results of this work: the retrieved phylogenetic tree based
on modularity analysis of complex networks. Concluding
remarks and perspectives are mentioned in Sec. V.

II. EVOLUTIONARY MODEL

Here we present our simple evolutionary model that
produces a set of species, their evolutionary history, and
the genetic similarities between any pair of species. With
such model, we can check the reliability of procedures for
the inference of evolutionary history based on the similarity
between species.

In our model, a species is identified by a strand of N

units (“genes”) that can take values 0 (“inactive gene”) or
1 (“active gene”).1 Different gene sequences correspond to
different species. Two species are said to be neighbor species
if they differ by only one gene. For each species that appears in
the model, we record information on the number of individuals
belonging to that species.

The model is initialized with one species, which we call
the species 0 (e.g., the species with all genes 0), with a single

1The use of binary “genes” is reminiscent of the Penna model for
biological aging [18,19].

individual. In each time step T (“generation”), the number
of individuals of an existing species i is updated according
to a function ni(t − Ti), where Ti is the generation at which
the species appeared, which requires that ni(t − Ti) ≡ 0 for
t < Ti . Then each individual of each existing species can make
a transition to a random neighbor species (“mutation”) with
probability X, establishing an evolutionary link between those
two species which will be registered in the evolutionary history.
We stop the model at generation Tf , obtaining as outputs
the set of generated species, their evolutionary history, and
the similarity between each pair of species, as determined
from the corresponding gene sequences. In Fig. 1, we depict
the dynamics of the model. Notice that, contrary to work
based on the fixed-population Wright-Fisher model (see, e.g.,
Refs. [9,13–15]), our focus here is not on the statistics of the
distances between species or on features such as the time to the
most recent common ancestor, but rather on both the genomes
and the precise genealogy of the various species.

For simplicity, we constrain the mutation process so that
a species can only mutate to one of its N neighbor species;
that means that all of the links in the evolutionary history will
connect neighbor species. Involution events, i.e., mutations
to an already existing species, are not likely to happen
for large enough N and small enough Tf , and are not
explicitly prohibited in the model. Finally, the structure of
the evolutionary history as well as the number of generated
species are strongly dependent on the growth function n(t)
and the mutation probability X.

We use a dendrogram to picture the evolutionary history
of the species. Representing successive generations in the
horizontal axis, we can visualize the evolutionary history by
observing the splitting of the branches, which indicates that
mutations occur and new species appear from the species from
which the branches stem. In order to construct the dendrogram,
it is convenient to label the species in a specific order, so that
the branches do not cross each other; we call this order the
dendrogram numbering, which corresponds to the order of the
branches at the right end of the dendrogram. Observe that the
dendrogram numbering is different from the order according
to which the species appear during the simulation, which we
call the original numbering.

After the simulation ends, we build a similarity matrix M,
whose elements Mij represent the similarity between species
i and j , calculated as the ratio

Mij = Gij

N
, (1)

in which Gij is the number of matching genes at corresponding
positions in the gene sequences of species i and j , while N

is the total number of genes. Notice that M is a symmetric
matrix, since all species have the same total number of genes,
appearing in the strand according to the same sequence.
Furthermore, the diagonal elements of M are all equal to
unity.

III. MODEL RESULTS

In this section, we show some results from the evolutionary
model introduced in the previous section. The population
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FIG. 1. Dynamics of the evolutionary model. (a) A species is represented by a strand of N genes (in the example, N = 6) that can be
inactive (e.g., white) or active (black); in each step, this species can mutate with probability X to a neighbor species. (b) Scheme of the global
dynamics of the model: the set of all species S is divided into subsets Sσ , where σ is a numeric sequence used to identify each subset. The
numbers in the sequence indicate all generations at which the species belonging to that subset suffered a mutation. At T = 0, there is only
one species and the subset containing it is identified by σ0 = 0. At any T � 1, there are 2T −1 new subsets, labeled by 2T −1 new sequences
σ�, � = 2T −1,2T −1 + 1, . . . ,2T − 1. In particular, at T = 1, there is the σ0 subset and a new one labeled σ1 = 0,1. Nσ denotes the number of
different species in Sσ , with the constraint Nσ0 = 1. The value of Nσ depends on the random introduction of changes in the genome of the
species ancestor. If no change occurs, Nσ ≡ 0 for that particular sequence, as well as for all sequences resulting from adding new numbers
to this sequence. ni(t − Ti) is the number of individuals of the species i at time t and, for any species i appearing at a time Ti , the condition
ni(t < Ti) ≡ 0 holds.

growth n(t) is chosen as the logistic function,

ni(t − Ti) = ker(t−Ti )

k − 1 + er(t−Ti )
, t � Ti

ni(t − Ti) = 0, t < Ti, (2)

as it describes, in a simple way, the rate of population growth
and the upper limit of the population size of a given species.
Such features are in agreement with what is observed in
actual organism populations. Here, r represents the growth rate
and k is the carrying capacity, i.e., the maximum number of
individuals of a given species. Notice that for a given value of
k, n(t) increases faster the larger the growth rate r . We remind

the reader that if there were no upper limit on population
size, the population of the set of older species would make
them overwhelmingly dominate the speciation process. This
tendency can be seen by looking at the results in Figs. 2–4,
and comparing with the corresponding values r/k. In each of
these figures, we draw the dendrogram obtained during the
evolutionary history, the logistic growth function n(t), and
the gray tone (color in the online version) representation of
the similarity matrix.

For the sake of definitiveness, we fixed the number of genes
at N = 10 000 and the probability of mutation at X = 0.005.
We stop the simulation at the generation Tf , defined as
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FIG. 2. (a) Dendrogram, (b) logistic growth n(t), and (c) gray
tone (color online) representation of the similarity matrix using
the dendrogram numbering for the parameters N = 10 000, X =
0.005, Tf = 30, r = 0.5, and k = 1000. For the sake of an easier
identification of individual branches, gray tone (color) lines are used
in (a), which have otherwise no special meaning. (c) The horizontal
and vertical axes indicate the species, while the gray tone (color)
bar indicates the genetic similarity between pairs of organisms, as
defined by Eq. (1). The total number of species is 441. Notice the
well-defined modular structures.

the generation in which the number of species exceeds a
preestablished value N̄ . In other words, the final set of species
is composed of all species in the subsets Sσ (see the caption to
Fig. 1), with σ � σ̄ , where σ̄ is defined by the conditions

σ̄∑

σ=0

Nσ � N̄ and
σ̄+1∑

σ=0

Nσ > N̄ . (3)

All examples we discuss were obtained by setting N̄ = 500.
This maximal number of species is much smaller than the total
number of possible species, 210000, reducing the probability of
an involution event, and it is of the same order of the number
of species used in some real phylogenetic analyses [10,12].

By varying the parameters r and k of the logistic growth
function n(t), we obtain different structures for the evolution-
ary history. The dependence on those parameters is intuitive
since they determine the number of individuals that can mutate
to new species. The carrying capacity k is related to the
asymptotic maximum number of new species that can appear
from a given species at a given generation; the growth rate r

informs how fast n(t) reaches the carrying capacity and thus
how many species in a given generation are at their maximum
number of individuals. Observing those aspects, we could
distinguish three types of evolutionary history, as reflected
in the respective dendrogram and similarity matrix.

FIG. 3. (a) Dendrogram, (b) logistic growth n(t), and (c) gray
tone (color online) representation of the similarity matrix using the
dendrogram numbering for the parameters N = 10 000, X = 0.005,
Tf = 45, r = 0.5, and k = 100. Horizontal and vertical axes, as well
as gray tone (color) lines and pixels have the same meaning as in
Fig. 2. The total number of species is 499. The modular structure is
not so well isolated as in Fig. 2.

FIG. 4. (a) Dendrogram, (b) logistic growth n(t), and (c) gray
tone (color online) representation of the similarity matrix using the
dendrogram numbering for the parameters N = 10 000, X = 0.005,
Tf = 110, r = 0.1, and k = 1000. Horizontal and vertical axes, as
well as gray tone (color) lines and pixels have the same meaning as
in Fig. 2. Total number of species is 500. Notice the large intertwined
community comprising neighbors of the original species in the lower
left corner.
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The first type of structure is represented in Fig. 2. This case,
for which r = 0.5 and k = 1000, allows the development of a
well-defined modular structure, which can be observed in both
the dendrogram and the similarity matrix. In the similarity
matrix (using the dendrogram numbering), the species with
high similarity are grouped together, resulting in the block
diagonal structures of different sizes that indicate the existence
of communities.

In the second type of structure, illustrated in Fig. 3,
we keep the growth rate fixed at r = 0.5 but reduce the
carrying capacity to k = 100. The modular structure is not
well developed because, due to the smaller value of k when
compared to the first case, at each generation only a small
number of species appear, and almost all species reach the
carrying capacity along the larger number of generations
needed to reach the maximum number of allowed species.
Although we can see some small block structures in the
similarity matrix, they are not as well delimited as in the first
case.

Finally, Fig. 4 shows a third kind of structure for the
evolutionary history. Here, we keep k = 1000, the same value
as for the first case, and reduce the growth rate to r = 0.1,
therefore also slowing the rate at which new species appear.
As a result, a large fraction of the species that appear up to the
final considered generation Tf are neighbors of the original
species, giving rise to a big module. The similarity matrix
exhibits a large block structure corresponding to the species
that are neighbors of the original one, and some other small
blocks from species that are yet in the first stages of their
growth.

We should stress that we explored only the case in which
all species follow the same growth function n(t)—a logistic
function with the same parameters r and k—and do not
interact with each other. Also, our model does not involve
the possibility of extinctions, a feature that can be introduced,
for instance, by modifying n(t).

IV. COMPARING EVOLUTIONARY HISTORY AND
COMMUNITY-IDENTIFICATION RESULTS

Now we focus on the first type of evolutionary history,
in which the modular structure is evident. Our aim is to
check whether that evolutionary history can be recovered by
using the framework of Refs. [10,12]. We stress that when
comparing between the reconstructed phylogenies produced
by different traditional methods, only a mutual consistency
check is possible, as the precise evolutionary history is
unknown. Here, on the other hand, we have access to the
full simulated evolutionary history, thus allowing an absolute
check on the reconstruction.

The first step involves using the similarity matrix M to
define a set of networks, in which each node corresponds to
a given species, while edges are drawn between each pair of
vertices i and j for which Mij is larger than a threshold λ.
Here, the nodes are identified by the original numbering. The
topology of the resulting network is strongly dependent on
λ, and in particular we can define a distance δ(λ1,λ2) [16]
between the networks characterized by the thresholds λ1 and
λ2. As detailed in Refs. [10,12], this distance is derived from
the elements of the neighborhood matrices of the networks.

FIG. 5. Gray tone (color online) representation of the (a) similar-
ity matrix based on the original numbering, (b) similarity matrix based
on the dendrogram numbering, and (c) similarity matrix obtained
from the NG numbering, for the model parameters used in Fig. 2.
Horizontal and vertical axes, as well as the gray tone (color) code,
used to indicate the genetic similarity between pairs of organisms,
are the same as those used in Fig. 2.

Analyzing the behavior of δ(λ,λ + �λ), i.e., the distance
between networks obtained by values of λ differing by a small
amount �λ, there are peaks at all values of λ for which the
topology of the corresponding networks is highly sensitive to
small variations in the similarity threshold.

Previous work [10] has shown that the most pronounced
peak in δ(λ,λ + �λ) provides the optimal choice of λ for
the identification of communities corresponding to phylo-
genetically related groups in real biological systems. For
those real systems, the similarity matrix was calculated by
analyzing enzymatic amino acid sequences which are not of

FIG. 6. Gray tone (color online) representation of NG and
dendrogram similarity matrices for the model parameters used in
Fig. 2. Comparison between the two representations is obtained
by projecting the communities of the former onto the latter:
(a) Community comprising species from 1 to 34 in the NG similarity
matrix and the corresponding species in the dendrogram similarity
matrix; (b) from 197 to 221; (c) from 222 to 250; (d) from 251 to
304; (e) from 305 to 361; and (f) from 362 to 441. Horizontal and
vertical axes, as well as the gray tone (color) code, used to indicate
the genetic similarity between pairs of organisms, are the same as
those used in Fig. 2. For the sake of cleaner illustrations, tick labels
have been removed from all panels.
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TABLE I. Degree of correspondence between communities in the
NG and the dendrogram (D) similarity matrix. The weighted average
of the correspondence for the different communities is 93% for the
entries corresponding to Fig. 2, 100% for Fig. 3, and 70% for Fig. 4.

Community No. NGa No. Db No. NG/No. D

Tf = 30, r = 0.5, k = 1000
(a) 1–34 34 20 0.588
(b) 197–221 25 25 1.000
(c) 222–250 29 29 1.000
(d) 251–304 54 54 1.000
(e) 305–361 57 57 1.000
(f) 362–441 80 74 0.925
Tf = 45, r = 0.5, k = 100
(a) 1–37 37 37 1.000
(b) 38–66 29 29 1.000
(c) 67–100 34 34 1.000
(d) 101–141 41 41 1.000
(e) 142–201 60 60 1.000
(f) 202–267 66 66 1.000
(g) 268–352 85 85 1.000
(h) 353–499 147 147 1.000
Tf = 110, r = 0.1, k = 1000
(a) 1–102 102 33 0.324
(b) 344–365 22 22 1.000
(c) 366–391 26 23 0.885
(d) 392–419 28 28 1.000
(e) 420–457 38 32 0.842
(f) 458–500 43 42 0.977

aNumber of species in the community according to the NG similarity
matrix.
bNumber of species in the community according to the dendrogram
similarity matrix.

equal length, and therefore also do not contain only equivalent
subsequences. As a result, the optimal value of λ typically
lies between 30% and 60%. For the present model, however,
all “genetic” sequences have the same length, and equivalent
“genes” all appear in the same order, so that, unsurprisingly,
we obtained an optimal value of λ equal to 99.99 for all three
choices of the model parameters indicated in the previous
section.

The last step in the community-identification framework
of Refs. [10,12] involves applying the Newman-Girvan (NG)
algorithm, which is based on the successive elimination, from
the optimal network, of edges having the largest betweenness
coefficients [17]. This leads naturally to a different labeling of
the edges, and in order to compare the communities predicted
by the algorithm with those effectively produced by the
simulations, we must establish a mapping between the NG
and the dendrogram numberings.

Figure 5 shows the similarity matrices using the original,
the dendrogram, and the NG numberings. The NG numbering
was obtained by applying the NG algorithm to the optimal
network at λ = 0.9999 using the original numbering, whose
corresponding matrix does not present block structures. At
this value of λ, the optimal network comprises only m = 443
connections out of the total of M = 97 020 connections in a
complete graph. These structures, however, are evident when

FIG. 7. Gray tone (color online) representation of NG and
dendrogram similarity matrices for the model parameters used in
Fig. 3. Comparison between the two representations is obtained
by projecting the communities of the former onto the latter:
(a) Community comprising species from 1 to 37 in the NG similarity
matrix and the corresponding species in the dendrogram similarity
matrix; (b) from 38 to 66; (c) from 67 to 100; (d) from 101 to 141;
(e) from 142 to 201; (f) from 202 to 267; (g) from 268 to 352; and (h)
from 353 to 499. Horizontal and vertical axes, as well as the gray tone
(color) code, used to indicate the genetic similarity between pairs of
organisms, are the same as those used in Fig. 3. For the sake of cleaner
illustrations, tick labels have been removed from all panels.

the nodes are numbered according to both the dendrogram and
NG numberings. On the other hand, Fig. 6 uses the mapping of
the NG numbering onto the dendrogram numbering to depict
the projection of the various communities predicted by the NG
algorithm onto the dendrogram similarity matrix. Defining a
community as a block structure in the similarity matrix with
20 or more species, we could identify six communities in
both matrices by visual inspection. It is clear that to a high
degree of accuracy (see Table I), the predicted communities
do correspond to phylogenetically related groups of species.

Figures 7 and 8 show similar results for model parameters
used in Figs. 4 and 5. Here, at the same value of λ, the
corresponding values of the number of connections m in the
optimal network are, respectively, m = 500 and m = 507.
The results indicate that in the case of Fig. 4, all groups of
organisms belong to the same communities in both matrices.
For the parameters in Fig. 5, all smaller groups are accurately
retrieved, while the organisms in the first well-defined group
in the lower left corner of the NG similarity matrix are
split into smaller groups in the dendrogram similarity matrix.
The differences in the community patterns are explained by
the parameter choice used in Fig. 4, which corresponds to the
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FIG. 8. Gray tone (color online) representation of NG and
dendrogram similarity matrices for the model parameters used in
Fig. 2. Comparison between the two representations is obtained
by projecting the communities of the former onto the latter:
(a) Community comprising species from 1 to 102 in the NG similarity
matrix and the corresponding species in the dendrogram similarity
matrix; (b) from 344 to 365; (c) from 366 to 391; (d) from 392 to
419; (e) from 420 to 457; and (f) from 458 to 500. Horizontal and
vertical axes, as well as the gray tone (color) code, used to indicate
the genetic similarity between pairs of organisms, are the same as
those used in Fig. 4. For the sake of cleaner illustrations, tick labels
have been removed from all panels.

smallest ratio r/k = 10−4. This causes the population of the
set of older species to overwhelmingly dominate the speciation
process. As a consequence, they produced a huge number of
different offsprings that differ in a very small amount from each
other. The organisms enumerated according to the evolutionary
history have a large intertwined structure when compared to
that obtained by reconstructing the phylogeny from the final
genes.

V. CONCLUSIONS AND PERSPECTIVES

We have introduced a simple model for the neutral evolution
of species with bit-string genomes and a logistic population
growth, aimed at producing a genealogy which allows absolute
testing of phylogenetic reconstruction methods. In particular,
our focus has been on a recently proposed method based on the
distance between complex networks built from the similarities
between the genomes of different species [10,12].

The results indicate that we achieved the aim of this work,
namely, to show that it is possible to set up a simple evolu-
tionary model for a two-purpose task: to follow the process of
community formation and to recover, in a comparable way, the

corresponding phylogenetic tree based solely on the “genetic”
information extracted from the organisms in the last iteration
of the growth process.

The results presented in the previous sections have shown
that for a certain choice of parameters of the logistic population
growth yielding a set of well-defined communities, e.g., for
the first and second types of evolutionary history described
in Sec. III, the approach of Refs. [10,12] is highly effective
in reconstructing the phylogenetic tree from genetic data.
This is an important result because it sets this efficiency
in an absolute way since we now have access—for the
computational model—to the full evolutionary history of the
system.

Similar comparisons were performed for the second and
third types of evolutionary histories, where the dendrogram
numbering of the corresponding evolution histories leads
to a somewhat blurred modular pattern. In the last case,
our approach was less efficient to retrieve some of the
community pattern generated by the evolutionary history.
Nevertheless, other communities have been reliably recovered
for both parameter sets. Despite the simplicity and the severe
limitations of the present model, it is tempting to conclude that
there are ranges of biological parameters (such as population
sizes and the ratio between reproduction and mutation rates)
which allow for a correct reconstruction of the phylogenetic
relations between species, even in principle.

We are aware that the presence of interactions among the
species, be it by competition leading to extinctions or by
means of sexual reproduction, would necessarily insert new
ingredients into the model. Given the very large number of
possible mechanisms for speciation, following this path would
go beyond the objectives of this work. Of course, it is expected
that the introduction of such new rules’ effects will lower the
threshold value λ to obtain the optimal network, at which
we perform the community identification. However, at this
point we cannot offer any predictions as to the effects on the
efficiency of community detection.

Finally, we remark that since our main goal was not to
provide a realistic simulation of the evolution of species but
rather to evaluate to what absolute extent current methods
employed in phylogenetic reconstruction do manage to find
correct evolutionary communities, our results seem already
relevant. Of course, we would welcome new investigations
examining more complete evolutionary models or spanning
in more detail the parameter ranges for which the complex
network approach has valid results.
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