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Phase transitions in cooperative coinfections: Simulation results for networks and lattices
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We study the spreading of two mutually cooperative diseases on different network topologies, and with two
microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model
studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first
order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field
assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model
studied here the results depend strongly on the underlying network. First order transitions are found when there
are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local
contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d-dimensional lattices with d � 4, and on 2-d
lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the
microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics
on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases
the first order transitions are actually “hybrid”; i.e., they display also power law scaling usually associated with
second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface
due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be
in different universality classes than standard critically pinned interfaces in models with forbidden overhangs.
Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of
links. If they use different links, results can be rather different in detail, but are similar overall.
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I. INTRODUCTION

In human history the most fatal threat is infectious dis-
eases [1]. Accordingly, scientists from various disciplines—
including epidemiologists, applied mathematicians, statisti-
cians, and physicists—have studied their spreading [2]. From
the perspective of statistical physics, the most fundamental
problem is to understand epidemics when conditions are just
barely favorable for their outbreak, since the transition from
zero to nonzero chance for a large epidemic (in an infinite
population pool) is akin to a phase transition. The most basic
epidemic models, including the SIS (susceptible-infected-
susceptible) and the SIR (susceptible-infected-removed) epi-
demic models [3,4], show continuous (or “second order”)
transitions in the sense that an epidemic starting from an
infinitesimal “seed” density just above threshold never reaches
more than an infinitesimal fraction of the population. But there
exist also models with discontinuous (“first order”) transi-
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tions [5–15] where this fraction is finite. In the language of
critical phenomena this fraction is called an order parameter.

This distinction between continuous and discontinuous
transitions is fundamental. In a continuous transition one
has universal scaling laws which follow from renormalization
group ideas [6,16]. In particular, the behavior in large but finite
systems is governed by finite size scaling (FSS), and one has
power laws with computable exponents even in the subcritical
regime. In the case of SIR epidemics, the universality class is
that of ordinary percolation [17], while for SIS epidemics it is
the directed percolation universality class [18].

Thus when conditions for the spreading of the epidemic
improve, one obtains warning signals which can be used
to initiate countermeasures before the actual outbreak. No
such warning exists in “pure” first order transitions, but most
first order transitions in epidemic and percolation models
are “hybrid” [7,15,19–24]. This means that they show a
discontinuous jump of the order parameter, but show also
some universal scaling laws. As we shall see, the same is
also true for most of the transitions discussed in the present
paper.
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The main reason why spreading phenomena can be more
complex than in SIS or SIR epidemics is that they usually
do not act alone. The interplay between different layers in
a multilayer or multiplex network and interactions between
different spreading agents is the main source of complexity in
real life. Thus there is also a substantial literature on interacting
epidemics, but most papers, such as [25–27], treated the case
of competing interactions. Although this is of high practical
importance, and very interesting results have been found in
these and similar papers, competing epidemics do not lead to
violent or sudden phenomena like discontinuous transitions.

One ingredient that can lead to discontinuous transitions
is cooperativity. Cooperativity can exist in two basic forms:
Either different nodes in a network can cooperate to infect a
common neighbor [5–7], or two (or more) different diseases
can cooperate [8,13]. In the latter case, such infections
are called coinfections, and the joint epidemics are called
syndemics [28]. Well known examples are the Spanish flu and
tuberculosis or pneumonia [29,30]. Much discussed in this
context are also HIV and a plethora of other diseases such as
hepatitis B and C [31], tuberculosis [32], and malaria [33],
although the positive incidence correlations observed in these
cases might have different reasons.

Real epidemic outbreaks are of course very complex
phenomena involving a huge amount of detail such as
latencies, mobility of agents, age structures, varying degrees of
(partial) immunity, seasonal oscillations, spatial randomness,
countermeasures such as medication and quarantine, and
stochastic fluctuations. One of the most fruitful ideas in
statistical physics, most clearly illustrated by the famous Ising
model [16], was to dismiss most of these complications and
to study the simplest model showing the basic features. This
is justified theoretically by the concept of universality and its
foundation in the renormalization group.

In this spirit, a minimal model for cooperative syndemics of
two diseases (A and B) of SIR type was introduced in [13] (in
this model, cooperativity was only implemented by increased
susceptibilities; coinfected individuals were not assumed to
be more infective). In order to reduce it to a set of coupled
ordinary differential equations which can then be treated
analytically or by numerical integration, even stochastic
fluctuations were neglected in [13] and the model was treated
by mean field theory. This basically assumes that agents
are well mixed (analogous to Boltzmann’s molecular chaos
assumption). It has the obvious drawback that cooperativity
cannot be effective, if the initial fraction of infected agents is
infinitesimal. In a more realistic modeling, the initially infected
agents could form a local cluster or “droplet,” within which
cooperativity can act and together with which it can spread.
Such nucleation phenomena are basic for most real first order
phase transitions and explain phenomena such as supercooling
of vapor. But due to the perfect mixing they are not possible in
the model of [13]. In spite of this, first order phase transitions
were found there, but only when the initially infected fraction
is finite.

The aim of the present paper is to treat the model of [13] as
an interacting particle system [34–36]. Agents are represented
by nodes on a graph (or, as a special type of graph, a regular
lattice), and each agent can be in one of a finite number
of discrete states. Infections occur stochastically between

neighbors on the graph. Time is assumed to be discrete, and
agents who got infected by disease A, say, stay infective
during exactly one time step, after which they recover and
become immune against A. But they can still catch disease B,
and indeed they do this with greater probability than “virgin”
agents that had not been infected yet at all.

To our surprise, we were not only able to verify the existence
of first order transitions (starting in some cases even from
a single doubly infected agent), but we found a rich zoo
of scenarios depending on the topology of the network. In
particular, we found no first order transitions on trees, on 2-d
lattices with local contacts, or on Albert-Barabási networks,
but we found them on 2-d lattices with long-range contacts,
on Erdős-Rényi (ER) networks, and on 4-d lattices. All
discontinuous transitions found in this paper are indeed hybrid.
The transitions on ER networks seem to represent the most
striking hybrid phase transitions so far studied in the literature.
But the most strange result was found for 3-d lattices with local
contacts. There, the existence of first order transitions depends
on the microscopic realization of the model. At first sight this
might seem to violate universality. But, actually, universality
only makes statements about models which both have second
order transitions. It makes no claim that two models with the
same symmetry, dimension, etc., must have transitions of the
same order.

The paper is organized as follows: In Sec. II, we briefly
review the mean field treatment [13], which will be helpful to
understand the simulation part. In Sec. III, the two stochastic
model versions are precisely defined. There, also the difference
between two epidemics spreading along the same set of links
and two epidemics which use different links (sometimes called
multiplex networks [37]) is discussed. Specific network types
are discussed in Secs. IV to VI: trees and ER networks
(Sec. IV), regular lattices with nearest neighbor infections
(Sec. V), 2-dimensional lattices with long-range infections
(Sec. VI), and small-world and Albert-Barabási networks
(Sec. VII). Multiplex networks are shortly discussed in
Sec. VIII. Finally, Sec. IX contains conclusions and discusses
some open problems. In particular, we discuss there SIC
(susceptible-infected-coinfective) models and their possible
relation to interdependent networks [10–12].

Some of the results of the present paper were already
presented in a short letter [38].

II. MEAN FIELD PREDICTIONS

As in [13] we shall only consider the case of two diseases A

and B. We will always denote by capital letters (A,B) agents
who actually have the respective disease, and by lowercase
letters (a,b) those who had it in the past. Thus each agent
can be in one of nine states: 0 (all susceptible), A (infected
with disease A but not yet infected with B), AB (infected
with both), up to ab (immune to both). We assume that the
dynamics is described by a set of nine rate equations

dxi

dt
=

∑

j

μij (xj − xi) +
∑

jk

νijkxk(xj − xi), (1)

where xi is the fraction of the population in state i, and where
μij and νijk are recovery and infection rates. We assume neither
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FIG. 1. Flow chart in two-disease coinfection with A,B sym-
metry and restrictions on the infection rates as discussed in the
text. Capital letters A and B represent infective states; lowercase
letters a and b stand for “recovered” ones. Infecting neighbors
are not indicated explicitly, but it is assumed that all individuals
infected with disease A, say, have the same chances to pass A on
to another individual. Thus every infection process occurs with a
rate proportional to the fraction X of the population having the
corresponding disease.

migration nor birth or death; thus the total population size is
fixed.

In the following we shall also consider only the restricted
case of two symmetric diseases, where furthermore each agent
has the same recovery rate and the same infectivity. In this case
the model can be represented by the flow diagram shown in
Fig. 1. In particular, the rate with which a susceptible agent
acquires a disease is then proportional to the fraction of the
population that carries this disease. In the following we shall
denote this fraction by X = xA + xAb + xAB = xB + xbA +
xAB , where we have used the A ↔ B symmetry. In addition we
denote by S = x0 the fraction of susceptibles and by P = xA +
xa = xB + xb those who have or had been infected by one
disease but not by the other. In terms of these three fractions,
the original system of nine ODE’s can be reduced to three
ODE’s,

Ṡ = −2αSX,

Ṗ = (αS − βP )X, (2)

Ẋ = (αS + βP )X − X.

Here, α is the rate for a primary infection (i.e., for the infection
of an agent in state 0), while β is the rate for secondary
infections, and the recovery rate was set to unity. Cooperativity
implies that β > α, i.e., C ≡ β/α > 1.

These equations can then be either integrated numerically
or discussed analytically. The former gives rise to plots like
the one in Fig. 2, which suggests that there are discontinuous
jumps when Cmin < C < Cmax, where both Cmax and Cmin

depend on the fraction of initially infected agents. The analytic
treatment given in [13] leads to exact inequalities which show
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FIG. 2. Order parameter R = 1 − S∞ plotted against α for (a)
ε = 0.005 (where ε is the initial fraction of sick agents) and (b)
ε = 10−4. Each curve corresponds to a different level of cooperativity
C. The dotted lines in panel (a) indicate the upper and lower limits
R+ and R− of the jumps at the first order transitions.

that this interpretation is indeed correct, and that the jumps in
Fig. 2 are not numerical artifacts.

An important observation is, however, that first order
transitions are seen in the direct integration only when ε,
the initial fraction of infected agents, is not zero. In the limit
ε → 0 the fraction of affected agents stays always infinitesimal
when α is below or infinitesimally close to 1 (the threshold for
a single-disease outbreak), and cooperativity cannot become
effective as long as C is finite.

III. AGENT-BASED STOCHASTIC MODELS

In our simulations we assume that agents occupy the nodes
of a network. They do not move; i.e., we can attribute the
nine states 0,A,B,a,b,AB,aB,Ab, and ab directly to the
nodes. Time is discrete, with every sick node staying sick
and infective for exactly one time step. Initially, all sites are
susceptible (state 0), except for the set of seeds, which are
nodes in one of the states A,B, or AB. We never allow any
immune node (a,b,ab,Ab, or Ba) in the initial state. Unless
specified differently, we assume that all seed nodes are doubly
infected (i.e., AB).

In principle we could allow both diseases to use different
sets of links for their propagation. This would correspond to
multiplex networks [37]. We shall discuss this possibility later,
but in most of the simulations (unless specified differently)
both diseases use the same set of links.

The simulations use two data structures: First of all, we
store in a character array of size N (N is the number of nodes)
the state of every node. This array will be updated in each time
step. Second, we keep lists of “active” sites, i.e., of sites in
one of the infective states A,B,AB,aB, and Ab. From these
lists we can see which nodes can be infected in the next time
step and by which disease(s). Actually, we keep two such lists:
one for the sites which are presently active, and one for those
which will become active in the next time step. At the end of
the time step, the first is replaced by the second.

When implementing this, we have several detailed options,
of which we considered two:

(1) In the first we assume a latency of exactly one time step.
Thus every node newly infected by one disease will not be more
susceptible to the other until the next time step. We call this
also “parallel update with delay” or “SU” (for “synchronous
updating”).
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(2) Alternatively, we can assume that a newly infected site
becomes immediately more susceptible to getting infected by
the other. Thus, while we work our way through the lists of
active sites, we immediately update their disease status. If
done without precautions, this could introduce a dependency
on the (arbitrarily but not randomly) chosen way how we go
through the lists, and it could break the A ↔ B symmetry,
if one type of infection is always done before the other. To
avoid such artifacts, we shuffle the lists randomly in each time
step, and we chose for each doubly infective active site at
random whether it first infects with A or with B. We call this
also “random sequential update without delay” or “AU” (for
“asynchronous updating”).
Notice that any finite latency period is not supposed to change
the universality class of any epidemic model (it would only
change if latencies can become large, so that a new large
time scale is introduced). But we should expect that it affects
nonuniversal properties such as the precise locations of phase
transition points. It seems that the difference between the two
models is for some network topologies sufficient to shift a
first order transition outside the range allowed by the physical
values of the control parameters.

The two control parameters in our models are
(1) p, the probability with which an active site infects a

“virgin” neighbor (i.e., a neighbor in state 0), and
(2) q, which is the infection probability for a neighbor

who has already (either in the present time step or in the past)
acquired the other disease.
We could of course also differentiate between the latter two
possibilities, but we did not in order to keep the model(s)
simple. As we shall see, even with only two different infection
probabilities there is a rich zoo of behaviors. Cooperativity
corresponds obviously to the case q > p. The opposite case
q < p will not be considered in the present paper.

For moderately large networks we let the epidemic proceed
until all activity has died out, and measure then the properties
of the clusters of immunes a,b, or ab. In addition we also
performed simulations on very large networks where this
would not be feasible. This concerns mostly regular lattices,
where we used up to >109 nodes. In these cases we stopped
the epidemic before it could reach the boundary (or, if periodic
or helical boundary conditions were used, before it could wrap
around the torus). In this way we could effectively simulate
the finite time behavior on infinite lattices, and could compare
the growth of the set of active sites with the growth known for
ordinary percolation [17,18,36].

In the following sections we shall only discuss cases
with perfect symmetry between the two diseases, where also
both diseases use the same set of links. This is of course
not very realistic, as many diseases have their own way of
spreading. Alternatively we could consider multiplex networks
(see Sec. VII), where each disease has its own set of links
which is independent of the links used by the other disease.
The fact that this can lead to completely different behavior is
best illustrated by Erdős-Rényi (ER) networks. As far as single
diseases are concerned, the spreading on ER networks is of
mean field type [39–41]. The same is true for multiple diseases,
if their link sets are independent. Consider a doubly infected
node on an ER network with finite mean degree 〈k〉. If this node
is infecting neighbors with probability p, then the chance for

one of these neighbors to become doubly infected will be finite
if the same links are used by both networks, while it will be
∝ 1/N for multiplex networks. Thus a double epidemic can
spread even from a single infected seed if the same links are
used, in contrast to the mean field behavior discussed in Sec. II.
Ultimately, this is the basis for the intricacies found in the
next section.

IV. TREES AND ERDŐS-RÉNYI NETWORKS

Erdős-Rényi networks are random networks of N nodes
where any pair of nodes is linked with probability 〈k〉/N , with
〈k〉 being the average degree of the nodes. In the interesting
case of finite 〈k〉 and large N the networks are sparse, and thus
there are no small loops. More precisely, the chance that a ran-
domly picked node is on a loop of finite length � tends to zero
∼1/N , when N → ∞ [39]. Thus ER networks are locally tree-
like. As a consequence, critical phenomena in spin models on
trees and on ER networks are usually in the same (mean field)
universality class. For percolation, the situation is a bit more
complicated, since on trees there exists an entire critical phase
with two critical end points [42]. Yet the situation is similar for
trees and for ER models, since the classical Flory theory based
on Cayley trees [43] yields for the lower end point pc1 (where
infinite clusters first arise) the same mean field critical expo-
nents as theories based on ER networks [39–41]. As we shall
see, this is dramatically different for cooperative coinfections.

A. Trees, single-node seeds

The situation is most simple for epidemics starting from one
doubly infected node on a tree, with all other nodes being in
state 0. Due to the absence of loops and because the epidemic
can only spread away from the seed (all nodes on the backward
path are immune), the spreading of coinfections is qualitatively
always the same as for the spreading of a single disease. More
precisely, in the case of a common network for A and B the
threshold for either disease to spread is precisely at p = pc1 ≡
〈k〉/〈k(k − 1)〉 [41] [44] for both models (with and without
latency). For the model with latency the threshold for both
diseases to spread together (i.e., for having a large cluster
of doubly infected nodes) is p = √

pc1 (independently of q),
while it is pq = pc1 for the model without latency. For two
independent multiplex networks, the latter two thresholds are
replaced by O(pc1N

1/2); i.e., if there are no strong hubs, both
epidemics can only survive together when 〈k〉 ∼ N1/2. In all
these cases the transition is continuous, i.e., second order.

Thus trees are trivial from this point of view, but there is still
one interesting aspect. The spreading of epidemics on trees is
mathematically described by a branching process [45]. In a
standard critical branching process, the survival probability
decays as P (t) ∼ 1/t , while the average number N (t) of
offsprings at time t is constant. Finally, if the control parameter
is a distance ε above the critical point, P (∞) ∼ ε. All these
apply to the model with latency (for any q), and to the model
without latency if q < 1. But the case q = 1 in the model
without latency is different, as it corresponds to a doubly
critical process, if p = pc.

To see this, it is useful to reduce the possible node states
to three: uninfected (index 0), singly infected (s), and doubly
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infected (d). The model without latency is then described by
the following transitions:

0 → 0 : 1, (3)

s → 0 : 1 − p,

s → s : p, (4)

d → 0 : (1 − p)2,

d → s : (2 − p − q)p,

d → d : pq. (5)

These are the possible transitions and their rates along any link
from a mother to a daughter node. Such branching processes
with two types of particles, where one type can only reproduce
itself while the other can reproduce and produce particles of the
first type, have been studied previously as models for cancer
growth, where s is a malignant cell and d is benign [46].

Since there are on average 〈k − 1〉 links from mother to
daughter, an s node has on average x = p〈k − 1〉 descendants
of its own type, while a d node reproduces itself y = pq〈k − 1〉
times. Thus, processes starting with one singly infected node
are critical when x = 1, while processes starting with one
doubly infected node are critical when y = 1. Since q � 1, in
the latter case also the spreading of s nodes is critical. The
average numbers Ns(t) and Nd (t) are easily seen to satisfy

Nd (t + 1) = yNd (t), Ns(t + 1) = zNd (t) + xNs(t) (6)

with x = (2 − p − q)p〈k − 1〉. If we start with a d node
and take p = pc and q = 1 (i.e., when x = y = 1) we have
then Nd (t) = 1 and Ns(t) = t . Thus, although the process is
critical, Ns is not constant but increases linearly with time. This
also modifies the extinction probability. Using the standard
generating function trick [45], one finds that the probability
for s to die out in a process that starts with a d is

Ps|d (t) ∼ t−1/2 (7)

at the critical point, while it is

Ps|d (∞) ∼ (p − pc)1/2 (8)

when q = 1 and p > pc [46]. As we shall see, this difference
between q = 1 and q < 1 has also consequences for ER
networks.

B. ER networks, single-node seeds

This is not at all the case for ER networks. In that case
studying the time course of the disease is not very illuminating,
as it follows the one for trees up to times when loops become
important, and after that the behavior is rather complicated and
does not scale. More interesting is to study the order parameter,
i.e., the fraction of doubly immune nodes after the epidemic
has died.

Throughout this subsection we shall use 〈k〉 = 4. In the
following, we shall call the “ab cluster” the set of doubly
infected sites in the giant cluster of infected nodes, although
it is not necessarily connected (in contrast to the giant cluster
itself). In Fig. 3 we show distributions of the masses of the
final ab cluster, averaged over a large number of runs on the
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FIG. 3. Mass distribution of ER network at p = 0.25 and q =
1.0. Each curve corresponds to a fixed network size. The vertical
lines on the right hand side are very narrow peaks, whose widths are
smaller than the linewidth. The straight full line indicates the power
law P (m) ∝ m−3/2.

giant connected component (the mass m of a cluster is just
the number of sites in it). Here the model without latency
was used, but the results for the parallel update with delay are
qualitatively the same. For each N we first generated a random
network by randomly placing N〈k〉/2 links and identified
the giant component. Since this would give double links, we
then rewired [47] the links sufficiently often to eliminate all
such double links. Then we run O(N/1000) epidemics from
randomly chosen seeds, rewiring O(1000) times after every
run. Since this alone would give a frozen degree distribution
(rewiring does not change the degree distribution), we repeated
this entire procedure until we had ∼109 starts for each N .

The data shown in Fig. 3 are for p = pc = 0.25 and q = 1.
For these values the single-disease dynamics would be critical,
and indeed the mass distributions for the clusters of singly
immune sites show the power laws P (m) ∼ m1−τ with τ = 2.5
known from ordinary percolation [43], with additional peaks
at the high-mass end due to events where there were also giant
coinfection clusters (data not shown).

For small m the distributions shown in Fig. 3 have the same
power law, but this power law breaks down for m ≈ 100. After
a region without clear scaling properties there is a wide gap
where P (m) = 0, and finally there is a huge narrow peak for
very large m. A more careful inspection (see Fig. 4) shows that
these peaks occur at m ∝ N ; i.e., they are due to events where
the ab cluster contained a finite fraction of nodes. This is in
striking contrast to critical ordinary percolation (OP), where
the percolating cluster contains a vanishing fraction of nodes
at the critical point.

One might suspect that this doubly peaked shape of the
mass distribution results simply from the fact that the data
shown in Fig. 3 correspond already to the supercritical regime.
That this is not so (at least not in a naive sense) is seen from
Fig. 5. There we plot the fraction Pab of runs that lead to a
giant ab cluster, where “giant” ab clusters are very clearly
defined by the very broad valley separating the peak from the
left hand part of the mass distribution [48]. This fraction is
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against N . Error bars are smaller than the symbol sizes. The data are
fitted perfectly by a straight line with slope 1; i.e., giant ab clusters
contain a fixed fraction of the nodes.

plotted against N for several values of p near pc, and with
q = 1 in all cases. We see that Pcoinfect decays fast with N for
all p < pc, while it approaches finite values for all p > pc. At
p = pc it seems to obey a power law

Pab ∼ N−γ (9)

with γ = 0.123 ± 0.001.
The data shown in Fig. 5 can be made to collapse reasonably

well by plotting Nγ Pab against (p − pc)N0.18 (see Fig. 6),
which suggests a finite size scaling (FSS) ansatz

Pab(N,p) ∼ (p − pc)β
′
	((p − pc)νN ) (10)

with ν ′ = 5.5 ± 0.3 and β ′ = γ ν = 0.67 ± 0.04.
For p = pc we also estimated the probabilities that there

exists a giant single-disease cluster, without a large cluster of
the other disease. For OP, the chance to hit a giant cluster
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FIG. 6. Same data as in Fig. 5, but plotted in a way that suggests
a data collapse according to the FSS ansatz Eq. (10).

on an ER network of size N decreases as Pa ∼ N−1/3 [39].
Our data (for q = 1) are not very precise, since giant single-
disease clusters are not cleanly separated from small clusters
(in contrast to Fig. 3), but our best estimate is Pa ∼ N−0.13(2),
i.e., roughly the same decay as for giant ab clusters. Thus
disease b, even if it finally dies out, has a positive effect on the
survival of disease a, since it makes the a cluster grow faster
during early times.

All this indicates that p = pc is also the critical point for
coinfections, and that Pab shows qualitatively the same scaling
(although with different exponents) as the probability for a
random seed in OP to grow into the infinite incipient cluster.
Indeed, for N → ∞ and p > pc, the latter is given for OP by
P (p = pc + ε) ∼ εβ , which is in that case also the scaling of
the probability with which an infinite incipient cluster infects
a random node. Since OP is a purely geometric problem, both
are simply related to the density of the infinite cluster. This
is no longer true in the present case. As we have seen, the
density of the infinite ab cluster is independent of N , so that the
order parameter exponent measured via its density is β = 0.
Models where the density of an infinite cluster and the chance
to generate this cluster scale with different powers β and β ′ are
well known [6,49,50], but usually β and β ′ are both nonzero.
The novel feature here is that one of them vanishes. Thus,
while the transition looks like second order from the point of
view of cluster growth dynamics, it looks like first order from
the point of view of cluster geometry. This is a striking case of
a hybrid transition [19,20].

Finally, we should point out that mass distributions for
clusters of singly infected nodes have in general two peaks at
high masses (i.e., three peaks altogether). One of these peaks
is due to events where only one of the diseases survives, while
the other is from events where both diseases survive. This is
even more clearly seen when looking at joint distributions
of ma and mb, as shown for one particular set of control
parameters in Fig. 7. There we see clearly four components:
(1) without any giant outbreak, (2) with only an a outbreak,
(3) with a b outbreak, and (4) with both outbreaks. The fourth
component is also characterized by giant ab outbreaks, while
mab is small in the first three components. When p is close to
pc, single-disease clusters are larger in the components (2) and
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giant outbreak, giant outbreaks of only one disease, and outbreaks
of both diseases. In the latter case (and only then) also the cluster of
nodes which have both diseases is large.

(3) without giant ab outbreaks than in component (4). This is
reversed for large p, where most nodes get both diseases, if
there is a giant ab outbreak.

For q < 1 results are similar, as long as q > q∗, where
the value of q∗ depends on the detailed model. For random
sequential update without delay, q∗ ≈ 0.35 (more precise
estimates will be given later). In this regime there exist still
large ab clusters containing nonvanishing fractions of all
nodes. The behavior of Pab is still similar to Fig. 5, but
attempted data collapses as in Fig. 6 are even less perfect.
Indeed, as shown in Fig. 8, there is a crossover from N−γ

for q = 1 to N−2/3 for q → q∗. The latter is the power law
expected for two independent critical diseases spreading on ER
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FIG. 9. Mass distributions analogous to Fig. 3, but for three values
of q slightly larger than q∗. One sees clearly that the two peaks
coalesce as q∗ is approached. Data for q = q∗ are not shown due
to the much larger finite size effects which make their interpretation
difficult.

networks [39]. Also the dependence of Pab on p for N → ∞
and q < 1 is as expected for two independent diseases [39],
Pab ∼ (p − pc)2/3. The fact that there are different power laws
for q = 1 and q < 1 are directly related to the discussion for
trees in the previous subsection.

Thus, as far as the probabilities to lead to giant clusters is
concerned, two cooperating diseases with q < 1 are essentially
independent. This is not true for the sizes of the giant clusters,
where we find results similar to those shown in Fig. 7. In
particular, whenever both single diseases have giant outbreaks,
there is also a giant cluster of ab nodes. The probability that
there are two coexisting giant single-disease clusters without
large overlap is zero. This difference is easily explained by the
fact that the decisions whether there are giant outbreaks or not
are made at early times, when the networks still look treelike.
The structures of the giant clusters are, however, decided at
late times when (large) loops are abundant.

As q∗ is approached from above (keeping p = 1/〈k〉), the
double-peak structure of the mass distribution P (m) becomes
more shallow (see Fig. 9), until it disappears when q = q∗,
and P (m) has a single maximum for q < q∗. Thus q = q∗ is
a (multi)critical point.

C. ER networks, multiple-node seeds

The data shown in the previous subsection suggest that there
exists already the possibility for having a giant ab cluster even
for p < pc, but that this cluster just cannot be infected by a
single node seed. This would also be suggested by the analogy
with the mean field model, where multiple seeds are needed to
see the full phase structure.

Indeed, if we use a value of p slightly below pc and start
with a “seed” of n randomly located doubly infected nodes,
we find qualitatively similar behavior to that seen in Fig. 3,
but with a much higher peak on the right hand side. Unless
one goes to p � pc and to very large n, this peak is still well
separated from the rest of the distribution, and its position is
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is the size of the “seed” (the number of initially infected nodes). The
values of n are 200,240,280, . . . ,560, with n increasing from left to
right.

essentially independent of n (see Fig. 10; for larger N even less
dependence on n is found). Notice that we did not check that
ab clusters whose masses are shown in Fig. 10 are connected.
But the very weak dependence on n proves that they are, up to
very small disconnected components.

In mean field theory [13], it was found that the seed had
to contain a finite fraction of all nodes, in order to obtain a
first order transition. To check whether this is also true on ER
graphs, we plotted Pab in Fig. 11 versus seed size n/N , for
q = 1 and for one particular value of p < pc. We see that
indeed the curves become steeper with increasing N , and that
they all cross an one particular seed density n/N = ρ0(p,q) ≡
0.000282(5). Plotting these data against [n/N − ρ0(p,q)]Nx
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FIG. 11. Probabilities Pab versus seed size n/N , for p = 0.20
and q = 1. Each curve corresponds to one value of N , with N =
220,221, . . . ,225 (steeper curves correspond to larger N ). The inset
shows a data collapse, obtained by plotting these data against [n/N −
ρ0(p,q)]Nx with ρ0 = 0.000282 and x = 0.5.
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FIG. 12. Relative sizes of giant ab clusters versus p − pmin for
two values of q. Both curves are compatible with power laws with
exponents 0.57(3), provided one subtracts the density of seed nodes.

gives a very good data collapse if x = 0.50(3), as shown in the
inset in Fig. 11.

The (average) masses of giant ab clusters does depend
strongly on p. Results for q = 1 and for q = 0.6 are shown
in Fig. 12, where n was chosen for each p such that the right
hand peak contained roughly between 1 and 10 percent of all
events. Within this range and for the values of N (>106–107)
used in these simulations, the peak positions were stable
within statistical fluctuations, at least for the values of p

shown. Figure 12 suggests that the fraction of the nodes in
the next ab cluster becomes equal to the fraction ρ0 of initially
infected nodes at some value pmin, which is about 0.179 for
q = 1 and 0.2185 for q = 0.6. The value of pmin increases
with decreasing q, until pmin = pc is reached for q = q∗. For
p close to pmin, the relative giant ab masses satisfy (after
subtraction of the seed density) a power law. The observed
power depends slightly on q, but this could be a systematic
error, in which case the common power for both values of
q is 0.57(3).

For p ↘ pmin, the peak becomes wide and the valley
separating it from the rest of the distribution becomes narrow
and shallow, until finally for p = pmin the entire mass
distribution is single humped. Thus it seems that pmin is a
further critical point, where the coinfection cluster loses its
identity. Qualitatively, it resembles the point α = 0.5 in Fig. 2.

D. Trees, multiple-node seeds

With the hindsight obtained from studying ER networks, we
can go back to trees and look whether we find there first order
transitions, if we use multiple node seeds. For ER networks,
first order transitions were always related to the existence of
large loops. Since these loops are absent on trees, we expect
that we will not find any sign of first order transitions, even
if we consider multiple-node seeds. As we shall see, this is
verified by our simulations.

We studied Cayley trees with degree k = 3 for all central
(nonleaf) nodes. On such trees the critical value for single
diseases, above which an infinite cluster can exist, is pc = 1/2.
Notice, however, that even for p > pc all epidemics hit only
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generations, K = 18, . . . ,23. All curves correspond to p = 0.7 and
q = 0.99. The number n of seed nodes is chosen such that both
maxima have the same height. Overall normalization is arbitrarily
chosen such that also all curves have the same maximal height.

a vanishing fraction of nodes in the limit N → ∞, as long as
p < 1.

As in the case of ER networks, we started with n doubly
infected nodes randomly located on the network (results are
qualitatively the same, if we favor or disfavor leaves at this
stage). For any p � pc, the distribution of ab masses was
always found to be unimodal. Thus, if we look for nontrivial
results, we have to consider p > pc.

Indeed, we find bimodal distributions of ab masses for p >

pc, if we choose n properly. Results for p = 0.7 and q = 1
and for the algorithm without latency are shown in Fig. 13
(for the algorithm with latency, results are quantitatively
different, but qualitatively the same). In this figure, each curve
corresponds to one value of N . The number of seed nodes was
chosen for each N that both maxima have the same height,
which gives n = 0.115N0.47 within the statistical errors. If the
observed double-peak distribution were to indicate a first order
transition, their positions should tend to constant densities
when N → ∞. Instead we see, however, that both peaks shift
to the left as N increases. Indeed, there is a decent data collapse
if we plot mabP (mab) against mab/N

D with D = 0.55(2), just
as we would expect for a critical phenomenon. Also, the scaling
n ∼ Nα of seed sizes used in Fig. 13 indicates a standard
critical phenomenon. Finally, if we use smaller seed sizes, not
only the height but also the position of the right hand peak
decreases significantly, suggesting that the “giant” ab cluster
is not really well defined and connected, as it was for ER
graphs.

We also looked at different observables, and they all
confirmed our conclusion that there are no first order (or
hybrid) transitions on trees.

V. REGULAR LATTICES

On regular lattices, one can either study the properties of the
giant ab cluster after the epidemics have died out, or one can
follow the spreading as it evolves in time. Both strategies have

advantages and disadvantages. In the former case it becomes
infeasible to use too large lattices, whence one has to be careful
about finite size corrections. In the latter one can stop the
evolution before the finiteness of the lattice is seen, in which
case there are no finite size corrections at all. But there are then
finite time corrections. Fortunately, only a small fraction of the
entire lattice is touched. This allows—eventually together with
hashing [51] which we did not use, however, in the present
work—the use of extremely large lattices, for which the finite
time corrections can be made small as well.

In time-dependent simulations, the “classic” observ-
ables [17,51] are the average number of infectious at time
N (t), the probability P (t) that there exists still at least one
infectious site, and R(t), the rms distance of the infectious
sites from the seed. In the following we shall not only consider
seeds consisting of a single site, but also the spreading from
an entire hyperplane. This gives much more precise results in
cases with first order transitions, since it avoids the bottleneck
in the nucleation phase that occurs in starts from a single
seed. It also is more natural in such cases, since the growth
of the infected cluster is then related to the growth of a rough
interface that gets pinned at the critical point. Finally, we shall
also measure various quantities related to the fact that we now
have two agents A and B. This includes NAB(t), the number of
doubly infected sites, and 〈�t〉, the average time lag between
first and secondary infection for sites that finally get both
diseases (the precise definition is given later).

A crucial difference between sparse random networks (such
as ER networks) and regular lattices is that the latter contain
small loops. Due to the absence of small loops on ER networks,
the critical point for spreading from a single-node seed was
the same as for single diseases, pc = 〈k〉/〈(k − 1)k〉. Thus the

FIG. 14. Final state of a coinfection outbreak on a 2D 1024 ×
1024 lattice at q = 0.99 and p = 0.4504 ≈ pc(q) with periodic
boundary conditions and using the algorithm with delay. The single
seed of infection is located in the center of the lattice, as marked by
the blue disk.
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cooperativity did not lead to a renormalization of the threshold,
unless multiple seeds were used. This is not so for any finite
dimensional lattice. Assume that p is slightly below the critical
value for single diseases. Then there is a finite chance that both
diseases survive for a short time τ . During this time, they will
help each other and thus their chance of further survival is
enhanced. In other words, for each disease the presence of the
other disease renormalizes the growth rate.

As an illustration, we show in Fig. 14 the final configuration
on a square lattice with nearest neighbor contacts. On this
lattice, the threshold for a single disease is at pc = 1/2 [43].
For coinfections with the parameters used in Fig. 14 it is at
pc(q =0.99) ≈ 0.4504. The reason for this shift is easily seen
from the structure of the cluster. It consists of a “backbone” of
doubly infected sites, surrounded by two “halos” with single
infections. The latter have a finite thickness, of order (pc −
pc(q))ν , where ν is the correlation length exponent. Therefore,
there is always a site with disease b close to any site with
disease a and vice versa. Thus cooperativity is always at work.

Notice that this argument would break down at p � pc,
where giant clusters of single diseases exist. Below pc,
outbreaks can only be small for both diseases or large for
both. In the following, we will restrict our attention to p < pc.

A. Two-dimensional lattices, short-range infections

Mass distributions of ab clusters obtained at the critical
point for a randomly chosen large value of q are shown in
Fig. 15. The upper panel shows that the bulk of the data show
the well known scaling P (m) ∼ m1−τ of OP [43], while the
lower panel shows that the right hand peaks correspond to
giant clusters whose masses scale exactly as m ∼ LDf , where
Df is the fractal dimension for OP. These data not only show
that there is no first order transition, but they suggest also
strongly that the critical point is in the OP universality class.
We should add that similar data were obtained for other values
of q (including q = 1) and for the algorithm with delay.

Values of N (t) for p near the critical point for q = 0.99 are
shown in Fig. 16. More precisely, for easier comparison with
OP we plotted there N (t)/tη versus t , where η = 0.5843(5)
is the value for percolation in 2 dimensions [52]. Lattice sizes
were so large that the cluster never touched the boundary,
and the algorithm with latency was used. We find of course
important finite time corrections, but the results for p =
pc(0.99) = 0.45030(3) are fully compatible with the expected
asymptotic scaling. We should add that this value of pc is
also compatible with the estimate pc(0.99) ≈ 0.4504 obtained
from mass distributions.

This absence of a first order transition and universality
with OP was confirmed for the algorithm without latency, for
other values of q, and for the square lattice with next-nearest
and also with next-next-nearest neighbors (i.e., with 8 resp.
12 neighbors). In all cases it was verified that N (t) ∼ tη for
large t .

There are, however, two novel scaling laws for p in the
vicinity of the single-disease critical point pc = 1/2. Both can
be most easily understood by referring to Fig. 14. As we said,
the thickness of the “halos” of singly infected sites around the
doubly infected backbone is equal to the correlation length of
OP. When p → pc, this correlation length diverges.
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FIG. 15. Upper panel: Mass distributions of ab clusters obtained
with the algorithm without delay at the critical point for q = 0.9084.
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Consider now the limit q → 1/2 where there is no cooper-
ativity. In this limit also pc(q) → pc = 1/2, and increasingly
larger portions of the total cluster are made up by singly
infected sites. This means however that also cooperativity
should become less and less effective in this limit, implying
that dpc(q)/dq → 0. This is indeed verified in Fig. 17. As
seen from the inset in this figure, a decent fit is obtained by the
power law with a new independent exponent

pc(q) − 1/2 ∼ (q − 1/2)ζ with ζ = 1.19(3). (11)

For the other scaling law, consider an arbitrary value q >

1/2. For any p > pc(q) there will be a nonzero chance of
survival, i.e., P (t) → P∞ > 0 for t → ∞. Due to universality
with OP we expect that this asymptotic value is reached faster
than with a power law

P (t) − P∞ < t−� (12)

for any exponent � (as was also verified numerically for p �=
1/2; see Fig. 18). Consider now the case p > 1/2, where there
is also a nonzero chance that single infected clusters survive
forever (if the other disease had died out earlier). Exactly at
p = 1/2 the probability that only one of the diseases, say A,
survives should decay as PA(t) ∼ t−δ with δ known from OP.
Moreover, there will be a small chance that A survives for
some time by spreading into one direction, and B survives by
spreading into the opposite direction. Such an epidemic would
look superficially like an epidemic of double infection, but
since there is no cooperativity (since both diseases survive in
different regions), it has a much higher chance to die. Let us
define as PAB(t) the probability that both diseases have not
yet died out at time t . In Fig. 18 we show a log-log plot of
PAB(t) − PAB(∞) versus t . The data clearly suggest a power
law

PAB(t) = PAB(∞) + a/t� (13)

with exponent � = 2.6(2).
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FIG. 18. Log-log plots of PAB (t) − PAB (∞) versus t for 2-d
lattices with q = 1. The central curve corresponds to the critical
point for single diseases. The straight line indicates its exponent for
large t .

A simple upper bound on this exponent is obtained as
follows. We first define a boundary as “killing” if any epidemic
that tries to infect a site on it is killed. Such a boundary has
a much stronger effect on clusters than normal boundaries,
where only the branch that would pass through the boundary
is deleted. Clusters which start on a killing boundary have
therefore a much smaller chance to survive. Numerically, we
found by simulations that Pwall ∼ t−δwall with δwall = 1.76(1).
Consider now the situation shown in Fig. 19, where two OP
clusters start from the same site on a killing wall, and are forced
to grow into opposite directions. Any such configuration would
contribute to PAB(t) − PAB(∞), which gives immediately

� � 2δwall. (14)

In this paper we always decide “on the fly” whether a site
or node can be infected. But we could also have decided
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FIG. 19. Two ordinary (bond) percolation clusters, both starting
at x = 0, with a killing wall (x = 0) between them. A wall is killing
if any epidemic that tries to infect it is entirely deleted.
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this before the simulation, since any node can be infected
at most once by either one of the two diseases. The results
would be identical. In the latter case we are dealing with
frozen randomness. There is a rather general theorem [53,54]
that forbids first order transitions in two-dimensional systems
with quenched randomness. Although it is not clear whether
this theorem applies strictly spoken to the present model, the
general ideas should. It definitely applies to the cooperative
percolation model of [6,7] and to the zero-T random field
Ising model, since these can be mapped onto the Potts model,
and it explains why in this case critical pinning is in the
OP universality class [7,55]). It strongly suggests that there
exists only one universality class of critically pinned interfaces
in isotropic 2-dimensional media, namely that of ordinary
percolation.
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FIG. 20. Log-log plots of N (t) versus t for 4-d simple hy-
percubic lattices. For this lattice, ordinary bond percolation has
pc = 0.16013(1) [51]; thus all curves except the uppermost one in
panel (b) correspond to p < pc. Panel (a) shows results for q = 1.0.
The best estimate for pc(q = 1.0) from these data is ≈0.112, but a
more precise estimate will be given later. Panel (b) is for q = 0.2.
Here cooperativity is much weaker, and thus our estimate pc(0.2) =
0.15997(5) is much closer to the value for OP. Superficially, this
plot might suggest a power law and thus a second order transition,
but all structures seen in this plot are real (statistical errors are much
smaller than the line thicknesses) and suggest also a (weak) first order
transition.

B. Four dimensions and above

1. d = 4, point seeds

The results of the last subsection might suggest that in
general, there are no first order transitions on regular lattices.
To show that this would be wrong, we present simulations for
the simple hypercubic lattice with d = 4, as a typical high-
dimensional lattice. Lattice sizes are in each case sufficiently
large that we have no finite size corrections at all.

In Fig. 20 we show results for N (t), for two rather extreme
values of q and for several p ≈ pc(q). For q = 1.0 the
transition is obviously first order. For p ≈ pc(q) the epidemic
seems first to die out (faster than with a power law), but
finally—if p > pc(q)—it turns around and increases with a
power much larger than that for critical OP. This is very
reminiscent of nucleation where clusters have to become large
before they can grow further with high probability. As long
as the cluster size is small, it is much more likely that the
cluster dies than that it grows. For q = 0.2 (which is only
very little above the OP value pc = 0.16013(1) [51]) the
situation seems to be different. At a rough glance, the data
suggest a power law for p ≈ 0.160, which then would suggest
a second order transition. But actually none of the curves in
Fig. 20(b) is asymptotically straight (all structures seen in this
plot are real, since stochastic errors are much smaller than
the line thicknesses), and a closer look shows that also now
curves bend down and pass through a (much less pronounced)
nucleation phase.

In the next subsection we will present more clear numerical
evidence for the absence of a tricritical point and for the
transition being discontinuous for all q > p. In the following
we will give more heuristic arguments, supported by indirect
numerical evidence.

To understand the mechanism behind this scenario, it is
helpful to look at NAB(t), the number of doubly infected
sites. This is shown in Fig. 21 for q = 1.0 and for four
values of p. More precisely, we show there NAB(t)/N (t),
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FIG. 21. Log-log plots of NAB (t)/N (t) versus t for q = 1.0. For
short times, all four curves decrease, suggesting that A and B spread
independently without much overlap. For p > pc(q) this decrease
finally stops and is reversed, because then cooperativity creates a
compact cluster.
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FIG. 22. Log-log plot of Pab, the probability that a single doubly
infected site evolves into a giant epidemic, plotted against p − pc.
As in the previous plots, AU was used with q = 1.

i.e., the probability that an infected site is doubly infected.
This at first decreases steeply for all four values of p. It is
only in the supercritical case p � 0.115 that this decrease
stops and finally even turns around. This suggests that at
first A and B were spreading into different directions, with
little overlap between them. This little overlap is not enough
to generate enough cooperativity which would prevent them
from spreading further apart—and dying finally because p

is subcritical for single epidemics and because two infinite
clusters cannot coexist anyhow. It is only for p > pc(q) and
for large t that occasionally two clusters with sufficient overlap
developed so that they continue to spread coherently. Notice
that this did not happen in d = 2, since there it is extremely
unlikely that two clusters can grow without having much
overlap.

In the next subsection we will see that pc can be estimated
much more precisely by using infected hyperplanes as seeds
rather than single points. In this way we will find pc =
0.111857(2) for q = 1. Using this value, we plot in Fig. 22
how Pab(p), the probability that a single infected site creates
an infinite epidemic, depends on p − pc. We see that the curve
becomes steeper and steeper on a log-log plot as p − pc → 0,
indicating that Pab(p) has at threshold an essential singularity.
This is reminiscent of nucleation phenomena where the chance
for small droplets to become macroscopic in metastable phases
behaves similarly [56]. As we shall see in the next section, the
behavior in three dimensions is very different.

2. Hyperplane seeds

In order to avoid the nucleation phase [which, among
other things, prevents a precise estimate of pc(q)], we also
made simulations where we started with an entire infected
hyperplane as seed. In this case the boundary between healthy
and sick regions is formed by a propagating interface which
starts off flat and becomes increasingly rough. For p < pc(q)
the growth finally stops and the interface gets pinned, while
it continues to move forever for p > pc(q). Exactly at p =
pc(q), one might expect it to be in the universality class of
critically pinned interfaces in isotropic random media [7,57–
59]. In Fig. 23(a) we show ρ(t) = N (t)/L3 versus t for q = 1.0
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FIG. 23. (a) Log-log plots of ρ(t) = N (t)/L3 versus t for d = 4
and q = 1.0, when using all sites of an entire hyperplane z = 0 as
seeds. Lateral boundary conditions are helical, and the diseases are
allowed to spread into the positive z region only. (b) Part of the same
data, but shown as t δρ(t) against t , with δ = 0.45. Since the data for
small t have obviously large nonscaling corrections, only data for
t > 10 are plotted.

and several values of p close to pc(q). All data in this plot were
obtained from lattices of size L3 × Lz with laterally periodic
(more precisely, helical) boundary conditions. The diseases
started at the base surface z = 0, and Lz was so large that the
upper boundary at z = Lz was never reached. The base surface
had size L3 with L between 256 and 512. This is big enough
so that finite size corrections are small (for a more detailed
discussion see below). We see that there is a clear power law

ρ(t) ∼ t−δ with δ = 0.45(2) (15)

when p = pc = 0.1118565(15), which is therefore our best
estimate of pc(q =1.0).

To demonstrate the quality of the data on the one hand and
the fact that this power law has important corrections on the
other hand, we show in Fig. 23(b) the same data plotted as
t δρ(t) against p. Notice the much enlarged resolution on the
y axis. We see that there is actually no single curve which is
clearly a horizontal straight line. The error bars on δ and pc

are a naive attempt to take into account this uncertainty.
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FIG. 24. Log-log plot of pc − pc(q) against q − pc, where pc =
0.160131 [60] is the (bond) percolation threshold on the simple 4-d
hypercubic lattice.

The most dramatic result from this plot is the vastly
improved estimate of pc(q). It agrees with the previous
estimate from point seeds, but it is about four orders of
magnitude more precise. Similar plots were also produced
for other values of q in the range 0.19 � q � 1. They are all
qualitatively similar, and they suggest that indeed the percola-
tion transition is discontinuous in this entire range (estimates
in the range 0.160131 < q < 0.19 were inconclusive). The
results for pc(q) are shown in Fig. 24. They suggest a power
law pc − pc(q) ∼ (q − pc)2.3. Notice that this is in contrast to
the case with cooperativity between different neighbors [5–7].
In that case, there exists a tricritical point q∗ ∈]0,1[ such that
the transition is continuous for q < q∗ and discontinuous for
q > q∗. The absence of such a tricritical point in the present
model might be related to the appearance of a new divergent
length scale when p → pc(q), as discussed in connection with
Fig. 14.

Approximately, the data shown in Fig. 23 obey a finite time
scaling (FTS) ansatz

ρ(t,p) = t−δF {[p − pc(q)]t1/νt } (16)

with νt = 1.04. Similar ansatzes describe also reasonably well
all data for 0.2 � q < 1. We believe that this actually would
describe the asymptotic behavior, and that the estimate of νt

is correct up to about 5 percent. But the fit is far from perfect
and—what is much worse—if no corrections to scaling were
applied, similar FTS ansatzes for the data obtained at different
values of q yield substantially different critical exponents.
This is, e.g., seen by plotting on the same log-log plot values
of N (t) versus t for different values of q, choosing for each
q that value of p where the curve is straightest. Such a plot
is shown in Fig. 25. We see that actually none of the curves
is straight, their average slope decreases q, and they all seem
to become parallel to the curve for q = 1 (which is the least
curved one) for very large t . For small t the slope becomes
steeper with decreasing q, in agreement with our claim that we
see a very slow crossover from OP. The latter would correspond
to q = 0.160131, and the exponent there is δ = 0.97(3) [61].
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FIG. 25. Log-log plot of ρ(t) versus t for five values of q. For
each q, the value of p was chosen such that the curves are most
straight for large t .

A similar FTS ansatz holds also for the height h(t,p) of the
interface. There are several ways to define this height. The data
shown in Fig. 26 use just the average value of the z coordinates
of the presently infected (“active”) sites, h(t,p) = 〈z〉. They
can be fitted by the ansatz

h(t,p) = tν/νt G{[p − pc(q)]t1/νt } (17)

with ν/νt = 0.55(1). Again this is far from perfect, as can
be seen from a similar blowup to that for the densities; see
Fig. 26(b).

Scaling laws such as Eqs. (16) and (17) apply also to
ordinary percolation [17], where the exponents are however
different. In the present case the cluster behind the growing
surface is compact; i.e., its height grows proportionally to its
mass. The latter is given by M(t) = ∑

t ′<t N (t ′), from which
we obtain

1 − δ = ν/νt , (18)

which was indeed imposed as a constraint on the values used
in Figs. 23(b) and 26(b). For OP the cluster is fractal with
dimension Df , so that at the critical point M(t) ∼ h(t)Df −3,
leading to 1 − δ = (Df − d + 1)ν/νt . But things are not
entirely clean. First of all, for no value of p is h(t) a clean
power law. Second, for 100 < t < 1000 the curves decrease
both in Figs. 23(b) and 26(b). This could mean that the densities
of the grown cluster are not constant in this region, but we will
show later that this is not the case. Most embarrassing is that
the estimates for pc obtained from ρ(t) and from h(t) are
slightly different. The difference is very small (it is within
the error bars quoted above), but it is statistically significant.
The nominal value of pc from ρ(t) is slightly higher than that
obtained from h(t). The only explanation for this is finite size
corrections. Indeed, one expects finite size corrections to be
positive for h(t) and negative for ρ(t). This was also verified
explicitly by making runs at smaller values of L.

All this shows the following: (i) Yes, there are clear
indications for finite size corrections. But the very fact that
they are seen and qualitatively as expected makes us sure that
they are well under control. (ii) They cannot be responsible
for the deviations from the expected FTS and for the observed
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FIG. 26. (a) Log-log plots of h(t,p) versus t for d = 4 and q =
1.0, when using all sites of an entire hyperplane z = 0 as seeds. These
data are based on the same runs as those in Fig. 23. Part of these data
are also shown in panel (b) as t−ν/νt h(t,p) versus t .

q dependence of the critical exponents, which most likely are
a very slow crossover from OP. As a result, all estimates of
critical exponents in this subsection have to be taken with some
caution.

In the following figures we show several more observables,
all of which show scaling laws and demonstrate thereby that
the percolation transition is actually hybrid. They also show
that at least the rough features of the scenario depicted so far
are consistent.

(1) In Fig. 27 we show v(p), the velocity by which the
height grows for very large times, when p > pc(q). It is simply
obtained from the straight lines in the upper right part of
Fig. 26(a). These data were obtained by using the fact that the
(hyper)surfaces for p > pc are rather smooth in d = 4. Thus
the simulation box can be much wider than high. Moreover, we
always checked that the height difference between the highest
and lowest active site is <Lz. As long as this is guaranteed
we can “recycle” the part of the simulation box below the
lowest active site. That means we erase in this part the old
configuration and overwrite it with the new growing part on
top of the surface. Effectively, this means that we replace the
simulation box by a torus, and let the surface circle around
it. Two data sets, for q = 0.4 and for q = 1.0, are shown in
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FIG. 27. Log-log plots of v(p) versus p − pc(q) for d = 4. The
two data sets are for q = 0.4 and q = 1.0. In this plot we used
pc(0.4) = 0.1416425(20) and pc(1.0) = 0.1118565(15).

Fig. 27. Also indicated in this figure are the results for OP
and the predictions of the “standard” model for pinned rough
interfaces, where overhangs are neglected [62,63].

Both data sets are compatible with power laws with similar
exponents. If we accept the FTS ansatz, we obtain indeed

v ∼ [p − pc(q)]νt−ν ∼ [p − pc(q)]0.47±0.02. (19)

This is indeed compatible with the data, although there are
also important corrections to scaling. These corrections are
larger for q = 0.4 than for q = 1.0, in agreement with our
previous discussion. Whatever the true exponent is, it seems
very unlikely that the model is in the same universality class
as the model without overhangs.

(2) The cluster below the growing surface is compact
for p > pc(q), but it does contain holes. Thus the densities
ρ0(z),ρa(z),ρb(z), and ρab(z) are all nonzero. Here, ρα(z)
is the density of the cluster at height z, after the interface
either has stopped growing [for p < pc(q)] or has passed far
beyond z [for p > pc(q)]. Results for ρab(z) are shown in
Fig. 28 for q = 1.0. We see a clear distinction between sub-
and supercritical values of p. The density at pc(q = 1.0) is
ρab,c(q = 1.0) = 0.4366(2).

(3) Figure 28 shows indeed several scaling laws. The most
obvious maybe (but the least interesting, because this scaling is
already inferred by the results given above) is how the pinning
height scales with the distance from pc. More interesting for
us now is the convergence to ρab,c at small times seen in
Fig. 28(b). There the data of Fig. 28(a) are just replotted as
ρab(z) − ρab,c against ln z, instead of ρab(z) against z. We see
for p = pc a power law with exponent ≈ −1.46(5).

(4) In Fig. 29 we show the limiting densities ρ0(∞),ρa(∞),
and ρab(∞) as functions of p (ρb = ρa by symmetry). As seen
from the inset, we have for the ab density again a power law,

ρab(∞) − ρab,c ∼ (p − pc)β (20)

with β = 0.73(2). The same power law (with the same
exponent) is also seen for ρ0(∞). For the density of a sites,
either the amplitude in this power law is very small or the
exponent β is zero.
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FIG. 28. (a) Densities of ab sites at given height z, after the
cluster had stopped growing at this height, for q = 1 and various
values of p. Panel (b) shows the same data replotted as a log-log plot
of ρab(z) − ρab,c against ln z.
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of sites whose second infection happened at time t , plotted against t .

(5) According to our scenario, the percolation transition is
first order in d = 4, while it is continuous in d = 2, because
there is a bottleneck similar to nucleation in the former that is
absent in the latter. This bottleneck appears because the two
diseases grow first into different directions in d = 4, which is
much less likely in d = 2. Thus in d = 2 the growth of the
two diseases is more or less synchronized, while this is much
less so in d = 4. Therefore we expect also the average time lag
between first and second infection to be large for those sites
which finally become doubly infected.

For all sites whose secondary infection happens at time
t , we denote as 〈�(t)〉 = 〈t2 − t1|t2 = t〉 the average time
lag between primary and secondary infection times t1 and
t2. Data for 〈�(t)〉 versus t are shown in Fig. 30. We see
indeed the expected behavior: While this quantity is finite in the
supercritical phase (where both diseases propagate together),
it increases very fast in the subcritical phase, while its growth
is (very) roughly described by a power law 〈�(t)〉 ∼ t0.5 at
the critical point. For p > pc its asymptotic value seems to
scale roughly as 〈�(∞)〉 ∼ (p − pc)−0.5. But we should also
point out that the interpretation of these data is far from trivial.
First of all, 〈�(t)〉 increases also in d = 2 at the critical point
(although only logarithmically). And second, the increase in
the supercritical region is at large t faster than linear with t ,
which cannot hold on forever, as 〈�(t)〉 is strictly less than t .

(6) Finally we show in Fig. 31 fractions ρAB(t)/ρ(t) of
infected (i.e., active) sites that are doubly infected, similar to
the data shown in Fig. 21 for point seeds. We see a qualitatively
similar behavior, except that now it is clear that ρAB(t)/ρ(t)
tends at p = pc to a finite positive value [equal to 0.020(1)]
when t → ∞. This seems at first to be at odds with the fact that
the average time lag between the two infections diverges in this
limit, but it has an easy intuitive explanation: Assume that A

and B start at some time from the same site. When they meet
again at some other site, one of them (say A) will most likely
arrive earlier then the other. So B will find an easily infectable
a cluster and it will run after A. But whenever A makes a
detour instead of taking the shortest path, B can also take the
shortcut, and thus it will slowly catch up. Finally, there will be
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FIG. 31. Fractions of sites which get both infections, and where
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where data were shown for point seeds.

a small chance that B arrives at some site simultaneously with
A, and the whole repeats.

The single-site seed simulations of the previous subsection
have already suggested that the transition is discontinuous for
all q > p, and that there is no tricritical point. This claim
can be made much more strong by using hyperplane seeds
and estimating the threshold densities as in Figs. 28 and 29.
Results obtained in this way are shown in Fig. 32. We see
that all densities are indeed nonzero at threshold for all q > p.
They are very small for small q (in particular, ρab is tiny), but
the data show clearly that there is no tricritical point.

3. d > 4

We have not made simulations in d > 4. For d = 5 we
expect qualitatively the same result. There, the chance that A

and B can spread for some finite time without interfering is
even larger, but finally they should overlap, and then a compact
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FIG. 32. Densities of singly and doubly infected sites at the
critical point. They vanish only at q = 0.16013 which is the critical
point for single epidemics.

cluster is formed. This is no longer true for d > 6, which is the
upper critical dimension for OP. For d > 6 multiple infinite
clusters can coexist, and thus A and B can spread forever
without cooperating. This might lead to a scenario with a
tricritical point qtri. For q > qtri cooperativity would dominate,
leading to pc(q) < pc. This would then prevent single diseases
from spreading at pc(q), and one has a first order transition.
For q < qtri, in contrast, it would be entropically favorable
for the epidemics to spread apart, leading to pc(q) = pc and
second order transitions.

This seems to be at odds with the fact that there are
first order transitions on random (ER) networks, but this is
easily explained by the different limits taken in the two cases.
On finite-dimensional lattices we always consider first the
thermodynamic limit of infinite system size before we take
the limit t → ∞. On random graphs, in contrast, we take first
the infinite time limit and let then the system size diverge. If
we would also take the limit of infinite system size first for
sparse random graphs, we would end up with trees for which
there are indeed no first order transitions.

C. Three dimensions

We left the case d = 3 to the end—not because it is the
least interesting, but because it is the most puzzling. And we
wanted first to be sure that we can numerically distinguish first
and second order transitions, and that we understand the basic
mechanisms behind them.

1. Point seeds

In Fig. 33(a) we show N (t) versus t , for q = 0.99 and
the algorithm without delay. Seeds were single points. The
solid straight line shows the scaling ρ(t) ∼ t0.494 for OP [64].
Obviously this presents a perfect fit for pc = 0.18443(2). Thus
we conclude that even with very strong cooperativity, the
percolation transition is second order and in the OP universality
class. The same conclusion was drawn from the survival
probability P (t) and from runs starting with plane seeds (data
not shown).

The situation is more complicated for the algorithm with
delay. Data analogous to those in Fig. 33(a) are shown in
Fig. 33(b). Again the simple cubic lattice is used with point
seeds. These data indicate clearly a first order transition at
pc(q) = 0.19202(5). The experience of the 4-d simulations
might warn us that this is slightly overestimated, but at least a
second order transition seems definitely ruled out.

As for the d = 4 case, we expect a better estimate for pc(q)
from seeds which form an entire plane of size L × L. We
will show such data later. But before that, we shall use the
precise pc(q) values obtained in that way for the entire range
pc < q � 1 to estimate the critical densities. A plot analogous
to Fig. 32 (which shows the data for d = 4) is given in Fig. 34.
Again we see clearly that there is no tricritical point, and the
transition is discontinuous in the entire range 0.24881 < q

� 1.
Consider now the case where the seed consists not of one

doubly infected site, but of two singly infected neighboring
sites x and x + ex . One of these sites has disease A, and the
other has disease B. One should naively expect not much
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FIG. 33. Log-log plot of N (t) against t , for cooperative perco-
lation on the simple cubic 3-d lattice with q = 0.99. Each curve is
based on many runs with doubly infected point seeds, and care was
taken that the infected cluster never reached the boundary. Error bars
are smaller than the line thicknesses. Panel (a): Data obtained by the
algorithm without delay. The solid straight line represents the scaling
for OP. Panel (b) shows data for the algorithm with delay.
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FIG. 34. Analogous to Fig. 32, but now for the sc lattice updated
with algorithm SU (i.e., with delay). In contrast to Fig. 32, these
data were obtained by starting from single seeds, but using the more
precise critical point estimates obtained with planar seeds.
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FIG. 35. Analogous to Fig. 33(b), but now the epidemics start at
two neighboring sites on the simple cubic lattice. As in Fig. 33(a),
the solid straight line represents the scaling for OP.

difference, but the data—shown in Fig. 35—look completely
different. There is no longer any indication of a first order
transition. Rather, the data are again—as in the model without
latency—perfectly in agreement with OP, as is also indicated
by the same straight line as in Fig. 33(a).

Before we go on to explain this puzzling behavior, we
show another puzzle in Fig. 36. There, again N (t) for
epidemics starting from a single point simulated with delay
are shown as in Fig. 33(a), but in contrast now the lattice is
not the simple cubic lattice with nearest neighbor contacts.
Rather, each site x can now infect 14 neighbors x + e, where
e ∈ {(±1,±1,±1),(±2,0,0),(0,±2,0),(0,0,±2)}. The last 8 of
these are neighbors in a body-centered (bcc) lattice, while the
first six are next-nearest neighbor bonds on the bcc lattice.
This time there is again no indication of a first order transition,
and the data are again fully compatible with OP.

After these findings we went back to the algorithm without
latency, to check whether similar complications arise also
there. They do not. In that case the transition is robustly of
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FIG. 36. Log-log plot of N (t) for the algorithm with delay, using
again a single doubly infected seed site (but, for a small change,
q = 1). But now any site could infect 14 other sites as described in
the text.
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second order, independently of the seed and of the lattice type.
Also, on the bcc lattice with next-nearest neighbor bonds the
transition remains second order, if the two diseases start on
neighboring points. On the other hand, on the sc lattice the
transition seems always second order when the epidemics start
from two sites with odd Manhattan distance, while it is first
order whenever the distance is even.

Although this looks all very strange, an explanation is
easy—although, as we shall see, it can only be part of the
story. A first hint comes from the fact that the sc lattice is, in
contrast to the bcc lattice with next-nearest neighbor bonds,
bipartite. Therefore sites on the sc lattice can, like sites on a
checker board, be colored black and white or odd and even. If
the origin is even, then any path from the origin to any even
site has an even length, while all paths to odd sites have odd
lengths.

In the algorithm with delay, cooperativity is active only
when both diseases try to infect a site at different times. When
they arrive at the same time, then there is no cooperativity
due to the latency. Consider now an even site i, when the
seed is the doubly infected origin. Then cooperativity is not
effective, if both diseases reach i along paths of equal lengths.
If infections propagate largely along shortest paths, this then
reduces cooperativity substantially. This should not be relevant
for very late times, since then most paths will be longer than
minimal ones. But it should be relevant at intermediate times,
where it reduces the effective cooperativity. Thus spreading
passes through a difficult intermediate “bottleneck” phase,
resulting in a first order transition.

This argument obviously does not apply when the two
diseases start at different points which are separated by an
odd Manhattan distance (i.e., on sites of different parity). In
that case they arrive at any site at different times anyhow, and
the distinction between the two algorithms no longer plays a
big role.

On non-bipartite lattices, finally, different paths between
the same two points can have both even and odd lengths, and
thus the diseases can arrive with any time lag. Now there is still
a difference between the algorithms with and without delay,
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FIG. 37. Log-log plot of N (t) for the algorithm with delay, using
again a single doubly infected seed site with q = 1. But now any site
can infect 12 other sites which are distances 1 and 2 away on the
coordinate axes (see text).

but it is much reduced when compared to bipartite lattices. Our
finding that the transition is second order on the nnn bcc lattice
is thus nontrivial (a priori, it could have been different), but
not very surprising either.

While all this sounds convincing, we should warn the reader
that things are actually not so clear. This is seen by replacing
the sc lattice with nearest neighbor links by yet another
lattice: the sc lattice where each site x has 12 neighbors x + e
and x + 2e, where e ∈ {(±1,0,0),(0,±1,0),(0,0,±1)}. As the
bcc lattice with additional next-nearest neighbors, this is not
bipartite and thus according to our arguments this should have
no “nucleation” phase and should show thus a second order
transition in the OP universality class. But the data shown in
Fig. 37 definitely do not show the latter. Rather they suggest a
first order transition with a very weakly pronounced bottleneck
[notice the different y-axis scales in Figs. 37 and 33(b)].

2. Plane seeds

For the algorithm without delay we verified that indeed
the transition is continuous and in the OP universality class,
as expected from the point seed simulations. We do not
discuss this further, and consider only the algorithm with
delay. We first discuss simulations on the sc lattice with nearest
neighbors only.

If we start with an entire doubly infected plane as in
Sec. V B 2, every point is connected to the seed by paths
of even and odd length. By the above argument we expect
that there will be a second order transition in this case. This
was indeed verified (data not shown). In order to obtain a first
order transition we must make sure that all paths from any
seed site to a fixed target site have the same parity. This is the
case if we color the base plane z = 0 like a checkerboard and
start with all black sites doubly infected, while all white sites
are susceptible. When simulating this, we of course have to
make sure that bipartivity is not broken by the lateral boundary
conditions. This would be the case for naive helical boundary
conditions (in which case we indeed observed a crossover from
one asymptotics to the other, when h ≈ L). But bipartivity is
conserved by helical boundary conditions in the horizontal
plane, if we use an even number of sites (we used planes with
N0 = 2k sites, with k = 19 . . . 23), but use as neighbors of
site i the sites i ± 1 and i ± L (both modulo N0) with odd L.
More precisely, we used L = √

N0 − 1 when k is even, and
the closest odd number to

√
N0 when k is odd.

Data for ρ(t) and h(t) obtained in this way are shown in
Fig. 38 In order to compare with the point seed simulations
we used again q = 0.99. As in Figs. 23(b) and 26(b) we
multiplied the data by suitable powers t δ and t−ν/νt to make
the curves for p = pc (approximately) horizontal at large t .
The powers were again constrained to satisfy δ + ν/νt = 1,
as required by the compactness of the infected cluster. The
chosen values δ = 0.35(2),ν/νt = 0.65(2) are seen to give a
decent fit, although it is—as in four dimensions—far from
perfect. As in four dimensions, these simulations gave a much
more precise estimate of pc than the point seed simulations.
Our best estimate is pc(q = 0.99) = 0.192047(3).

As in d = 4, these data are compatible with the FTS
ansatzes Eqs. (16) and (17), but we have not yet done a very
detailed analysis and—what is even more important—we have
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FIG. 38. Log-log plot of densities of infected sites and of their
average heights versus t . We used here the algorithm with delay and
with q = 0.99. The sc lattice was used as in Figs. 33(b) and 35, but
now the seed consisted of the set of all even points on an entire L × L

base surface of an L × L × Lz cuboid with helical lateral boundary
conditions as described in the text. Sizes of the base plane ranged from
220 to 223 sites. As in the 4-dimensional case, we actually plotted the
data multiplied by a suitable power of t which makes the critical curve
roughly horizontal for large t . Panel (a) shows ρ(t) = N (t)/L2, while
panel (b) shows ρ(t).

not yet checked carefully that all values of q give rise to
transitions in the same universality class. Since surfaces near
the pinning point are more rough in d = 3 than in d = 4,
also finite size corrections are more important for those sizes
that are presently feasible. We hope to make a more complete
analysis of the 3-d model in a future publication.

Here we add just a few more remarks:
(1) We measured quite carefully the scaling of the interface

velocity of the interface in the supercritical phase. It is again
obtained by using the data in the upper right corners of
Fig. 38(b). Results are shown in Fig. 39, and show a very
clean power law,

v ∼ [p − pc(q)]νt−ν (21)

with νt − ν = 0.395(10). As in d = 4, this seems to rule out
the possibility that our model is in the universality class of
critically pinned rough interfaces with a single field and no
overhangs [62,63], where νt − ν = 0.64(2) [65,66].
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v ∼  (p - pc)
0.395(10)

FIG. 39. Log-log plot of the speed v = limt→∞ h(t)/t against
p − pc. The straight line represents a power law fit for 0.19215 �
p � 0.1922. For p < 0.1921 the data are unreliable due to possible
finite size and finite time corrections.

(2) We found again that 〈�(t)〉 seems to approach finite
positive values in the supercritical phase and that these values
scale with the distance from the critical point. In the subcritical
phase (including the critical point itself) they diverge as
t → ∞.

(3) After the infection has died out, the densities at given
height z show a behavior qualitatively similar to Figs. 28,
although the data were much less clean due to the larger
finite size corrections. In particular, due to huge corrections
to scaling we were not able to give a precise estimate of the
order parameter exponent β defined in Eq. 20. We can only
say for sure that it is <0.5 (see Fig. 40).

Finally, we made also simulations with an infected hyper-
plane for the last model discussed in the previous subsection,
where the infection can pass to sites that are distances 1
and 2 away in the six coordinate directions. The precise
threshold (for q = 1) turned out to be pc = 0.071040(1) and
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FIG. 40. Log-log plot of ρab(∞) − ρab,c against p − pc, similar
to the inset of Fig. 29. The huge error bars on the points for small p

are due to possible finite size and time corrections.
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FIG. 41. Log-log plot of Pab against p − pc. In contrast to the
4-d case (Fig. 22) we now see a clear power law, with exponent
compatible with 3/2. For this and the following two figures we used
q = 0.99.

δ = 0.38(2). The latter is compatible with the value on the
sc lattice, which suggests that both models might be in the
same universality class in spite of the big differences between
Figs. 33(b) and 37.

3. Further indications for hybridicity

Although it should be clear by now that all “first order”
transitions discussed in this paper are indeed hybrid, there is
one aspect in which the 3-d model with delay is strikingly
different from the situation in 4-d. For point seeds in d = 4,
the behaviors of N (t), P (t), and Pab are all reminiscent of
nucleation [for example, see Figs. 20(a) for N (t) and 22 for
Pab; the behavior of P (t) is, near the transition point, very
similar to that of N (t) and is not shown here]. All these
observables do not show power laws but rather exponentials
or stretched exponentials (with our precision, we cannot
distinguish between these).

10-5

10-4

10-3

10-2

10-1

1

 1  10  100  1000  10000

P
(t

)

t

FIG. 42. Log-log plot of P (t) against t , at p = pc. The data are
compatible t−1.37(5), while the analogous plot for d = 4 would have
given a faster decay, similar to the p = pc curve in Fig. 20(a).
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FIG. 43. Log-log plot of N (t)/N (0) against t , at p = pc, for
three types of initial conditions: Point seeds, planar seeds, and seeds
consisting of every second point on a long straight line. In spite of the
large corrections to scaling, the data seem compatible with a power
law with common exponent −0.38(3).

For d = 3, in contrast, all three observables seem to show
power laws. For Pab and P (t) this is seen in Figs. 41 and 42.
For N (t) we find (approximate) power laws not only for point
seeds, but also for plane and line seeds; see Fig. 43. Although
there are large corrections, all these are consistent with a power
law with the same exponent, N (t)/N (0) ∼ t−0.38(3). Thus we
do have a bottleneck in the spreading of coinfections on the sc
lattice with the SU algorithm, but this bottleneck seems not to
be associated with the essential singularities typically found in
nucleation [56]. Very similar behavior will be seen in the next
section.

VI. LONG-RANGE INFECTIONS

While high dimensions provide the standard crossover from
local to mean field behavior, another well known path is to go
via long-range interactions. In the present case of epidemics,
this means long-range infections.

Assume that agents are placed on the sites of a
d-dimensional regular lattice (in the present paper we shall
only deal with d = 2), and that the probability for an infected
site x to infect another site y follows asymptotically a power
law,

p(x − y) ∼ |x − y|−σ−d , (22)

so that the probability to infect at least one site at a distance >r

decays as r−σ . When σ is large, we recover the local model,
while mean field behavior holds for σ = 0. The border between
these two regimes has been studied in detail for OP, with the
most recent and detailed simulations reported in [67,68]. For
critical 2-dimensional OP, mean field behavior (as far as critical
exponents are concerned) holds for σ < 2/3, while local OP
behavior holds for σ > 2. In between there is a region where
the critical exponents depend on σ . Indeed, it is still an open
question whether local OP behavior holds only down to σ = 2
or continues to hold down to σ ≈ 1.79 [68,69].

In view of the dramatic differences seen in three dimensions
between the models with and without delay, we first made test
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FIG. 44. Log-log plots of N (t) versus t for d = 2, q = 1, and
several values of p close to the critical point. In each panel we used
two initially infected neighbor sites, one infected by A and the other
by B. In panel (a) the contacts are power law distributed with σ = 1.1,
while σ = 1.5 for panel (b).

runs with both schemes. We found the results again to be rather
different (scaling sets in much earlier for the update without
delay), but it seemed that the transitions were in both cases
discontinuous for large q. Thus there does not really seem to
be as much a difference as in d = 3, and we did not study the
model with delay any further.

In the following simulations we used the model without
delay and the precise form of p(x) used in [68,69]. For each
site we have three potential contacts distributed according
to Eq. (22), and the diseases are transmitted through each
contact with probability p. Initial conditions were such that
one site had disease A, while one of its neighbors had disease
B. We used lattices with N = 231 sites and helical boundary
conditions (notice that we could have gone to much larger
lattices by using hashing as in [68], but we wanted to keep the
codes simple).

Plots of N (t) versus t for q = 1 are shown in Figs. 44(a)
(for σ = 1.1) and 44(b) (for σ = 1.5). In each plot results are
shown for several values of p close to pc. In both panels we
see large corrections to scaling, but both are compatible with
power laws

N (t) ∼ tη(σ ) (23)
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FIG. 45. Exponents η for the growth of the number of infected
sites, plotted against the Lévy exponent σ controlling the decrease
of the infection probability with distance. For comparison, we also
show the analogous exponents for single epidemics, taken from [68].
The exponents were estimated from plots like the two previous ones,
by finding for each σ the critical value pc of p where the curve looks
most likely to become straight for t → ∞. The error bars reflect
essentially the uncertainty in the determination of pc.

at the respective critical points. While η > 0 for σ = 1.5, as
for ordinary percolation, this exponent is negative for σ = 1.1,
indicating a first order transition.

This suggests that there should be a tricritical point for
some value of σ in between. In order to test this, we plot
in Fig. 45 the estimated exponents η(σ ) against σ , together
with the exponents for the single epidemics. As expected, the
two curves are very close for large σ (i.e., for relatively short-
range contacts), since we have already seen that the coinfection
transition is in the OP universality class when the contacts are
short range. For σ → 2/3 we expect η to diverge to −∞, since
in that limit we should obtain the result for random graphs. Our
data are compatible with this.

Our data are not precise enough to study the tricritical
point in detail. It could coincide with the point σ ≈ 1.25
where the two curves in Fig. 45 seem to separate [70].
Alternatively, we could assume that the transition becomes
first order when η < 0, which would give σ ≈ 1.24. If the
latter is to be identified with the tricritical point, then the
two curves are presumably different for all σ in the plotted
range, but the difference is extremely small for σ > 1.3. In any
case we should stress that Eq. (23) describes the data for all
intermediate values of σ , including the point where η(σ ) = 0.
In contrast to typical tricritical phenomena in other systems,
the scaling is not qualitatively different at the tricritical point.
But we should warn the reader that we do see large scaling
corrections (see footnote [61]), and as in the four-dimensional
case [see Fig. 20(b)] and as in the single-disease infection with
long range [68], this might indicate that the true asymptotic
behavior is quite different.

We also made simulations for q < 1. We verified that OP is
reached when q becomes close to p, and in each case the data
were compatible with Eq. (23). For all σ < 1.2 the values of η

smoothly passed from positive to negative values when q was
increased.
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VII. SCALE-FREE AND SMALL-WORLD NETWORKS

A. Scale-free networks

Most real-world networks have strong hubs and have heavy-
tailed degree distribution. They are often modeled as scale-
free; i.e., the degree distributions satisfy approximate power
laws. The most popular model leading to scale-free networks
is due to Barabási and Albert [71] (BA). Therefore it is of
practical importance to ask whether cooperative epidemics
can show first order transition on it.

It is well known that the BA model leads to continuous
percolation transitions in cases such as interdependent net-
works [10,72], networks with cooperative nodes [7], core
percolation [73], or explosive percolation [74,75]. In all these
cases other random networks either show first order transition
or extremely sharp transitions which at least superficially look
like first order. This strongly suggests that the percolation
transition for cooperative coinfections is also continuous on
the BA model.

Indeed, simulations showed no sign of any first order
transition. This is also easily understood heuristically. For a
first order transition one should have weak cooperativity at
early times (e.g., because the network is treelike), but high
cooperativity due to many long loops at later times. In the BA
model most loops are short, and due to the strong hubs there
is no bottleneck in the growth that could lead to nucleation.

B. Small-world networks

Real-world networks not only have hubs, but they also
show the “small-world effect” (nodes are connected by very
short paths [76], so that the diameter of the network increases
∼ log N or even slower), and they are strongly clustered.
Such networks are called “small-world networks.” The most
popular model for small-world networks is the Watts-Strogatz
model [77].

In this model one starts with a regular lattice (typically with
d = 1 or d = 2) and replaces a small fraction pr of nearest
neighbor links by random links. This creates shortcuts which,
even for arbitrarily small pr , lead to small-world networks in
the limit N → ∞. Accordingly, critical phenomena such as
the Ising model or OP show mean field behavior, provided
pr > 0 is kept fixed in the thermodynamic limit. The same is
true for the Newman-Watts model where random links are just
added to the nearest neighbor links [78], instead of replacing
them. In order to find critical behavior different from mean
field, one has to take pr → 0 in the limit N → ∞.

This is easily understood heuristically. Assume that for
some finite L the effective crossover value between finite-d and
random-network behavior is at pr = p(L)

r . Let us now double
the size, L → 2L. In models with local interactions, not much
would change. Except for boundary effects, p(2L)

r ≈ p(L)
r . But

the situation is completely different in the Watts-Strogatz or
Newman-Watts models, because links that were random on Ld

are no longer random on (2L)d . Thus, all these links have to be
reassigned again, and will become on average twice as long and
thus also much more efficient in transmitting infections. If we
assume that a link of length r effectively helps to connect nodes
in a region ∼rd , the renormalization by a factor 2 increases the

effectiveness by a factor 2d and thus p(2L)
r ≈ p

(L)/2d

r or [79]

p(L)
r ∼ L−d . (24)

Notice that this argument is rather generic and thus should
apply not only to OP, but to our coinfection model as well. We
made some preliminary tests which indicated that this is indeed
true. For fixed N we found that there exists a crossover value
p×

r such that the percolation transition seems to be continuous
for pr < p×

r and discontinuous for pr > p×
r . In [38] it was thus

claimed erroneously that there is a tricritical (L-independent)
value pr,c at which the percolation transition changes from
discrete to continuous. This is wrong, and the correct behavior
is indeed given by Eq. (24).

VIII. ASYMMETRIC DISEASES AND COINFECTION VIA
MULTIPLEX NETWORKS

So far we have only discussed two diseases with identical
properties, which moreover spread on the same network. Thus
they not only can infect the same nodes, but they actually
use the same links. This is not the most relevant situation.
Much more often different infections use different mechanisms
for spreading and thus also different links. For instance, HIV
spreads mainly through sexual contact while tuberculosis is
transmitted by coughing, speaking, or sneezing via small
aerosol droplets. Technically, these two diseases therefore
spread on two overlaid (or “multiplex”) networks. Multiplex
networks can of course also be used by two symmetric
diseases, but this is of minor practical interest and will not
be discussed further.

This time one has many more possibilities than for sym-
metric diseases spreading on a single network, and therefore
a similarly complete analysis as in the previous section is
impossible. Instead, we shall discuss here only one simple case
which demonstrates that the basic features are unchanged, and
first order (or, rather, hybrid) transitions should be expected in
many cases.

The model studied here lives on a set of N = L × L nodes,
which are both connected by nearest neighbor links on a square
lattice with helical boundary conditions and by an ER network
of 〈k〉N/2 random links with 〈k〉 = 4. Disease A spreads on
the former, B on the latter. Although both networks have the
same (average) degree, their thresholds for single epidemics
are different: pc,A = 1/2 and pc,B = 1/4. For simplicity we
still assume that the primary and secondary infection rates p

and q are the same for both diseases.
The behavior is qualitatively different for the three cases

p < pc,B,pc,B < p < pc,A, and p > pc,A. In the last case both
single diseases are supercritical, and the same is of course also
true when they act cooperatively. In spite of this, any one (or
both) of them can die, so we have four different outcomes
analogous to those shown in Fig. 7 for ER networks. For
p < pc,B , at the other extreme, both epidemics can survive—if
at all—only due to cooperation. Actually, as we shall see, they
always die, even if cooperation is as strong as possible. Finally,
for pc,B < p < pc,A we can have large ma only when mab

and mb are also large, but mb can be large without a large
A outbreak.
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FIG. 46. Plots of the a and ab densities of giant clusters,
for multiplex networks with q = 1. Within the accuracy of the
plot, identical results were obtained by direct simulations and by
simulating disease A on randomly located b’s with density given by
Eq. (25). System sizes were between 220 and 225 sites, with no visible
dependence on the size.

The only case of interest for us is thus 1/4 < p < 1/2, and
we restrict ourselves also to instances where the B epidemic
is large. Furthermore, for simplicity we assume initial config-
urations with N0 randomly located doubly infected sites, with
N0 � N and N → ∞ (although much of the analysis given
below holds also for more general initial conditions).

With these assumptions, NB(t) and Nb(t) initially increase
exponentially, while NA(t) decreases exponentially. Since
NA(0)/N is already small, disease A cannot have therefore an
influence on the growth of B. The latter stops when the density
of b sites, ρb(t) = Nb(t)/N , reaches a finite value given by the
positive solution of the equation [40]

ρb = 1 − e−p〈k〉ρb . (25)

Notice that this final b density does not fluctuate in the limit
N → ∞ and is independent of N0, as long as N0/N < ρb.

The fate of epidemic A depends on p,q, and N0. If p is too
small (for given q and N0), A simply dies out. If p is sufficiently
large, however, the initial decrease of NA(t) can be turned
around by the increased cooperativity induced by the growth
of ρb(t). A necessary condition for the latter—and thus a lower
bound p∗(c) on the threshold pc(q)—is found easily, using the
fact that the b sites are randomly distributed on the lattice. Thus
A evolves at very late times like mixed bond-site percolation in
a frozen random background, where a fraction ρb of sites can
be infected with probability q by any infected neighbor, while
the remaining fraction 1 − ρb can be infected with probability
p. For given (p,q) it is easy to evaluate p∗(q) numerically. We
just have to solve first Eq. (25), and then we must see whether
the modified 2-d percolation problem is sub- or supercritical.
For q = 1, in particular, we obtain p∗(1) = 0.30654(1). For
all p ∈ [p∗(q),1/2] we can also calculate the density ρa of the
mixed percolation problem. Values of ρa and ρab for events
with giant clusters are shown in Fig. 46 for q = 1. They were
calculated both by the strategy outlines above and by direct
simulations, with identical results within the linewidths. For p

very close to p∗(1) they both satisfy the standard power law for
OP ρa,ρab ∼ [p − p∗(1)]β , although this is not evident from
Fig. 46 due to the smallness of the scaling region.

On the other hand, it is easy to see that A always dies out
in the limit N → ∞—without creating a giant epidemic—if
N0/N → 0 in this limit. This follows simply from the fact that
it takes then infinitely long until ρb(t) reaches any nonzero
value. If p < 1/2, disease A has already died out by this
time.

One might thus conclude that the bound p∗(q) is irrelevant,
but this is not true. Indeed, for any p > p∗(q) there exists a
critical value ρ∗ of the initial B density, such that a giant A

epidemic is possible for ρB(0) ≡ NB(0)/N > ρ∗. When ρB(0)
is exactly equal to ρ∗, then the density of the giant cluster is
equal to ρa , whence the percolation transition at ρB(0) = ρ∗
is discontinuous for p > p∗.

For p → p∗(q) the A cluster in the mixed percolation
problem becomes critical, i.e., ρa → 0. Thus in this limit the
transition is continuous. Qualitatively, all this is similar to the
situation in the mean field model [13].

IX. SUMMARY AND DISCUSSION

Basically, we verified the mean field prediction that coop-
erativity in coinfections (or syndemics) can easily lead to very
instable situations and thus also to first order transitions at
the thresholds where these epidemics just barely can spread.
This is of course not surprising, since cooperativity is akin to
positive feedback which is well known to lead to increased
instability.

A. Surprises and open problems

What is surprising, however, is the very rich phenomenol-
ogy that we found, even in the simplest case of symmetric
diseases using the same networks. For asymmetric diseases
using overlay networks we expect an even richer scenario,
which we only have scratched so far.

One of the main surprises is that the behaviors on trees
and on ER networks are very different. Usually, they show
identical critical behavior. One might argue that the difference
is not so surprising, because we are dealing here with first order
transitions, and there is no reason why they should be the same
on trees and on ER graphs—even though no such case was
known before. But all first order transitions which we studied
in this paper in detail are actually hybrid [7,19,20], and thus
are both first order and critical. This is clearly demonstrated,
e.g., in Fig. 5, where we find a more or less standard finite
time scaling which has no analogy in the case of Cayley trees.
As pointed out recently by Janssen et al., this might be related
to the fact that at least some of these transitions are actually
spinodal [80].

Another (and less well understood) surprise is the behavior
in three dimensions, where two different microscopic imple-
mentations of the model give completely different results. In
an implementation with strictly zero latency we found no first
order transition (and critical behavior in the OP universality
class), while for an implementation with nonzero but finite
latency we found strong dependence on the lattice type and
even on the initial condition. More precisely, on the simple
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cubic lattice—which is bipartite; i.e., sites can be classified as
even and odd—we found a continuous transition, if the seed
of the epidemic includes both even and odd sites, while a first
order transition was found, if the seed consisted only of sites of
one parity. For one non-bipartite lattice (a modified bcc lattice)
the transition was continuous (and in the OP universality class),
while for another one it was found to be discontinuous. More
work is needed to clarify when the transition is first or second
order. Notice that bipartivity was recently found to be crucial
to understand nonuniversal behavior in another percolation
problem (“agglomerative percolation”) [81,82], but this does
not seem to be closely related to the present model.

When starting with an entire infected (hyper)plane, any
model with a first order transition (as seen from the bulk
properties) provides a model for critically pinned driven in-
terfaces in isotropic random media. Such interfaces have been
studied intensively during the last decades. The standard field
theoretical model for them [62,63] assumes that overhangs can
be neglected. This gives an upper critical interface dimension
du = 4 (i.e., the upper bulk dimension is d = 5), and critical
exponents calculated by renormalization group methods that
agree well with numerical simulations [65,66,83]. But it is not
clear whether the no-overhangs assumption is relevant or not,
i.e., whether this model describes also realistic cases where
overhangs occur. Both in three and in four dimensions, it seems
that our model (which does of course allow overhangs) gives
critical exponents that do not agree with [62,63,65,66,83]. In
d = 3 the surfaces seem to be more rough: On finite base
surfaces of size L × L with periodic boundary conditions, the
height fluctuations are proportional to L at the critical point.
But more studies are needed to clarify the situation.

A related observation is that the bulk below the surface does
contain holes, which make up a substantial fraction of all sites.
At criticality, the fraction of doubly infected sites in the bulk
is less than 60 percent in d = 3, and is even ≈40% in d = 4.
These densities show a number of nontrivial scaling laws, none
of which had been considered previously in the literature. It is
an open question whether the distribution of hole sizes shows
any nontrivial scaling.

B. The role of loops

While the above show that there are still a large number
of open questions—indeed, like any other major work this
paper poses more open questions than it solves—there are
also some features that stand out very clearly. One of these
is the role of loops. We find that loops are necessary for first
order transitions, as demonstrated clearly for Cayley trees.
Indeed, it is immediately clear that two diseases starting at a
single site can never lead to a first order transition, since they
have to use the same paths of infection. Thus they can only
spread together, if each one of them could already spread by
itself. Cayley trees and (sparse) ER graphs share the absence
of short loops, which is in most cases sufficient for both
to show the same critical behavior. But in the present case
this is not true, because of the long loops present in ER
graphs.

Indeed, we claim that a necessary condition for first order
transitions in the present model is the predominance of long
loops over short ones. This explains immediately why there

are first order transitions on 4-d lattices, while there are
none on the square lattice with short-range infection—even
if we include infection between next and next-next nearest
neighbors. Only when we allow long-range infection with a
sufficiently slow fall-off of the infection probability, we do find
first order transitions in low dimensions. We have not shown
any data, but we had also studied small-world networks [77].
There, any nonzero probability for long-range rewiring leads
to an abundance of long loops, which outnumber by far the
short ones. As a consequence we found also there first order
transitions.

The paucity of short loops together with the abundance of
long loops leads essentially to a bottleneck. For short times
both diseases cannot spread easily, and moreover they cannot
effectively cooperate. Thus they start off to propagate into
different directions. But if both succeed to survive until long
loops become important, then they will meet at some time
and then any region infected by A will be easy prey for B

and vice versa. For d = 4 this bottleneck leads to phenomena
reminiscent of nucleation in metastable systems. Strangely,
this seems to be completely different for the bottlenecks in
d = 3 which are characterized by power laws instead of the
(stretched) exponentials typical for nucleation.

C. Other models: SIS, SIC, interdependent networks, and
cooperative binary vapor deposition

In the present paper we have only treated the case where
both diseases by themselves are of SIR type. Thus, after a
short infectious period the agents become healthy again and
immune to the disease they already had—but with increased
susceptibility for the other disease.

Alternatively, we could have assumed SIS dynamics either
for one or for both diseases. In that case there is no
immunization, and the epidemic can live in situ forever.
Somewhat more subtle is the case where A, say, is SIR and B is
SIS. In that case B can thrive in situ, while A has to spread for
survival. If A does not survive, then B is only locally affected
by it and will show only the OP transition. On the other hand, if
A does survive, then B will see an increasingly large favorable
environment, and the situation will resemble the model with
long-range memory of [84,85]. It is however not a priori clear
whether critical exponents will be the same.

As a next step consider a model, called “SIC” in the fol-
lowing (for “susceptible-infected-coinfectious”) where hosts
never heal completely. After a short illness they may not show
any symptoms and they may live without any problems. But
they still carry within themselves the pathogen in a dormant
and nonaggressive form. If another individual comes in contact
with this one having a dormant A, the outcome of the encounter
depends on whether the second individual has (or has had)
already disease B or not. If she has not, the first individual
is unable to infect her/him. But if the second individual had
already (had) B (and is thus sufficiently weakened), then the
pathogen in the first individual is sufficiently virulent to infect
her/him. So the first host is not infective, but coinfective. We
expect that also in this model there should be a rich zoo of
possible phase transitions.

We should point out that all these models are closely related
to the model of interdependent networks of Ref. [10]. There,
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one considers a multiplex network where, in the simplest case,
each node consists of two subnodes which are connected by
different links. If one of the subnodes dies, the other dies
also. This is illustrated in [10] by a country where each
electrical power station has associated with it in the same city
also a computer station needed to control it. Power stations
and computer stations are connected among themselves by
different links. If one power station breaks down, in principle
other stations should take over. But since also the local
computer is dead, it cannot transmit the information. This leads
then to other power stations breaking down, to more computers
failing, and finally to a catastrophic cascade resulting in an
all-encompassing blackout.

The analogy with coinfection is based on the observation
that a power station failure is akin to a disease A of a city,
while a computer failure is another disease denoted as B.
In the network dependency model, one disease immediately
leads also to the other, while in our model(s) one disease only
leads to an enhanced susceptibility for the other. In that sense,
the formulation in terms of cooperative coinfections allows
much more flexible interactions between different types of
failures than the strict dependency assumed in [10]. Working
out the detailed relationships between these two classes of

models might lead to valuable insights, both into coinfection
and interdependent network models.

Finally, when starting with entire infected hyperplanes,
our model can be seen as describing surface growth near a
(de)pinning transition. In this interpretation of ordinary per-
colation spreading from an extended source, it is more natural
to consider the elementary growth step not as an infection
of a susceptible site, but as occupation of an empty site by an
adsorbing particle. In our case, this would lead to an adsorption
process with two different adsorbing species, where adsorption
of both together becomes more probable than absorption of
only one of the species. While such surface growth processes
are of course common and even technologically of interest,
a special feature of our model is that a particle of species A

can only adsorb on a surface that contains already A. This
is a severe restriction and might limit the interest in this
interpretation. On the other hand, the fact that we can easily
generate in this way interfaces with extremely “spongy” phases
below them is intriguing and might warrant further study.
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