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We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random
matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and
inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the
complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues
condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only
with respect to reflections across the real and imaginary axes but also with respect to 90◦ rotations, with an
unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary
conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered
on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of
this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this
hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a
combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit
an electrostatic analogy connecting the “charges” embodied in the eigenvalue distribution with the contours of
constant localization length. We show that similar results are obtained for more realistic neural networks that
obey “Dale’s law” (each site is purely excitatory or inhibitory) and conclude with perturbation theory results
that describe the limit of large directional bias, when all states are extended. Related problems arise in random
ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
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I. INTRODUCTION

The simplest models of neural networks assume long-
range connectivity between individual neurons in the brain,
leading to synaptic matrices M(i,j ) with connection strengths
approximately independent of the separation rij = |�ri − �rj | in
three dimensions. The eigenvalue spectrum of M(i,j ) controls
the spontaneous activity and induced response of the network,
and much is known when its elements are chosen from simple
random matrix ensembles in the limit of large matrix rank
N. For example, classic treatments of the spectra of real
symmetric random matrices leading to the Wigner semicircular
density-of-states describing the distribution of real eigenval-
ues [1,2] have been generalized by Sommers et al. [3] to allow
for a tunable asymmetry in Gaussian probability distributions
for the matrix elements M(i,j ) and M(j,i). These authors
introduce a parameter that interpolates between the Hermitian
limit (M(i,j ) = M(j,i)) studied by Wigner [4] and the case
of fully asymmetric matrices where M(i,j ) and M(j,i) are
independent random variables. In the latter, non-Hermitian
limit, the semicircular eigenvalue distribution on the real axis
is replaced by the ‘circular law” [5,6], where the eigenvalues
are now uniformly distributed inside a circle in the complex
plane, with a vanishing fraction lying outside the circle in the
limit N → ∞. For the general case, Sommers et al. found that
the eigenvalue distribution is uniform inside an ellipse, whose
aspect ratio along the real and imaginary axes varies with the
amount of non-Hermiticity [3].

As pointed out by Rajan and Abbott [7], typical applications
to neuroscience require that each node in a synaptic conduc-
tivity network be either purely excitatory or inhibitory (Dale’s
law), which leads to constraints on the signs of the matrix

elements M(i,j ): All entries in a row describing an excitatory
neuron must be positive or zero, and all entries in an inhibitory
row must be negative or zero. These authors then studied eigen-
value spectra of random matrices with long-range connectivity,
with excitatory and inhibitory networks drawn from distribu-
tions with different means and with equal or different standard
deviations. When the strengths of the excitatory and inhibitory
connections are appropriately balanced, with equal standard
deviations, the eigenvalue distributions can be made to obey
the circular law by imposing a mild constraint. However, when
the standard deviations differ, the eigenvalue density becomes
nonuniform within a circle in the complex plane.

Less is known for N-site banded random matrices with
signed matrix elements, which might be an approximate model
for neural networks such that M(i,j ) ∼ exp[−|�ri − �rj |/l],
where ld (in d dimensions) is often a large volume containing
as many as 105 neurons. On spatial scales larger than l,
the synaptic connectivity matrix becomes sparse, with the
largest elements concentrated along the diagonal. Banded
Hermitian random matrices in d dimensions, frequently
studied in the context of solid-state physics, have long been
known to have eigenvalue spectra characterized by a large
number of spatially localized eigenfunctions [8,9], and it
is this phenomenon that we wish to study here. To focus
on an extreme example of bandedness, consider a matrix
describing a one-dimensional chain of N sites, where only
the elements M(j,j ), M(j,j + 1) and M(j + 1,j ) describing
on-site and nearest-neighbor couplings can be nonzero. If we
wish to impose periodic boundary conditions, then we will
set M(i,j ) = M(i,j + N ) = M(i + N,j ),∀i,j . If the lattice
spacing a ≈ l, then this model is a rough approximation to the
denser neural networks discussed above, coarse grained out
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to a scale of order l, with each site representing the spatially
averaged firing rates of many actual neurons. We concentrate
here on off-diagonal randomness, and assume that all M(j,j )
are identical, and describe, say, a site-independent damping
to a background firing rate. For the Hermitian case, with
M(j,j + 1) = M(j + 1,j ) chosen from some probability
distribution, nearly all states are localized in the limit of large
N , with the longest localization lengths occurring near the
band center and the shortest localization lengths near the band
edges [9]. See Appendix A for a brief review and numerical
illustration of this solid-state physics example, which provides
a useful benchmark for the more intricate problem with
complex eigenvalues we study here. Chaudhari et al. [10] have
studied a related problem, with Hermitian coupling strengths
falling off exponentially in space and random self-couplings
(diagonal randomness), in the context of one-dimensional
neural networks, as well as localization of the eigenmodes in
a non-Hermitian matrix arising not from disorder but from
a slow gradient in the diagonal elements. Here we study
sparse non-Hermitian matrices and the localization properties
of their eigenmodes. An important feature of our model is
the underlying spatial structure (the connections are between
nearest neighbors in real space), which distinguishes our
work from recent, interesting studies of sparse non-Hermitian
matrices without such structure [11–13].

A. From neural networks to random matrices

As stated above, we focus here on off-diagonal randomness
in the neural connections, which is both non-Hermitian
[M(j,j + 1) 	= M(j + 1,j )] and, importantly, also allows for
M(j,j + 1) and M(j + 1,j ) to be of opposite sign roughly
50% of the time. We thus model a set of approximately
balanced excitatory and inhibitory nearest-neighbor neural
connections in one dimension and study the localization
properties of the intricate complex eigenvalue spectrum that
results. To put our investigations in context, consider first
(using a convenient Dirac notation |j 〉 to describe a neuron at
site j ) the spectrum of a simple Hermitian one-dimensional
(1D) tridiagonal matrix with random connections, namely

M = −
N∑

j=1

[s+
j |j 〉〈j + 1| + s−

j |j + 1〉〈j |],

s+
j = s−

j = s0 + sj > 0, (1)

sj ∈ [−�,�], � = 0.5s0.

Here all eigenvalues are real, and the symmetrical connections
s+
j = s−

j between neighboring sites are guaranteed to be
positive by our choice of a relatively narrow (� < s0)
box distribution for the bond-to-bond fluctuations in the
connection strengths relative to the background level s0, and
we have subtracted off a diagonal contribution, assumed to be
site-independent. As shown in Appendix A, the localization
length ξ (ε) of the eigenfunctions diverges near the band
center at energy ε = 0. The quantity ξ (ε) describes the
spatial scale over which an eigenfunction with energy ε is
nonzero. If the eigenfunction φε(j ) is large near a “center of
localization” j ∗, then, roughly speaking, its envelope decays
like exp[−|j − j ∗|/ξ (ε)]. The localization length ξ (ε) is
known to diverge logarithmically [14], ξ (ε) ∼ log(1/ε2), as
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FIG. 1. Schematic of a 1D neural network problem with periodic
boundary conditions. Sensory inputs, possibly after a processing step,
are sent via feed-forward couplings into a circular ring of N neurons
|j〉,j = 1, . . . ,N , with nearest-neighbor excitatory and inhibitory
connections. M(1,2) and M(2,1) can be not only unequal but also of
opposite sign if one direction is excitatory and the other inhibitory.
Inset shows the probability distribution of a generic nearest-neighbor
coupling strength s.

ε → 0. As discussed in Appendix A, for one-dimensional
Hermitian localization problems there is an elegant relation
connecting the density-of-states ρ(ε) to the localization
length ξ (ε), known as the Thouless relation [15]. In this
case, the Thouless relation implies a strongly diverging
density-of-states, ρ(ε) ∼ 1/[|ε| log3(1/ε2)], near the origin.
We shall see echoes of these results later in this paper.

We study here a generalization of Eq. (1) that arises in
one-dimensional neural networks with random excitatory and
inhibitory nearest-neighbor connections. Following Chapter 7
of Ref. [16], consider the sparse “recurrent neural network”
shown in Fig. 1, a chain of nodes with asymmetric connec-
tions between nearest neighbors and with periodic boundary
conditions. Sensory inputs, possibly after a processing step,
are sent via feed-forward couplings into a circular ring of
N neurons |j 〉,j = 1, . . . ,N . The nearest-neighbor excitatory
and inhibitory couplings M(j,j + 1) and M(j + 1,j ) can be
not only unequal but also of opposite sign if one direction is
excitatory and the other inhibitory. Consider a model where
the average firing rates vi and vj in neurons i and j (a
coarse-grained description of the temporal density of discrete
spikes in these neurons) are coupled together and obey

τ
dvi

dt
= −vi + F (M ij vj + hi). (2)

Here M ij ≡ M(i,j ), τ is a characteristic neuron time constant
(assumed for simplicity to be the same for all neurons), and
we use the summation convention. Inputs to an animal brain
from the outside, due to whiskers, retinal cells, olfaction,
etc. (after a possible processing step), are represented by
hi = W ij uj , where the connection matrix W ij ≡ W (i,j ) and
the input firing rates {ui} represent the feed-forward part of
this network. The activation function F (w) (often taken to
have a nonlinear sigmoidal shape [16,17]) insures that the
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firing rates are bounded above (when inhibitory connections
are present, additional constraints can be imposed to ensure
that the firing rates can never be negative [16]). Here we assume
for simplicity that the activation function is the same for
both excitatory and inhibitory connections. The eigenvalues
and eigenvectors of the matrix M ij are clearly important for
understanding the behavior of a linearized version of Eq. (2),

τ
dvi

dt
= −vi + M ij vj + hi, (3)

where we assume without loss of generality that F (0) = 0
and F ′(0) = 1. This linear recurrent network is capable of
both selective amplification and input integration [16]. More
generally, knowledge of the eigenvalues and eigenfunctions
of M ij is useful for studying spontaneous activity and evoked
responses [18,19]. Spontaneous activity depends on whether
the real parts of any of the eigenvalues are large enough to
destabilize the silent state in a linear analysis, and the spectrum
of eigenvalues with large real parts provides valuable informa-
tion about the spontaneous activity in the full, nonlinear models
and about the localization volume determining the size of the
active clusters carrying out computations. Moreover, similar
matrices arise when nonlinear problems are linearized about a
steady state.

To see why random neural connections might be relevant,
note that these can be formed during development, with
many random attachments of axons and dendrites to other
neurons. Then, over time, pruning (loss of connections) and
adaptation (strengthening and weakening of various excitatory
and inhibitory connections) occur as neural circuits “learn”
various functions. The likely result is a mixture of structured
and random components. The spectra and eigenfunctions
of completely random sparse neural network chains, with
a mixture of inhibitory and excitatory connections, could
provide a description of neural activity during the early stages
of development and is also a useful reference model. Similar
justifications have been advanced for studying the dense neural
networks that obey Dale’s law treated in Ref. [7].

B. Model and density-of-states

With this motivation, we now discuss the spectra of non-
Hermitian matrices that generalize Eq. (1), namely

M =
N∑

j=1

[s+
j eg|j + 1〉〈j | + s−

j e−g|j 〉〈j + 1|], (4)

where for most of this paper we impose periodic boundary
connections, |j + N〉 = |j 〉. The constant diagonal contri-
bution associated with Eq. (3) has again been subtracted
off. The connection strengths s+

j and s−
j are independent

and identically distributed random variables chosen from a
probability distribution P (s±

j ), given by (see inset to Fig. 1),

P (s) =

⎧⎪⎨
⎪⎩

f

1−u
for u < s < 1,

1−f

1−u
for −1 < s < −u,

0, otherwise.

(5)

The parameter u, 0 < u � 1, controls the width of the positive
and negative parts of the distribution, while f , 0 < f < 1,
determines the ratio of inhibitory to excitatory connections.

This functional form excludes connections that are very
close to zero, which would bias the 1D network towards
falling apart into disjoint pieces. The coupling g in Eq. (4)
controls the strength of a systematic clockwise (g > 0) or
counterclockwise (g < 0) bias in the strengths of positive
and negative neural connections around the ring. As we shall
see, nonzero g can have a remarkable effect on the spectrum
and localization properties. In this paper, we concentrate
on the spectra and localization properties of eigenfunctions
in the approximately balanced case, f ≈ 1/2, which rep-
resents the greatest departure from conventional Hermitian
localization problems in one dimension [8–10,14,15]. For
now, we suppress the neuroscience constraints associated
with Dale’s law, as might be appropriate if each node in the
chain describes a large number of strongly coupled neurons
randomly chosen to be excitatory and inhibitory. However, we
shall later argue (Sec. II C) that a straightforward modification
of Eq. (4) that respects Dale’s law produces negligible changes
in the spectra and localization properties in the limit of
large N .

The case of f = 1 with 0 < u < 1 (random excitatory
connections only) is related to earlier work on the random non-
Hermitian 1D matrices that arise from the physics of randomly
pinned superconducting vortex lines [20,21] and in the pop-
ulation dynamics of heterogeneous 1D environments [22,23].
When g > 0, this problem is sometimes referred to as “directed
localization” [24,25], terminology we adopt here as well. The
spectrum of models with f = 1/2 and u = 1 (i.e., M(j,j +
1) = ±1 and M(j + 1,j ) = ±1, excitatory and inhibitory
connections chosen at random with equal probabilities) has
also been studied before [26–32] and has been shown to have
an extremely rich structure. Here we explore the localization
properties of the eigenfunctions associated with these spectra
for a range of u values in some detail.

Figures 2(a) and 2(b) exhibit the remarkable spectra
associated with Eqs. (4) and (5) when f = 1/2, u = 1 and for
g = 0 and g = 0.1, respectively. To the best of our knowledge,
the striking spectrum in Fig. 2(a) first appeared in a 1999 paper
by Feinberg and Zee [26], who mentioned that this model
might have interesting localization properties. Although the
eigenvalues are in general complex, when g = 0, a significant
fraction of them (about 20%) have condensed onto the real
axis, see Fig. 3; similarly, about 20% have condensed onto
the imaginary axis. In Appendix B this numerical analysis is
extended to the case of u 	= 1, with similar results. For large
N , the density-of-states is symmetric under reflections across
the real and imaginary axes, as well as across ±45◦ lines in
the complex plane, as we shall show in Sec. II. The remaining
eigenvalues (approximately 60%) form an intricate, diamond-
shaped structure. When u is near 1, the density-of-states
appears to acquire a fractal-like boundary. See Appendix B
for a summary of the density-of-states for the more general
probability distribution of Eq. (5) for arbitrary u and f = 1/2.

C. Main results

We are now in a position to summarize our main results.
In Sec. II we discuss various symmetries associated with the
density-of-states of the models studied here. In Sec. III we
show that almost all eigenfunctions are localized (similar to
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FIG. 2. (a) Density-of-states (DOS) of the complex eigenvalue
spectrum for the sparse random matrix defined by f = 1

2 and u = 1
with g = 0 obtained through exact diagonalization of 10 000 matrices
of dimension 5000 × 5000. The scale is logarithmic, and the white
background denotes areas where the DOS vanishing. The only
randomness is in the signs of the connections, M(j,j + 1) = ±1,
M(j + 1,j ) = ±1. (b) Density-of-states for the case g = 0.1; all
other parameters are identical to (a).

the 1D Hermitian case of Appendix A), with the smallest
localization lengths near the boundary of the spectrum in the
complex plane and a diverging localization length near the
origin. Our analysis of localization in this model has been
guided by the work of Derrida et al. [33] on a related problem
(with unimodular complex random couplings between sites),
who derive an elegant generalization of the Thouless formula
for eigenvalues in the complex plane: The inverse localization
length is the two-dimensional electrostatic potential associated
with a collection of charges at the eigenvalue locations in
the complex plane. Our numerical analysis strongly suggests
that the localization length diverges as the modulus of the
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FIG. 3. DOS on the real axis for the parameters of Fig. 2(a),
comprising close to 20% of all eigenvalues.

eigenvalues tends to zero. Indeed, if the eigenvalues are written
λ = λ1 + iλ2, where λ1 and λ2 are real, a numerical study of
the inverse localization length defined via the product of N

random 2 × 2 transfer matrices [34–36] for u near 1 leads to
the following ansatz:

ξ (λ1,λ2) ∝ 1

(|λ1| + |λ2|)
√

λ2
1 + λ2

2

, (6)

which should be compared to the much weaker logarithmic
divergence discussed in Appendix A for 1D Hermitian hopping
randomness. Although the divergence shown in Eq. (6) only
holds for u near 1, the infinite localization length at the origin
is more general, as discussed in Sec. III E.

As shown in Fig. 2(b), a hole surrounding the origin
with angular corners opens up in the complex plane when
these calculations are repeated for a clockwise bias parameter
g = 0.1. A similar hole opens up in the Feinberg-Zee model
of Ref. [26], with complex unimodular hopping matrix
elements [37]. As we demonstrate in Sec. III, a large number
of extended states now occupies the rim of hole. For large
N , the eigenvalues of the localized states outside the hole are
unchanged, a spectral rigidity property that can be derived
from a simple exponential “gauge transformation” acting on
the corresponding eigenfunctions for g = 0, see Ref. [20]. A
corollary is that the g-dependent shape of holes like that in
Fig. 2(b) tracks the g = 0 contours of constant localization
length, with a diverging localization length as the rim is
approached from the outside.

What happens to directed localization for neural networks
that obey Dale’s law, as studied for spatially extended neural
connections in Ref. [7]? In Sec. II C, we argue that the above
results should be unchanged for large N . We will do this by
replacing the matrix M with a modified connectivity matrix,

G =
N∑

k=1

σk[eg|k + 1〉〈k| + e−g|k − 1〉〈k|],
(7)

|k + N〉 = |k〉,
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where the N real random numbers {σk} are chosen from the
probability distribution P (σk), again given by Eq. (5). Figure 7
illustrates a particular example of the Dale’s law connectivity
matrix for N = 5. Note that the nonzero connections in
the same row have the same sign. Equation (7) has site
randomness, as opposed to the bond randomness displayed in
Eq. (4). Despite the fact that 2N random numbers are necessary
to specify M and only N random numbers specify G, we show
via similarity transformations in Sec. II C that the spectra and
localization properties of M and G are essentially identical,
a result which we have also confirmed numerically. The
underlying reason is that the spectral properties are determined
in both cases by above- and below-diagonal products such
as M(j,j + 1) · M(j + 1,j ) = s+

j s−
j and G(j,j + 1) · G(j +

1,j ) = σjσj+1. These quantities have identical statistical
properties.

In Sec. IV we discuss large-g perturbation theory, which
focuses on the changes in the eigenvalues and eigenfunctions
which are all extended in this limit. This analysis can be
carried out for arbitrary f and u, although it cannot capture
the localization that results as the eigenvalues move toward the
origin with decreasing g.

We note that some of our results rely on the underlying
symmetries inherent in our model, which can be divided
into two bipartite sublattices, with the matrix M having
nonvanishing elements only between different sublattices.
Diagonal disorder, for example, will break this assumption and
would be present in more realistic descriptions of networks.
For this reason, some of the results presented are not expected
to be robust, in particular, the divergence of the localization
length at the origin (Sec. III E) and the symmetry between
real and imaginary axis (Sec. II). However, the delocalization
transition occurring as one adds a bias to the network, and the
hole arising in the DOS as a result of it, appear to be robust
features that are largely independent of the details and are the
key results of our work.

Section V contains a summary and outlook, as well as a brief
discussion of related models, including diagonal randomness
and neural clusters coupled to form a ring. Appendices A–C
describe, respectively, a Hermitian random hopping model, the
density-of-states for arbitrary u, and second-order perturbation
theory for large g.

II. SYMMETRIES ASSOCIATED WITH THE
DENSITY-OF-STATES

In order to discuss spectral symmetries, we first introduce
a similarity transformation that is applicable to the present
model with open boundary conditions. Consider an N × N

tridiagonal matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 b1 0
a1 d2 b2

a2 d3 b3

. . .
. . .

. . .
aN−2 dN−1 bN−1

0 aN−1 dN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where {ax}, {bx}, and {dx} are arbitrary real numbers and
all other entries vanish. We can symmetrize this matrix by a

diagonal similarity transformation, whose j th matrix element
reads

Sjj =
j−1∏
k=1

√
ak

bk

, (9)

which we may call a generalized gauge transformation [20].
The result of this symmetrization reads

A′ = S−1 AS =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 c1 0
c1 d2 c2

c2 d3 c3

. . .
. . .

. . .
cN−2 dN−1 cN−1

0 cN−1 dN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(10)

where

cj = √
ajbj . (11)

The matrices (8) and (10) are isospectral, due to the properties
of similarity transformations.

Note that the spectrum of the matrix A′ depends only on
the product of the opposing off-diagonal elements aj and
bj and not independently on each of them (as also follows
from calculating the characteristic polynomial of the matrix
A). Another important observation is that the matrix (10)
is real and symmetric if aj and bj have the same sign but
is non-Hermitian otherwise. The non-Hermitian Anderson
chains proposed in Refs. [38] and [20], in which all aj and bj

are negative, therefore would have only real eigenvalues unless
we introduced periodic boundary conditions. If the matrix (8)
has nonzero corner elements aN for A1N and bN for AN1

(thus coupling the chain into a ring), then the resulting matrix
A′ = S−1 AS has nonzero corner matrix elements

A′
1N = (S−1 AS)1N = √

aNbN

∏N
j=1

√
aj

bj
, (12)

A′
N1 = (S−1 AS)N1 = √

aNbN

∏N
j=1

√
bj

aj
, (13)

which make the matrix non-Hermitian and allow the possibility
of complex eigenvalues unless

N∏
j=1

aj =
N∏

j=1

bj . (14)

Although this similarity transformation leaves the diagonal
randomness intact, it packs all effects of the random, non-
Hermitian hopping terms into a single pair of corner matrix
elements. This perspective is useful already for simple cases
where the elements {aj } and {bj } in Eq. (8) can differ but
are both constrained to be of the same sign. Let us take aj =
e−gs−

j > 0 and bj = egs+
j > 0, consistent with Eq. (4), so the

corner matrix element A′
N1 takes the form

A′
N1 =

√
s−
Ns+

NeNg

N∏
j=1

√√√√ s+
j

s−
j

. (15)
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If we now choose the elements {s±
j } according to the

probability distribution of Eq. (5) with f = 1 and 0 < u < 1,
then all s±

j will be positive, and A′
N1 is real and described

by a log-normal distribution. It is simpler to study log A′
N1,

which behaves like a random walk. As discussed in Sec. III, a
closely related quantity determines the localization properties
of eigenfunctions as function of g. Focusing for simplicity on
the case u = 0+, we readily find

〈log A′
N1〉 = Ng − 1 (16)

and

〈 (log A′
N1 − 〈log A′

N1〉)2〉 = N

4
+ O(1/N), (17)

where 〈•〉 represents an average over the disorder and similar
results obtain for 0 < u < 1. Upon defining an effective
directional bias parameter geff ≡ 〈log A′

N1〉/N , we see that
if microscopic bias is g = 0, then the hopping randomness
represented by the elements {s±

j } leads to a geff = O(1/N1/2),
which vanishes in the limit large N . Thus, the hopping
disorder is effectively undirected as N → ∞ in this case.
When diagonal randomness is also present, we expect that the
localized states will remain localized with real eigenvalues,
unless g exceeds a critical value gc1 given by the minimum
inverse localization length when g = 0.

If aj and bj can have different signs, then the matrix (8) is
inherently non-Hermitian and can have complex eigenvalues
with or without periodic boundary terms. It is this interesting
case we focus on in the present paper. As discussed below,
coupling the chain into a ring is crucial when g > 0.

A. Spectrum of sign-random model

Let us apply the above considerations to the sign-random
non-Hermitian tight-binding chain given by the N × N matrix
corresponding to Eq. (4) with g = 0:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s+
1

s−
1 s+

2
s−

2 s+
3

s−
3

. . .
. . .

. . .
. . . s+

N−1
s−
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where all remaining elements, including diagonal ones, vanish,
and each of s±

j are randomly set to be ±1 with probability
1/2. Spectra found by numerical diagonalization of a random
sample are shown in Fig. 4 for N = 10, 1000, and 10 000,
which should be compared with the disorder-averaged spec-
trum shown in Fig. 2(b). As discussed below, when g = 0 we
can neglect the corner matrix elements.

We can describe the symmetries of the spectrum in the
following way: First, since the matrix (18) is real, namely, M =
M∗, if there is an eigenvalue λn, then there must be another
eigenvalue λ∗

n. In other words, the spectrum is symmetric with
respect to reflections across the real axis. Second, we consider
flipping all signs of the hopping elements, transforming M to
−M, which is achieved by a chiral transformation of flipping
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−1

2

2

1

1

0

0

(a)
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−1

−1

2

2

1

1

0

0

(b)
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−1

2

2

1

1

0

0

(c)

FIG. 4. The spectra on complex planes of the matrix (18) for (a)
N = 100, (b) N = 1000, and (c) N = 10 000.

signs of the bases every other site. Since the spectrum depends
only on the product of s+

x and s−
x , this transformation does

not change the spectrum, proving the chiral symmetry of the
matrix M. In other words, if there is an eigenvalue λn, there
must be another eigenvalue −λn, and hence the spectrum is
symmetric under inversion in the complex plane λ → −λ.
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0

FIG. 5. The spectrum on a complex plane of the matrix (18), this
time with additional boundary elements; compare it with Fig. 4(a).
The system size is N = 100.

Finally, we argue that the spectrum has statistical symmetry
with respect to the reflections across the 45◦ lines Re E =
± Im E. According to the argument in the beginning of this
section, the spectrum depends only on whether the product
s+
x s−

x is +1 or −1. In other words, the randomness of the
matrix (18) is caused by independent probability distributions
of N − 1 independent degrees of freedom, {s+

x s−
x }, instead of

2N − 1. Let us then consider the spectrum of the matrix iM.
By multiplying every matrix element by i = √−1, we flip
the sign of the product of the opposing off-diagonal elements
which, however, does not change the binomial distribution
of the N − 1 pieces of random variables when f = 1/2.
Therefore, the matrices M and iM are statistically isospectral.
Since the spectrum of iM is given by the 90◦ rotation of
that of M, the spectrum is statistically symmetric with respect
to this operation. Combining this symmetry with the other
symmetries, we conclude that it is statistically symmetric
with respect to reflections around the 45◦ lines. The fact
that the symmetry becomes better as we increase the system
size underlines the observation that the symmetry is indeed
statistical.

Adding the boundary elements M1N = s+
N and MN1 = s−

N

does not change the spectrum in an essential way when
g = 0; their first-order perturbation to an eigenvalue λn with
its normalized left and right eigenvectors 〈ψ̃n| and |ψn〉
(we use the tilde symbol to emphasize that they are not
Hermitian conjugate to each other) is of order 1/N at most
(and is exponentially small if the eigenfunctions are localized).
Indeed, comparison of numerical results of Figs. 4(a) and 5
with and without the boundary elements suggests that they are
not only statistically the same but also almost identical with
occasional differences, even for N = 100.

B. Asymmetric amplitudes

Let us next introduce asymmetric amplitudes to the sign-
random tight-binding model. Following Refs. [20,22,38], we

express the asymmetry in the form [equivalent to Eq. (4)]

M(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

egs+
1 e−gs−

N

e−gs−
1 egs+

2
e−gs−

2
. . .

. . .
. . .

. . .
. . . egs+

N−1
egs+

N e−gs−
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

where we assume g > 0 without loss of generality. Note here
that we have included the boundary terms egs+

N and e−gs−
N ;

if not, then the spectrum would be g independent because it
would depend only on the product of the opposing off-diagonal
elements. The diagonal similarity transformation

T (g)xx = e−g(x−1) (20)

changes the matrix M(g) into

M ′(g) = T (g)−1 M(g)T (g)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s+
1 e−Ngs−

N

s−
1 s+

2
s−

2
. . .

. . .
s+
N−1

eNgs+
N s−

N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

which shows that the boundary elements are essential in having
a strong dependence on g.

As was discussed in Refs. [20,38], the spectrum of M(g) can
in fact be an indicator of the localization of the eigenfunctions.
Suppose that the eigenfunction ψn of an eigenvalue λn of the
original Hamiltonian M = M(0) is localized around a site x0

and behaves approximately as

ψn(x) ∼ e−κn|x−x0| (22)

except for a phase factor. This quantity is also an approximate
eigenfunction of T (g)−1 M(g)T (g), because the first-order
perturbative corrections due to the boundary elements are
exponentially small, of order e−N(κn−g), when g < κn. Thus,
the corresponding eigenfunction of M(g) is given by

ψn(x; g) ∼ e−gx−κn|x−x0|, (23)

except for a phase factor. Indeed, the periodic boundary
conditions are almost precisely satisfied for large N if g < κn;
the discrepancy at the boundary is exponentially small, of order
e−N(κn−g). Therefore, the eigenvalue λn of M(0) remains to be
an eigenvalue of M(g) when g < κn. This argument breaks
down when g > κn, for which the eigenvalue now moves
as a function of g, with motion starting when g = κn. The
numerical diagonalization of a random sample with g = 0.1
gives Fig. 6(a). According to the above argument (elaborated
in Sec. III in detail), the states on the inner curve similar to an
octagon have κ = 0.1 for g = 0, and vanishing κ for g = 0.1.
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FIG. 6. The spectra on complex planes of (a) the directed
matrix (19) with random signs for g = 0.1 and N = 1000; (b) the
matrix (24) obeying Dale’s law for N = 1000; Note the similarity to
the spectrum in Fig. 4(b), that does not have this restriction. (c) the
matrix (25) for g = 0.1 and N = 1000. Note the close similarity with
Fig. 6(a).

C. Spectrum of models obeying Dale’s law

Figure 7 shows a network with N = 5 that respects Dale’s
law and the signs of the nonzero elements of the corresponding

1

25

34

FIG. 7. Ring with N = 5 coupled neurons obeying Dale’s law:
each neuron couples in a purely excitatory or purely inhibitory manner
to its two neighbors; solid arrows represent positive, excitatory
connections, and dashed lines negative, inhibitory ones. The 5 × 5
matrix G corresponding to this particular choices of signs is indicated
on the right, where only the sign on the nonzero matrix elements is
indicated. Note that nonzero connections in the same row have the
same sign.

matrix. We now argue that the results presented in this paper are
readily extended also to this scenario, which is more realistic
for neural networks.

To take this situation into account, we consider (taking
g = 0 for now)

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2 σ2

σ3 σ3

σ4
. . .

. . .
. . .

. . . σN−1

σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

instead of M in Eq. (18), where each of σj randomly takes ±1
with probability 1/2, although similar considerations apply to
the more general probability distribution of Eq. (5). The value
of σj indicates whether the two connections out of the j th
neuron are excitatory or inhibitory.

According to the previous argument, the spectrum depends
only on the product of opposing off-diagonal elements. In the
case of the matrix (24), we can regard the N − 1 quantities
{σjσj+1 = ±1‖j = 1,2, . . . ,N − 1} as independent random
variables, just as for the matrix of Eq. (18) we can regard the
N − 1 quantities {s+

x s−
x = ±1‖x = 1,2, . . . ,N − 1} as inde-

pendent. Therefore, the matrices (18) and (24) are statistically
isospectral; see Fig. 6(b) for the spectrum for one random
sample, obeying Dale’s law, to be compared with Fig. 4(b).

The statistical isospectrality does not change much when
we introduce the boundary terms G1N = σN and GN1 = σ1,
because the perturbation of these terms to the spectrum is
of order 1/N at most (and exponentially small if the states
are localized). The only difference in the statistics is the fact
that the product of all super- and subdiagonal elements of
the matrix (18), including the boundary terms M1N = s+

N

and MN1 = s−
N , is random and can take ±1, but that of the

matrix (24) is always +1.
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Finally, introduction of the asymmetry parameter g to G as
in

G(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

egσ1 e−gσ1

e−gσ2 egσ2

e−gσ3 egσ3

e−gσ4
. . .

. . .
. . .

. . . egσN−1

egσN e−gσN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

has the same effect as we showed in Sec. II B for the
matrix (19); see Fig. 6(c) for a numerical illustration for one
random sample. Note the close similarity with Fig. 6(a), for
the matrix M(g), which is unconstrained by Dale’s law.

III. LOCALIZATION PROPERTIES

We now investigate the localization properties of the model
via three different and complimentary routes:

(1) By calculating the participation ratio of eigenmodes
obtained via exact diagonalization;

(2) By using the transfer-matrix approach, and the equiv-
alence between the Lyapunov exponents and the inverse
localization length;

(3) By numerically calculating the density-of-states (DOS)
via exact diagonalization, and inferring the localization length
via the Thouless relation [15], as generalized to localization
with complex eigenvalues in Ref. [33].

We find analytically that for g = 0 and for any u that
the localization length is infinite at λ = 0 (i.e., the inverse
localization length κ vanishes at the origin), suggesting a
diverging localization length as |λ| → 0. Such a divergence is
strongly supported by our numerical results. Interestingly, we
find that, in contrast to the results of Ref. [33], the dependence
κ on λ = x + iy in the vicinity of the origin is not isotropic.
Through the Thouless relation, which we elaborate on below,
we will show that this property is connected to the vanishing
DOS at the origin. In the following, we elaborate on the
different methods and compare the results.

A. Localization properties from numerical diagonalization

A useful measure of the localization of an eigenvector is its
participation ratio, defined as

P ≡
∑

j

|ψj |2
/ ∑

j

|ψj |4. (26)

Indeed, a perfectly localized eigenvector with support only at
a single site would have P = 1, while a perfectly delocalized
one (with ψj = 1/

√
N for every j ) has P = N . By averaging

the participation ratio, or its inverse, we may gain insights
into the localization properties of the system. Figure 8 shows
the results of numerical diagonalization of 10 000 matrices of
dimension 5000 × 5000, performed on Harvard’s “Odyssey”
cluster. These matrices are given by Eq. (4), with f = 1/2 and
u = 1.

−2
−2

−1

−1

2

2

1

1

0

0

−1

−2

−3

−4

−5

−6

−7

−8

(a)

−2
−2

−1

−1

2

2

1

1

0

0

−1

−2

−3

−4

−5

−6

−7

−8

(b)

FIG. 8. (a) Inverse participation ratio (IPR) as a function of
eigenvalue, obtained via numerical diagonalization of 10 000 matrices
of dimension 5000 × 5000 with g = 0 and periodic boundary condi-
tions. With g = 0, the results with open boundary conditions would
be nearly identical. The color bars indicate the inverse localization
length on a logarithmic scale. Note that the background (where there
are no states) is white; the fractal nature of the spectrum implies that
the IPR is not evaluated everywhere but only on the support of the
DOS. (b) IPR for the same parameters but with g = 0.1 and periodic
boundary conditions. In this case the states become delocalized on
the rim of the hole in the DOS.

Figure 8(a) shows the tendency of states to be delocalized
near the origin [vanishing inverse localization length (IPR)],
becoming more localized away from the origin. However,
while this is a direct and straightforward method, in the next
Secs. III B and III C, we will find the localization length more
accurately; we will show that while it diverges near the origin,
it does not have a radial symmetry and only achieves radial
symmetry away from the origin.
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Upon repeating the analysis for g = 0.1 [Fig. 8(b)], we
see that the hole in the DOS is accompanied by a diverging
localization length on its rim. Later we will show that the model
exhibits spectral rigidity: The localized eigenmodes away from
the rim of the hole are insensitive to changes in g.

We now comment briefly on the effect of periodic boundary
vs open conditions. The arguments given in Sec. II suggest (and
numerical diagonalizations confirm) that the g = 0 spectrum
is nearly identical when periodic instead of open boundary
conditions are employed in Fig. 8(a). In contrast, the hole
and extended states in the g = 0.1 spectrum disappear when
periodic boundary conditions are replaced by open boundary
conditions in Fig. 8(b). The invariance of spectrum follows
from the similarity transformation leading to Eq. (15) of Sec. II,
after taking the limits s+

N → 0, s−
N → 0, which breaks the

chain. Nevertheless, the hole has a physical interpretation even
for open chains: Although all eigenvalues retain their g = 0
values, eigenfunctions inside the hole become edge states,
piled up on one side of the broken chain.

B. Transfer matrix approach

A well-established method for finding the localization
length of a one-dimensional system calculates the Lyapunov
exponent via the transfer matrix technique [33]. If ψn is the
eigenfunction amplitude on the nth site, then the 2 × 2 transfer
matrix connecting the vector ( ψn

ψn+1
) to the vector (ψn−1

ψn
) with

eigenvalue λ is given by

Tn =
(

0 1
−e−2gs−

n−1/s
+
n λe−g/s+

n

)
, (27)

where we do not include diagonal disorder and s−
n−1 and s+

n are
independent random variables representing the off-diagonal
randomness.

The Lyapunov exponent can be extracted by taking the limit

κ ≡ lim
N→∞

〈log(||TN · TN−1...T 1||)〉/N, (28)

where ||..|| denotes the norm of the matrix, and 〈..〉 ensemble
averaging over the quenched disorder. It can be proven that
under quite general conditions the limit exists, and κ equals
the inverse of the localization length [35], which we identify
(up to constants of order unity) with the inverse participation
ratio of Sec. III A.

This procedure provides a numerically attractive route to
finding the localization length, without having to diagonalize
large matrices. However, in practice, N has to be large in order
for the method to be accurate, which implies that the product
will result in a matrix with a large norm, imposing computa-
tional difficulties. We resolved this problem by working with
the recursive relation for the quantity rn ≡ ψn+1/ψn (note that,
unlike in Ref. [33], in our definition r is a complex number).
From Eq. (27) we immediately find that

rn+1 = −(s−
n−1/s

+
n )e−2g/rn + λe−g/s+

n . (29)

In this case, the values of rn are well behaved also for large
n, leading to robust numerics. Upon evaluation of r1, . . . ,rN =
ψn+1/ψ1, the Lyapunov exponent can be found in a similar
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FIG. 9. (a) Inverse localization length κ(λ) as a function of
eigenvalue, obtained via Eq. (30) and the recursion equation (29).
Each point is obtained via 10 000 iterations. In this case, κ does not
take negative values anywhere. (b) The colored map shows κ(λ) for
the same parameters but with g = 0.1. There is a finite region in the
vicinity of the origin with negative values of κ , which was given a
white color (not included in the color map). This region corresponds
to the gap of Fig. 8(b); the black dots superimposed on the plot are
the result of the diagonalization of a single 1000 × 1000 matrix with
g = 0.1. Note that the boundary of the white hole corresponds almost
exactly to the rim of the extended states found via the exact numerical
diagonalization.

fashion as

κ(λ) = 1

N

N∑
j=1

log |rj |. (30)

It is beneficial to omit the values of rj at the beginning of the
sequence, to reduce the effects of the initial conditions, though
in the limit of large N this is not strictly necessary.

Using this method, we obtained Fig. 9, which corrobo-
rates and complements the results of the exact numerical
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diagonalization. While Fig. 8 is computationally expensive,
generating Fig. 9 takes several minutes on a PC, a testimony
to the power of this technique. Note, however, that Eqs. (29)
and (30) always deliver a value for κ(λ), regardless of whether
there is actually a normalizable eigenfunction at that particular
value of λ.

C. Connection to the density-of-states via the Thouless relation

A classic result in the theory of Anderson localization in
one dimension is an elegant relation connecting the density-
of-states to the localization length, due to Thouless [15].
This relation can readily be generalized to the non-Hermitian
case [33], where it states that

∇2κ(x,y) = ρ(x,y). (31)

Here the complex eigenvalue is λ = x + iy, and ρ(x,y) is
the density-of-states. This equation can be inverted, using the
well-known analogy with 2D electrostatics, whereby ρ(x,y)
represents a collection of infinite, charged wires, perpendicular
to the complex plane, each associated with a logarithmic
potential. Therefore we have

κ(x,y) =
∫

ρ(x ′,y ′) log(|r − r ′|)dxdy + C. (32)

In the case g = 0, the constant is given by [37]

C = 〈log(|s+
j |)〉 = 〈log(|s−

j |)〉, (33)

i.e., the average of the logarithm of the random matrix
elements. Hence, in the case where we are focusing on where
|s+

j | = 1, we find that C = 0. In the next section we shall show
how the results for κ(x,y) for finite g can be mapped to the
g = 0 behavior, which will show that in the more general case
we have

C = 1
2 〈log(|s−

j /s+
j |)〉 = −g, (34)

which follows from Eq. (37).
This remarkable relation allows us to go back and forth

between the two very different numerical procedures: obtain-
ing κ via the recursion relation and obtaining ρ via exact
numerical diagonalization. Indeed, using a single realization
of a 1000 × 1000 matrix and applying this formula allows us to
recover the Lyapunov exponent dependence on energy, shown
in Fig. 10 for the case g = 0.

D. Hole in spectrum corresponds to contours
of Lyapunov exponent

Consider the recursion relation of Eq. (29). It is easy to
“gauge away” the effect of g by making the transformation

yn ≡ rne
g, (35)

upon which the equation takes the form

yn+1 = −
(

s−
n−1

s+
n

)/
yn + λ/s+

n . (36)

This representation implies that for any complex eigenvalue
λ = x + iy, the effect of g is to decrease the Lyapunov
exponent by an amount g:

κ(x,y; g) = κ(x,y; 0) − g. (37)
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FIG. 10. The Lyapunov exponent κ(λ) was extracted from the
diagonalization of a single 1000 × 1000 matrix with g = 0, using
the electrostatic relation (32). The result is very similar to Fig. 9(a),
which was obtained via the Ricatti recursion relations.

Hence, consistent with the gauge transformation result of
Eq. (23), for any g > 0 all states which previously had κ < g

will acquire a negative Lyapunov exponent. Since all states
must be normalizable, the region with negative κ will not
support any eigenfunctions and corresponds to the “hole” or
gap seen in Figs. 2 and 6. This argument implies that the
hole boundary corresponds to contour where κ = g, consistent
with Fig. 9(b), where the results of exact diagonalization are
superimposed on top of the Lyapunov exponent heatmap.

In Fig. 11, the contours of constant κ are shown. As
expected from the electrostatic Thouless relation, away from
the effective support of the DOS the contours become circular,
κ(x,y) ∝ log(x2 + y2), since all “charges” associated with
the complex eigenvalues act as if they were concentrated at
the origin. Close to the origin the contours obtain a roughly
diamond or octagonal shape. This behavior is consistent with
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FIG. 11. Constant κ contours of the heatmap of Fig. 9(a).
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FIG. 12. The y component of the gradient of the Lyapunov
exponent. The abrupt change along the x is consistent with a
condensation of eigenvalues along the real axis.

the vanishing DOS suggested by Fig. 2(a); via the Thouless
relation, Eq. (31), if κ had a perturbative expansion such as
κ ∼ x2 + y2 (see Ref. [33] for such result in a related model),
then the DOS at the origin would have a finite, nonvanishing
value.

Furthermore, Fig. 12 shows the results for the y component
of the gradient of the Lyapunov exponent, suggesting a δ-
function contribution to the DOS along the x axis. Similar
results can be obtained for the y axis. For u = 1, the strength
of the singular DOS along the x and y axis decays linearly
close to the origin, as shown in Fig. 3. These results lead us to
the following ansatz for the behavior of κ near the origin for
u = 1:

κ(x,y) ∼ (|x| + |y|)
√

x2 + y2, (38)

i.e., it is a product of L1 and L2 norms. This ansatz is consistent
with the eigenvalue condensations onto the x and y axes and
their linear density shown in Fig. 3. When appropriate higher-
order cubic terms are added to the ansatz of Eq. (38), the
function becomes harmonic away from the x and y axes (e.g.,
by replacing d =

√
x2 + y2 with [1 − e−2d ]), consistent with

the vanishing DOS at the origin. The good agreement of the
equipotential contours of the ansatz of Eq. (38) and of the
numerically evaluated Lyapunov exponent is shown in Fig. 13.

E. Vanishing of the Lyapunov exponent at the origin

It is easy to see that for any distribution of the hopping
matrix elements, the Lyapunov exponent must vanish at the
origin (in contrast to the behavior of models with additional
diagonal disorder [37]). To see this, consider the transfer
matrix Eq. (27) for λ = 0. The product of two adjacent transfer
matrices is in this case diagonal:

Sn = TnTn−1 = e−2g

⎛
⎝− s−

n−1

s+
n

0

0 − s−
n−2

s+
n−1

⎞
⎠, (39)

with the elements on the diagonal being the ratio of
two random variables. Therefore the Lyapunov exponent is

Numerical
Analytic Ansatz
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FIG. 13. Numerically extracted contours of constant Lyapunov
exponent near the origin, compared with those of Eq. (38).

given by

κ = 1
2 〈log(|s−

j /s+
j |)〉 = 0, (40)

a result that holds provided that s−
j and s+

j+1 are chosen
from identical, independent probability distribution functions,
as in Eq. (5). The vanishing value of κ at the origin is
numerically corroborated in Fig. 9. In fact, for λ = 0 [and
for any probability distribution function P (s)], there is an
extended eigenfunction of Eq. (4) that reads

|λ = 0,g = 0〉 = |1〉 +
(N−1)/2∑

m=1

(−1)m
s−

1 s−
3 ...s−

2m−1

s+
2 s+

4 ...s+
2m

|2m + 1〉

≡ |1〉 +
(N−1)/2∑

m=1

ψm|2m + 1〉,

ψm = (−1)m
s−

1 s−
3 ...s−

2m−1

s+
2 s+

4 ...s+
2m

, (41)

where we have assumed N is odd and the amplitudes on all
even sites vanish. A similar state can be constructed for an
even number of sites, with a mild restriction on s+

N and s−
N

in both cases when periodic boundary conditions are imposed.
That this zero energy state is indeed extended follows from the
definition of the inverse localization length within the transfer
matrix method [26–29], κ = lim

N→∞
1
N

〈log |ψN |〉, where the

average is over the probability distributions of the matrix
elements in Eq. (41).

F. Spectral rigidity outside the gap

Consider the model for g = 0, and “ramp up” g. As we
argued in Sec. III D and as was discussed in Ref. [37] in
the context of a related model, this results in a hole that
tracks the contours of constant Lyapunov exponent. Thus, as g

increases, the hole widens and “sweeps away” the eigenvalues
in its vicinity. The hole hence acquires a finite fraction of the
spectrum, concentrated on its one-dimensional rim. Since the
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FIG. 14. The eigenvalues of an exact numerical diagonalization
of a matrix with N = 1000, g = 0.01 (blue dots). From each point
a line emanates, in the direction of the eigenvalue velocity in the
complex plane (i.e. dλ

dg
), and with length proportional to the velocity.

For eigenvalues away from the rim of the hole, no line is visible;
spectral rigidity implies vanishing velocities in this regime.

rim of the hole corresponds to diverging Lyapunov exponent,
these states have all become delocalized by the finite value of g,
while the states outside the hole are still localized, as explained
in Sec. II B. These states are insensitive to the boundary
conditions, and their eigenvalues will not be modified by g.

This spectral rigidity is illustrated in Fig. 14. To calculate
the eigenvalue velocity dλ/dg, we used first-order perturbation
theory, which states that this derivative is given by

dλ

dg
= dx

dg
+ i

dy

dg
= (�vL

λ ,B�vR
λ

)
, (42)

where �vR
λ > and �vL

λ are the right and left eigenvectors,
respectively, of the non-Hermitian matrix M(g), (..,...) is the
scalar product, and the matrix B is the matrix derivative of the
matrix M(g) with respect to g.

IV. PERTURBATION THEORY FOR LARGE g

Our problem simplifies for large g. In this limit we first
neglect all terms of order e−g , and the remaining matrix, with
periodic boundary conditions, is of the form (illustrated for
N = 4)

M =

⎛
⎜⎜⎝

0 s+
1 eg 0 0

0 0 s+
2 eg 0

0 0 0 s+
3 eg

s+
4 eg 0 0 0

⎞
⎟⎟⎠ (43)

with s+
j = ±1 for f = 1/2 and u = 1. We can attempt

to “gauge out” the signs of {s+
j } by applying a similarity

transformation H = Q−1MQ with

Q =

⎛
⎜⎝

c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c4

⎞
⎟⎠. (44)

Choosing c1c2 = s+
1 , c2c3 = s+

3 · · · cnc1 = s+
n (with each ci =

±1) results in a matrix of the form

H = eg

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎠. (45)

Note that H is proportional to the translational operator for
a clockwise rotation of one lattice constant around the ring.
This procedure can only be applied when the product of the odd
elements s+

1 s+
3 . . . equals that of the even elements s+

2 s+
4 . . .

(which occurs with probability 1/2). If this is not the case,
however, then a similar approach can still be pursued (with
purely imaginary value of {ci} in this case) leading to similar
results.

This matrix is readily diagonalized by plane waves, i.e.,
right eigenvectors vR

j = eikj , where the periodic boundary
conditions imply that the allowed values of k must be k =
2πn/N , n = 0,1 · · · (N − 1); note that the left eigenvectors
are given by vL

j = e−ikj . The resulting eigenvalues are then

λk = eg+ik, (46)

i.e., except for their magnitude eg they are the N roots of
unity. The eigenvectors of the original matrix M are plane
waves modulated by random sign changes determined by the
elements s+

j .
So far we concluded that to zeroth order the eigenvalues

will sit at regular intervals on a circle. We may now introduce
the terms with the factor e−g as a perturbation and calculate
the shift of the eigenvalues to the first order in perturbation
theory. The perturbation matrix is of the form (both before and
after the similarity transformation)

B = e−g

⎛
⎜⎜⎝

0 0 0 s−
4

s−
1 0 0 0
0 s−

2 0 0
0 0 s−

3 0

⎞
⎟⎟⎠. (47)

Within first-order perturbation theory the shift in the kth
eigenvalue is

δλk = (�vL
k ,B�vR

k

)
, (48)

and upon inserting the plane-wave eigenfunctions we have

δλk = e−g[e−ik(s−
1 + s−

2 · · · + s−
n−1 + s−

N )/N ], (49)

Upon invoking the central-limit theorem, for large N we
can replace the sum by a Gaussian variable with variance N .
Hence the eigenvalue will be shifted in the direction ±1/λ,
with a magnitude of order e−g/

√
N . Note that the magnitude

of the shift is identical for all eigenvalues. These results are
illustrated in Fig. 15.

It is straightforward to repeat these calculations for hopping
elements s+

j and s−
j governed for the more general probability

distribution of Eq. (5). After a similarity transformation, M →
M ′ = P−1 M P , with P = diag{1, 1/s+

1 , 1/(s+
1 s+

2 ), . . . } and
up to corner matrix elements that do not affect our results as
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FIG. 15. Comparison of first-order perturbation theory and exact
numerical diagonalization, for g = 1, N = 10. The red circle has
radius eg .

N → ∞, we have

M ′ = −
N∑

j=1

[eg|j + 1〉〈j | + s+
j s−

j e−g|j 〉〈j + 1|]

≡ H + B, (50)

where the periodic boundary conditions imply |j + N〉 = |j 〉.
We recover the plane-wave eigenvectors discussed above for
H and find, from first-order perturbation theory,

〈λk〉 = eg+ik + e−g−ik 1

N

N∑
j=1

s+
j s−

j . (51)

With the help of the probability distribution of Eq. (5), we can
now carry out a disorder average, with the result

λk = eg+ik + e−g−ik(1 + u)2(f − 1/2)2

≡ eg+ik + αe−g−ik,α = (1 + u)2(f − 1/2)2, (52)

so the eigenvalues will lie on an ellipse with major axis eg +
αe−g and minor axis eg − αe−g . It is straightforward to show
for this generalized problem that the fluctuation of the kth
eigenvalue about its mean values is O(e−g/

√
N )h(u,f ), where

h(u,f ) is a dimensionless function of order unity.
In Appendix C, we go to second order in perturbation theory

and show that it leads to a similar picture qualitatively.

V. SUMMARY AND OUTLOOK

In this paper we studied a coarse-grained, simplified model
for the dynamics of neural networks, which, upon linearization
close to a steady state, leads to the study of the eigenvector
spectrum of an ensemble of sparse, non-Hermitian matrices.
In contrast to most previous studies in this context, here
the connections were only between neighboring neurons, i.e.,
the model included a spatial structure. For concreteness and
simplicity, we focused on a ring topology, which is realized
in several instances in neuroscience [39,40]. An additional

−3
−3

−1−2

−1

−2

2 3

3

1

2

1

0

0

(a)

−1 − 15.0 0.50

0.4

1.6

0.8

2

1.2

(b)

FIG. 16. Plot of the eigenvalues of a particular N = 100 matrix,
where g is varied continuously from 1 (corresponding to the outer
circle) down to 0. These eigenvalues stop changing with g when their
eigenfunctions localize. (b) is an enlarged view of a part of (a).

parameter in our model, g, controlled the directional bias in the
neural network, i.e., favoring clockwise over counterclockwise
connections.

Despite the deceptive simplicity of the model, it exhibits
surprisingly rich behavior both in terms of the eigenvalue
spectrum and in terms of the localization properties of the
eigenvectors. Figure 16 shows the trajectories of eigenvalues
for a particular instance N = 100 and for a value of g

decreasing from one down to zero. The eigenvalues “flow”
in the complex plane until their motion ultimately ceases once
the corresponding eigenvectors become localized. For large
values of g, we used perturbation theory to show that the
eigenvectors are approximately plane waves (up to a similarity
transformation) and that the eigenvalues form a circle (or an
ellipse, more generally) in the complex plane. As g decreases,
eigenvalues move in the complex plane until they localize,
after which “spectral rigidity” will take over and the motion
of the localized eigenvalue stops. The final positions of the
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FIG. 17. (a) Single-box (u = 0) spectrum with N = 1000 and
g = 0.5. A macroscopic fraction of eigenvalues still condensed onto
the real and imaginary axes (compare Fig. 2), but the remaining
eigenvalues now have a diamondlike boundary. A diamond-shaped
gap now replaces the octagonal hole in Fig. 2(b). (b) Spectrum for the
bimodal model with symmetrical diagonal randomness with elements
dj chosen from a uniformly from the interval [−1,1], with N = 1000
and g = 0.1. Although only the real axis now has a macroscopic
fraction of the eigenvalues, a lens-shaped gap replaces the octagonal
hole in Fig. 2(b). (c) Spectrum for a ladder of 1000 stacked triangles
(see sketch at lower left), with periodic boundary conditions and all
3000 connections obeying Dale’s law with randomly chosen strengths
±1. The asymmetry parameter g = 0.2 for the central spectrum, with
g = 0 in the inset at upper right. Eigenvalues no longer condense onto

eigenvalues for g = 0, when this game of “musical chairs” has
ended, showed a remarkably intricate, fractal-like pattern [26].
For any intermediate value of g, the spectrum will show a
pronounced “hole” or gap surrounding the origin, with the
eigenvalues which will ultimately end inside the hole lying on
its boundary, and with localized states outside it.

The spectra of conventional, highly connected random
matrices for large N can be grouped into universality classes,
such as those of the Gaussian orthogonal ensemble and the
Gaussian unitary ensemble, and those obeying the circular
law [1]. It is natural to ask about the universality of the spectra
and eigenfunctions of the one-dimensional sparse random
matrices studied here. Because of its beautiful fractal-like
spectrum, we have focused here on directed localization in the
bimodal non-Hermitian random hopping model of Feinberg
and Zee [26]. However, many of our conclusions also apply
to the more general model defined by Eqs. (4) and (5). For
example, the symmetries under reflections across the real
and imaginary axes and under 90◦ rotations in the complex
plane discussed in Sec. II are preserved for arbitrary u when
f = 1/2. As discussed in Sec. III E, there is always a divergent
localization length at the origin in this model. As summarized
in Appendix B, when f = 1/2, approximately equal numbers
of the eigenvalues (∼40–70% total) condense onto the real
and imaginary axes when g = 0, as u varies from a bimodal
distribution (u = 1) to a symmetric double-box distribution
(0 < u < 1) to a symmetric single-box distribution (u = 0).
As f moves away from 1/2, we expect that the spectrum
becomes more elliptical, consistent with the eigenvalue spec-
trum derived in the large g limit in Eq. (52). Another aspect of
universality, which connected with Dale’s law in neuroscience,
was addressed in Sec. II C.

The gauge transformation argument leading to Eq. (37)
is quite general. Provided the localization length increases
monotonically at the origin, it predicts for 1D rings a gap
or hole bounded by a rim of extended states in the spectrum
for g > gc1 . Because the localization length diverges at the
origin for the model defined by Eqs. (4) and (5), we expect
that gc1 = 0 in this case. When diagonal disorder is present,
the localization length for g = 0 remains finite even at the
origin and now gc1 > 0 [37]. To illustrate the universal nature
of the gap, Fig. 17 shows a single-box (u = 0) spectrum with
N = 1000 and g = 0.5 and a spectrum for the bimodal model
with symmetrical diagonal randomness with elements dj

chosen from a uniform distribution with support [−1,1], with
N = 1000 and g = 0.1. Although the single-box spectrum in
Fig. 17(a) no longer has the fractal-like eigenvalue spectrum
shown in Fig. 2, a diamond-shaped gap centered on the
origin with an enhanced density of states is clearly present.
In Fig. 17(b), we see that diagonal randomness added to the
bimodal model destroys the symmetry under 90◦ rotations
by removing the eigenvalue condensation onto the imaginary

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIG. 17. (Continued) the imaginary axis, similarly to (b). A hole or
gap in the spectrum again appears centered on the origin, bordered
by extended states. Although the states condensed into the two outer
rings are also extended, states outside the outermost ring remain
localized.
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axis. Nevertheless, a hole in the spectrum with an enhanced
density of states on its rim survives the imposition of diagonal
randomness for this value of g = 0.1 > gc1 > 0. The large
g perturbation theory of Sec. IV can be used to show that
all states are delocalized (being plane-wave like) as g → ∞
for a wide class of models, including those with diagonal
randomness. Hence, we expect that there exists another critical
value gc2 , such that for g > gc2 all states are delocalized.
Localized eigenfunctions in neuroscience could be helpful
for avoiding crosstalk between different neural computation
centers, and the extended states on the rim of the hole when
g > 0 might be used to transmit information over longer
distances.

As discussed in the Introduction, a connection with real
neural networks is facilitated if each node in our simplified one-
dimensional model is regarded as a coarse graining of a cluster
of strongly coupled neurons, randomly chosen to be inhibitory
or excitatory. A systematic study of one-dimensional rings
of randomly coupled neural clusters, with each cluster in
isolation exhibiting, say, a “circular law” due to internal
connections [5,6], is beyond the scope of this paper. However,
Fig. 17(c) shows that essential elements of our results are
preserved in the simple case of a ring formed from three-neuron
triangles. As sketched in the bottom inset, imagine a stack
of triangular clusters are connected to form a 1000-cluster
ring with periodic boundary conditions, with a triplet of
connection pairs between adjacent triangles. Every node is
randomly chosen to be purely excitatory or inhibitory, with
all these non-Hermitian connections (either within triangles
or connecting neighboring triangular clusters) of strength ±1,
similar to the implementation of Dale’s law summarized in
Fig. 7. The spectrum in Fig. 17(c), which has a clockwise
bias g = 0.2 on the connections between triangles, exhibits
the same hole in the density of states found for simple rings,
with extended states again piled up on the edge of the rim. (The
spectrum for g = 0 with an otherwise identical realization is
shown as an inset in the upper right.) Although eigenvalues
still condense onto the real axis, this condensation is now
absent on imaginary axis, similarly to the case of diagonal
randomness shown in Fig. 17(b). Imagine coarse-graining
triangle ladders by diagonalizing the individual triangles and
then re-expressing the matrix in terms of these basis functions.
Diagonal randomness (albeit with complex entries) will in fact
appear in this new description, similarly to the case of simple
diagonal randomness embodied in Fig. 17(b). Especially
intriguing are the two additional, approximately hexagonal,
condensations of eigenvalues beyond the hole in Fig. 17(c).
A hole with three similarly nested rings of eigenvalues, all
with smaller size, appears for g = 0.1. Because these rings
move as g varies, they are sensitive to boundary conditions
and hence likely to be populated with extended states. Other
eigenvalues (such as those outside the largest ring) do not move
with g and hence correspond to localized states. The support
of the spectrum associated with P isolated neurons randomly
coupled to form an isolated cluster presumably occupies a
region of order

√
P in the complex plane [5,6]. For Q balanced

excitatory and inhibitory connections between clusters cou-
pled together to form a ring, the effective connection strength
presumably scales like

√
Q. It would be interesting to test these

conjectures and to explore the implications of the bands of

extended and localized states shown in Fig. 17(c) for network
dynamics.

Although we focus here on applications to sparse neural
networks, similar non-Hermitian random matrix problems
arise when random ecological networks [41–43] are adapted
to allow for spatial structure, with predator and prey species
localized to an array of lattice sites but allowed to interact
with their neighbors. For example, a site dominated by foxes
would have an inhibitory effect on neighboring sites occupied
by rabbits, whereas rabbits would have an excitatory effect on
nearby foxes. Random excitatory and inhibitory connections
in one dimension could also be studied in chains of artificial
cells with spatially coupled gene expression patterns [44].
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APPENDIX A: SPECTRUM OF THE HERMITIAN
RANDOM-HOPPING MODEL

It is interesting to contrast our model of non-Hermitian
localization with its Hermitian analog, which also has a
diverging localization length at the origin and a connection
between the density-of-states and the inverse localization
length. The Hermitian random hopping model we consider
is a reformulation of Eq. (1),

HHerm = −1

2

N∑
j=1

tj (|j + 1〉〈j | + |j 〉〈j + 1|), (A1)

where {tj } is a set of mutually independent random variables
taking the values in the range [1 − �,1 + �] with 0 � � < 1.
Although this is a standard one-dimensional version of the
Anderson model [8,14], dominated by localized eigenstates, it
is well established [45,46] that the state at λ = 0 is delocalized
with both the localization length and the density-of-states
diverging as |λ| → 0.

Figure 18 illustrates the density-of-states ρ(λ) and the
inverse localization length κ(λ) for � = 0.85. We numerically
confirmed that the Hermitian version of the Thouless formula
connects these quantities [15]:

κ(λ) = P

∫ ∞

−∞
dλ′ρ(λ′) log |λ − λ′|, (A2)

where P denotes the principal part. We can indeed see
evidence for singularities around λ = 0 in both figures. These
singularities are expected to take the forms [14]

ρ(λ) ∼ 1

|λ| log3(1/|λ|) ; (A3)

κ(λ) ∼ 1/ log(1/|λ|). (A4)
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FIG. 18. (a) The density-of-states ρ(λ) and (b) the inverse
localization length κ(λ) for a Hermitian ring of length 1000 with
hopping randomness. We computed the former from the histogram
of the eigenvalues that we obtained from exact diagonalization of
5000 random samples, while the latter from a new algorithm [47]
exploiting the Chebyshev-polynomial expansion [48–50] applied to
100 random samples.

APPENDIX B: DENSITY-OF-STATES ON THE REAL AND
IMAGINARY AXES FOR f = 1/2 AND ARBITRARY u

In this Appendix we study the density of eigenstates that
have condensed on the real and imaginary axes for the model
defined by Eqs. (4) and (5) with f = 1/2 and g = 0 as a
function of u. For numerical purposes, we here define the
states to lie on the real and imaginary axes provided

| Im λn| < 10−8, (B1)

| Re λn| < 10−8. (B2)

We list the fraction of the eigenvalues that satisfy these
conditions in Table I, where the zero eigenvalues are the states
that satisfy both criteria. As discussed in Sec. III, these states
play an important role in determining how κ(x,y) vanishes
near the origin.

In all cases, the density-of-states (see Fig. 19) is statistically
the same on the real and imaginary axes. The zero eigenvalues
are absent until the two-box distribution [Eq. (5), 0 < u < 1]
becomes close to the one-box distribution (u � 1). The zero-

TABLE I. The fraction of the states on the real and imaginary
axes as well as of the states with the zero eigenvalue. The data in the
row “binomial” are for the binomial distribution ±1 of 1000 samples
of length 1000, the data in the next four rows are for the two-box
distribution of 500 samples of length 1000, and the data in the last
row are for the one-box distribution [−1,1] of 500 samples of length
1000.

On On Zero
Distribution real axis imaginary axis eigenvalues

Binomial (u = 1) 19.9% 19.9% 0
u = 0.95 19.8% 20.0% 0
u = 0.75 20.4% 20.6% 0
u = 0.5 21.8% 21.9% 0
u = 0.25 24.7% 24.8% 66 (0.013%)
One box (u = 0) 33.7% 33.8% 792 (0.16%)

eigenvalue states would be extended if they existed for the
binomial distribution, as is shown in Sec. III E. The density-
of-states looks noisy for the binomial distribution; this may
reflect the fractality of the spectrum. However, it becomes
smooth for u � 0.5 and at the same time develops a peak
around λ = 0.

APPENDIX C: PERTURBATION THEORY OF THE
SIGN-RANDOM TIGHT-BINDING CHAIN

We summarize here second-order perturbation theory ap-
plied to our model with f = 1/2, u = 1, for large g. Upon
adopting the similarity transformation of Eq. (9),

T jj =
j−1∏
k=1

1

bk

, (C1)

we can bring the tridiagonal hopping matrix

M(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s+
1 eg s−

Ne−g

s−
1 e−g s+

2 eg

s−
2 e−g

. . .
. . .

s+
N−1e

g

s+
Neg s−

N−1e
−g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(C2)

into the form

M ′(g) = T −1 M(g)T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

eg rNe−g

r1e
−g eg

r2e
−g

. . .
. . .

eg

eg rN−1e
−g

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(C3)
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FIG. 19. The density-of-states for f = 1/2, g = 0 on the real axis (filled light blue bars) and on the imaginary axis (open red bars) plotted
as histograms N (λ): (a) binomial distribution (u = 1); (b) u = 0.95; (c) u = 0.75; (d) u = 0.5; (e) u = 0.25; (f) one-box distribution (u = 0).
The system size is 1000 for all data and the number of samples is 500 for all data except for (a), where it is 1000.

where all remaining matrix elements in Eqs. (C2) and (C3) are
zero,

rj = s+
j s−

j , j = 1, . . . ,N, (C4)

and we have assumed
∏

j=1..N s+
j = 1 in order to get simplified

corner matrix elements. The elements rj are positive or
negative random numbers if s+

j and s−
j are random and both

positive and negative; in particular, when s+
j and s−

j are ±1,
we have rj = ±1 as well. The matrices M(g) and M ′(g) are
then isospectral.

We now split the matrix M ′(g) into the matrix with
elements proportional to eg and the matrix with the elements
proportional to e−g and formulate the perturbation of the
spectrum of the former with respect to the latter. We thus

set M ′(g) = M0 + M1, where

M0 = eg

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .
0 1

0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C5)

M1 = e−g

⎛
⎜⎜⎜⎜⎜⎜⎝

0 rN

r1 0
r2 0

. . .
. . .

rN−2 0
rN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C6)
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The zeroth-order eigenvalues and eigenvectors of M0 are
given by

λ
(0)
kn

= eg+ikn , (C7)

〈
x
∣∣ψ (0)

kn

〉 = 1√
N

eiknx, (C8)

where

kn := 2πn

N
, n = 0,1,2, · · · ,N − 1. (C9)

By setting

ξ0 = Re λ
(0)
kn

= eg cos k, (C10)

η0 = Im λ
(0)
kn

= eg sin k, (C11)

we see that the eigenvalues are equidistantly aligned on a circle
of radius eg in the complex λ plane:

ξ0
2 + η0

2 = e2g. (C12)

Similarly to Sec. IV, we find the first-order eigenvalue
perturbative shift in eigenvalues,

λ
(1)
kn

= 〈
ψ

(0)
kn

∣∣A1

∣∣ψ (0)
kn

〉 = e−g−ikn r̄(0), (C13)

where r̄(0) is the component at k = 0 of the Fourier transform
of the random variable rx :

r̄(k) = 1

N

N−1∑
x=0

rx+1e
ikx. (C14)

We can cast it in the following way:

ξ1 := Re λ
(1)
kn

= e−gr̄(0) cos kn, (C15)

η1 := Im λ
(1)
kn

= −e−gr̄(0) sin kn, (C16)

Note that the first-order perturbation does not depend on the
details of the random numbers but only on the average. Since
we use the random numbers with a symmetric probability
distribution, r̄(0) vanishes in the limit N → ∞. For a finite
value of N (N = 16), we find the movement of the eigenvalues
as illustrated in Fig. 20(a).

The second-order eigenvalue perturbation, obtained by
similar techniques, is given by

λ
(2)
kn

:= −
N−1∑
m=0
m	=n

〈
ψ

(0)
kn

∣∣A1

∣∣ψ (0)
km

〉〈
ψ

(0)
km

∣∣A1

∣∣ψ (0)
kn

〉
λ

(0)
km

− λ
(0)
kn

, (C17)

= −e−3g

N−1∑
m=0
m	=n

e−i(km+kn)

eikm − eikn
|r̄(kn − km)|2, (C18)

which we illustrate in Fig. 20(b). The third-order eigenvalue
perturbation is illustrated in Fig. 20(c), too. More analyses
reveal that the kth-order corrections generally behave as

λ
(2)
k ∝ e−3g−3ik, λ

(3)
k ∝ e−5g−5ik. (C19)

Although large g perturbation theory is useful for capturing
eigenvalue trends, it does not seem capable of determining
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FIG. 20. The directions of eigenvalue perturbations with N =
16 and g = 1 for a random sample out of a binomial distribution.
The blue dots indicate the positions of zeroth-order eigenvalues (C8)
in all panels. The arrows in each panel indicate (a) the first-order
perturbations (C13) magnified 50 times and (b) the second-order
perturbations (C18) magnified 20 times, and (c) the arrows indicate
the third-order perturbations magnified 100 times.

when eigenvalues stop moving with increasing g; the corre-
sponding eigenvalues remain delocalized within this approach.
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