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Visibility algorithms transform time series into graphs and encode dynamical information in their topology,
paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics
and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller
substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute
in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We
find that this simple property is indeed a highly informative and computationally efficient feature capable of
distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can
be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate
series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this
general theory include the automatic classification and description of physical, biological, and financial time

series.
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I. INTRODUCTION

The interdisciplinary field of network science [1-4] has
integrated in the last 15 years under a single paradigm of tools
and techniques coming from the mathematics (combinatorics
and graph theory), physics (statistical physics), and computer
science (machine learning and data mining) communities,
in the task of exploring, characterizing, and modeling the
structure and function of large and complex networks arising
in nature, technology, and society. Perhaps one of the most
interesting concepts that has emerged within this synergy
is that of network motifs, small subgraphs appearing with
statistically significant frequencies that are suggested to rep-
resent building blocks of network architecture [5]. This local
topological feature has proved to be very useful for classifying
large graphs in areas such as biochemistry, neuroscience, or
ecology, to cite a few (for instance networks that process
information of any garment seem to share similar motif
statistics [5]), or for understanding the interplay between a
network’s local structure and function [6]. One can even
use the local information gathered by motif statistics to
compare networks of different sizes, enabling a classification
of networks in terms of superfamilies [7]. Both the role played
by network motifs as well as the computational problem of
efficiently extracting network motifs [8] are areas of currently
active research.

Of course, this useful structural descriptor—and in general
any topological measure—is narrowed down to those data sets
and systems that have a natural representation in terms of
graphs. As a matter of fact, in some of the most challenging
and complex systems that scientists face nowadays (let it be
spatiotemporal chaotic, or turbulent systems, the financial
system, brain activity, etc), information is available in the
form of temporal streams of data: series describing the time
evolution of certain observables. Interestingly enough, in
recent years a novel branch in data analysis has started to
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transform time series into graph-theoretical representations.
Among other interesting possibilities [9-13], the family of
visibility algorithms [14—17] stand out as computationally
simple methods to transform time series into networks which
are capable of mapping seemingly hidden structure of the
series and the underlying dynamics into graph space, with the
peculiarity of often being analytically tractable [14]. Here we
extend, via visibility algorithms, a tailored notion of network
motifs to the realm of time series analysis and classification
[11].

The rest of the paper goes as follows. After recalling
the basics of visibility (VG) and horizontal visibility graphs
(HVG), we define sequential VG or HVG motifs (Sec. II) and
develop a mathematical theory for the HVG case (Sec. III)
that allows us to easily derive analytical expressions for the
motif profiles of several classes of stochastic and deterministic
dynamical systems. We prove, accordingly, that sequential
HVG motifs are informative features that can easily distinguish
among different types of complex dynamics. In Sec. IV we
further show that such discrimination is robust, even when the
signals under study are polluted by large amounts of measure-
ment noise, enabling its use in empirical (experimental) time
series, i.e., in practical problems. We summarize our results
on synthetic time series in Sec. V and finally make use of
this methodology in a real scenario in Sec. VI, where we are
able classify different physiological time series and efficiently
disentangle meditative from general relaxation states by using
the motif profiles (only five numbers per subject) extracted
from heartbeat time series. In Sec. VII we conclude.

II. VISIBILITY GRAPHS AND MOTIFS

Visibility algorithms [14-17] are a family of methods to
map time series into graphs, in order to exploit the tools of
graph theory and network science to describe and characterize
both the structure of time series and their underlying dynamics.
Let § = {x(t)}tT=1 be a real-valued time series of T data. A
so-called natural visibility graph (VG) is a planar graph of T
nodes in association with S, such that (i) every datum x(i) in
the series is related to a node i in the graph (hence the graph
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FIG. 1. Schematic of two families of visibility algorithms. (a) Natural visibility algorithm applied to 20 data points of a periodic time series
(top) and the corresponding visibility graph (VG) (bottom); each datum in the series corresponds to a node in the graph and two nodes are
connected if their corresponding data heights show mutual visibility (see the text). (b) Horizontal visibility algorithm applied to the same series
(top) and the corresponding horizontal visibility graph (HVG) (bottom); each datum in the series corresponds to a node in the graph and two
nodes are connected if their corresponding data heights show horizontal visibility (see the text).

nodes inherit a natural ordering), and (ii) two nodes i and j are
connected by an edge if any other datum x (k) wherei < k < j
fulfils the following convexity criterion:

xk<x,-+k, ;[x.j—xi], Vk:i <k <]
By construction, VGs are connected graphs with a natural
Hamiltonian path given by the sequence of nodes (1,2, ...,T),
whose topology is invariant under a set of basic trans-
formations in the series, including horizontal and vertical
translations. An illustration of this method is shown in panel
(a) of Fig. 1, where we plot a time series and its associated VG.
VGs inherit in their topology the structure of the time series,
in such a way that periodic, random, and fractal series map
into motif-like, random exponential, and scale-free networks,
respectively. It has been shown that VGs are well suited to
handle nonstationary data [18-20].

A so-called horizontal visibility graph (HVG) is defined as
a subgraph of the VG, obtained by restricting the visibility
criterion and imposing horizontal visibility instead. In this
case, two nodes i and j are connected by an edge in the HVG
if any other datum x(k) where i < k < j fulfills the following
ordering criterion:

xp < inf(x;,x;), Vk:i <k <]j.

Such subgraph is indeed an outerplanar graph [21] [see
Fig. 1, panel (b), for an illustration]. Interestingly, HVGs
inherits some of the properties of VGs and, on top of
that, are computationally more efficient [42] and analytically
tractable. Accordingly, several analytical properties of these
families of graphs [15,22], associated with different classes of
dynamics including canonical routes to chaos [23-26], have
been investigated in recent years. For instance, for the class
of Markovian processes with an integrable invariant measure
the values of the degree distribution P (k) can be calculated
analytically using a formal diagrammatic theory [22].

We are now ready to introduce a new topological property
of VGs and HVGs.

Definition (sequential VG and HVG r-node motifs). Con-
sider a VG or HVG of N nodes, associated with a time series of
N data, and label the nodes according to the natural ordering
induced by the arrow of time (i.e., the trivial Hamiltonian path).
Setn < N and consider, sequentially, all the subgraphs formed
by the sequence of nodes {s,s + 1, ...,s +n — 1} (where s is
an integer that takes values in [1,N — n + 1]) and the edges
from the VG or HVG only connecting these nodes: these are
defined as the sequential n-node motifs of the VG or HVG.
This is akin to defining a sliding window of size n in graph
space that initially covers the first n nodes and sequentially
slides, in such a way that for each window, one can associate
a motif by (only) considering the edges between the n nodes
belonging to that window.

Note that, importantly, this definition differs from the one
of a standard network motif (which looks at the frequencies of
appearance of all subgraphs of a given size, without imposing
any restriction on the nodes forming a given subgraph), as
here it is required that the labels of the nodes appearing in
a motif are in strict sequential order—this is consistent with
the vertex ordering of the natural Hamiltonian path induced by
construction in the VGs and HVGs. That s, in order to preserve
in graph space the dynamical information of the series, the n
nodes of an n-size motif are taken in sequential order, and only
those edges that connect nodes from the motif are considered.
For readability, from now on we will call these simply VG
and HVG motifs but the reader should not get confused and
be reminded that these are not directly the standard notion
of network motifs computed on a VG or HVG. Some basic
properties of these motifs are as follows:

(1) Trivially, there are a total of N — n motifs (which can
be the same motifs or not) within each VG or HVG.

(2) Each motif is a subgraph of the original VG or HVG.
Moreover, HVG motifs are outerplanar and have a trivial
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TABLEI. Enumeration of all 3- and 4-node motifs. Each motif can be characterized according to a hierarchy of inequalities in the associated
time series. Note that for real-valued aperiodic dynamics the type-II 4-node motif has a null probability of occurrence as the probability that
two data in the time series repeat vanishes almost surely (if, on the other hand, the series only take values from a finite set then this motif has a
finite probability). For the rest, the probability of each motif reduces to the measure of the set of inequalities (see the text).

Motif label Motif type Inequality set

1 oo {V(x0,x2),x1 > X0} U {Vx0,x1 < X0,X2 < X1}

2 oo~ {Vxo,x1 < x0,X%2 > X1}

1 oo o {V(x0,x1),x2 < x1,X3 < X2} U {¥(x0,x3),X1 > X0,X2 > X1}

2 @ {Vx0,x1 < X0,X2 = X1,X3 > X2}

3 o0 {Vx0,x1 < X0,X1 < X3 < X0,X3 < X2} U {V(xg,Xx3),x1 < X0,X2 > Xo}
4 o0 {Vxp,x1 > x0,X2 < Xx1,X3 > X2} U {Vxg,x1 < X0,X% < X1,X2 < X3 < X1}
5 {Vx0,X1 < X0,X] < X2 < X0,X3 > Xa}

6 oo {Vxo, X1 < Xo,X2 < X1,X3 > X1}

Hamiltonian path; thus HVG motifs are also HVGs [21]. As
a result, there are only 6 admissible motifs of size 4, and 2
admissible motifs of size 3 (see Table I for an enumeration).

(3) Computational complexity: computing motifs in both
VGs and HVGs is extremely efficient. If instead of exploring
the motif occurrence in the structure of the adjacency matrix,
one directly examines the set of inequalities reported in Table I,
one directly has an algorithm that runs in linear time O(N)
for HVG motifs. A similar complexity is found for VG motifs
[31].

As is done traditionally with network motifs [7], we can
compare VGs or HVGs associated with different time series
and dynamics by comparing the relative occurrence of each
motif inside a VG or HVG. In order to do that, we introduce
the extension to the VG or HVG realm of a significance
profile.

Definition (VG or HVG motif profile Z"). Let p be the total
number of admissible VG or HVG motifs with n nodes. Assign
to each of these p motifs a label from 1 to p (that is, choose
an ordering for the motifs). The motif assigned with the label
i will be called a type-i motif. Then, we define the n-node VG
or HVG motif significance profile Z" (or simply HVG motif
profile) of a certain time series of size N as the vector function
7':neN— [P, ... ,IP”I’J] € [0,1]” whose output is a vector
of p components, where the ith component, P}, is the relative
frequency of the type-i motif.

Several technical comments are in order.

(1) First, since Z" are n-dimensional real vectors, any L,
norm induces a natural similarity measure (distance) between
two graphs.

(2) Second, Z" has, by construction, unit L; norm, as

{7:1 P} = {7:1 PP =1

(3) Third, note that if one considers dynamical processes
instead of individual time series, then the estimated relative
frequencies P! for an individual realization of the dynamical
process converge for infinitely long series to the probabilities
of type-i motif associated with the process. For the motif
profile to be a well-defined feature of a certain dynamical
process, it needs to be self-averaging. We check this property
by estimating Z" for an ensemble of realizations of the

process, computing the mean (P}) and standard deviation

([IP1?2) — (IP!)? over this ensemble, and checking that the
standard deviation is small (meaning that a single realization

provides a good description of the average behavior). As we
will show below, both VG and HVG motif profiles have
very good self-averaging properties. In any case, for every
dynamical process considered in this work, instead of P} we
compute (P?) and \/([P!]>) — (IP!)?, but for readability, from
now on we will drop the (-) for the elements of the motif
profile, as we found that for the size of the series used in
the numerical analysis, \/([[P!1?) — (IP/)? was very small and
hence PP} ~ (IP}).

(4) Fourth, note at this point that the definition of the
VG or HVG motif profile is different from standard profiles
(significance profile, subgraph ratio profile) defined in the
literature [7], as in the latter case, they make use of a null
model (ensemble of randomized networks) to appropriately
normalize each frequency. The rationale for this normalization
is that one wants to compare motif statistics across very
different networks (with different sizes and degree sequences),
so variations in the motif relative frequencies only due to size
effects need to be removed to be able to correctly compare
across different networks. The reader will quickly come to
the conclusion that, in the context of VGs and HVGs, the
null model is not a randomized ensemble of the graph under
study (which would not yield a VG or HVG with high
probability), but on the contrary, it should be the VG or HVG
of a randomization of the time series under study. In other
words, normalization in the case of VG or HVG profiles should
deal with the motif statistics of uncorrelated random series
(i.i.d. white noise or surrogate series that preserve certain
structures) with similar probability densities to those of the
series under study. In the next section we will prove that, in the
case of HVGs (which will be the family of visibility graphs
under study), such null model has a universal motif profile,
independent of the probability density of the i.i.d. process.
Therefore, it is not necessary in this case to normalize each
profile accordingly as this would only yield a trivial, constant
rescaling.

For illustration purposes, let n = 4, and consider two differ-
ent dynamical processes: (i) white Gaussian noise described
by the map x; = &, where £ are independent and identically
distributed (i.i.d.) Gaussian random variables & ~ A[0,1],
and (ii) chaotic dynamics given by the fully chaotic logistic
map x;+; = 4x,(1 — x,). In order to estimate the probability
of appearance of each of the motifs, we have generated a
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FIG. 2. Sample time series from (a) i.i.d. Gaussian white noise,
(b) fully chaotic logistic map, and (c) fully chaotic logistic map
polluted with a certain amount of extrinsic white noise are shown for
illustrative purposes. Visibility graph motifs can be extracted from
these series to reveal differences in their intrinsic structure.

time series of size N = 10* data for both processes (sample
time series can be seen in the top panels of Fig. 2), and we
have computed the relative frequencies of each motif. Results,
averaged over an ensemble of 100 realizations, are shown in
Fig. 3 (error bars describing the ensemble standard deviation
are contained inside the symbols); in panel (a) we plot the HVG
motif profile, whereas in panel (b) we plot the VG profile. As
we can see, in every case the type-II motif is absent. The simple
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FIG. 3. Four-node motif profiles Z* associated with Gaussian
white noise (red squares) and with a fully chaotic logistic map (black
stars) extracted respectively from HVG (a) and VG (b). Each dot
represents the relative frequency of a given motif, averaged over an
ensemble of 100 realizations of each process (time series of N = 10*
data per realization). Standard deviations of each motif’s relative
frequency over the ensemble are plotted as error bars, which are not
visible as error bars fall inside the symbols. We conclude that these
motifs can be used to distinguish between deterministic and stochastic
dynamics.

reason is that this profile is absent for irregular (aperiodic)
real-valued time series, by construction (see Table I).

For the chaotic process, some other motifs are absent: this is
related to forbidden patterns arising in chaotic dynamics. More
importantly, in both panels, the average relative frequency
of some motifs seems to be different for both dynamical
processes, enabling the possibility of using both HVG and
VG motif profiles to distinguish among different dynamical
origins. From now on we will focus our motif analysis on the
horizontal visibility graphs (HVGs) alone, and comparison
with the VG case is left for future work [31]. In the next
section we advance a theory to compute the motif profile Z" in
an exact way for different classes of dynamical systems. We
will confirm that HVG motifs can indeed distinguish several
kinds of dynamics, and we will explore how to build on this
peculiar property for feature-based classification.
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III. THEORY

In order to numerically explore and compute the frequency
of each HVG motif, one can generate the HVG associated
with a given time series and count the presence of each
motif directly from the adjacency matrix. However, in this
section we will show that it is not necessary to do that as,
via the zero-order terms of a diagrammatic expansion recently
advanced [22], we can also work out the motif occurrence
directly from the exploration of the time series, that enables
motif computation in linear time. This will allow us to build
a theory by which the motif profiles can be computed exactly
for a large set of classes of dynamics that fulfill certain
properties. Let us consider a dynamical process H : R — R
with a smooth invariant measure f(x) that fulfils the Markov
property. Thatis, from a probabilistic point of view, conditional
probabilities fulfill f (x,|x,—1,X,—2, ...) = f(x,|x,—1), Where
f(x,lx,—1) is the transition probability distribution [note
that this concept has a clear meaning in random dynam-
ical systems, whereas for deterministic systems, say maps
Xr+1 = H(x;), the Markov property is also trivially fulfilled
with f(x2|x1) = 8(xy — H(x1)), where 6(x) is the Dirac-delta
distribution]. The key element is that for these processes, each
HVG motif has a probability of appearance as a subgraph
that can directly be computed as the measure of a set of
ordering inequalities that take place in the time series. For
instance, for n = 3 and n = 4, probabilities associated with
the appearance of a certain motif are based on integrals of the
form

/f(xo)de/f(xl|x0)dxlff(x2|xl)dx2 )]

for n = 3, and

/ Flxo)dx / Flailxo)dx, / Flealrdxs / Flasladxs
@)

for n = 4. The range of integration and the shape of the
conditional probabilities are particular for each motif and
each process, respectively. First, the range of integration fully
determines the motif. In Table I we depict the conditions in the
time series that have to be fulfilled among n consecutive data
X0,X1, - - . ,Xy—1 toyield a certain motif of size n in the HVG, for
n = 3,4 (extension to arbitrary »n is easy but gets cumbersome
as n increases). It can be proved quite easily that a given motif
appears in an HVG if and only if these ordering restrictions are
fulfilled in the time series. These restrictions directly translate
in the integration range of the probabilities; we illustrate this
principle in an example. The first motif, Z4, according to
Table I is guaranteed when 4 consecutive values xg,x1,x,, and
x3 are such that {V(xg,x1),x2 < x1,x3 < X2} U {¥(x9,x3),x1 >
X0,X2 > x1}. Accordingly, if x € [a,b] C R, the probability of
this event is

b b X1
zi =P = [ fowdn [ fonbodn [ faalnar

X2 b
x / Fralxa)d + / Flxo)dxo
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b b
X/ f(x1|xo)dx1/ f(xalx)dx;

b
X / f(x3lx2)dxs. 3)

Analogous expressions can be found for the rest of the
probabilities that form the motif profile Z. These terms are
nothing but the contributions to the degree distribution at zero
order from a diagrammatic expansion in the number of hidden
nodes [22]. From a geometric point of view, the first motif
will not appear in fast-fluctuating signals and hence deals with
the degree of smoothness of a time series at short (order n)
scales, whereas the other motifs deal with certain fluctuation
shapes. Accordingly, in those processes where the degree
of smoothness can vary—such as in fractional Brownian
motion, where the smoothness of the signal increases with
the Hurst exponent—we would expect that the first motif is
particularly informative, whereas for fast-fluctuating series we
expect this motif to be less informative. Integrals accounting
for the probabilities are easy to deal with; in several cases
these are exactly solvable, and in general one can solve them
up to arbitrary precision with any symbolic programming
software. In what follows we determine the motif profiles for
i.i.d. (white noise), colored noise with exponentially decaying
correlations, and deterministic chaos (fully chaotic logistic
map). We show that Z* capture enough information to easily
distinguish different processes and thus represent excellent
features for series classification.

Relation with ordinal patterns. At this point it is important
to highlight the relation between the probability of occurrence
of given HVG motifs and the probability of occurrence of
so-called ordinal patterns [27,30]. In the theory proposed by
Bandt and Pompe in [27] for the case of the embedding
dimension equal to 4 one proceeds to map each local time
series segment of size 4 into an ordering symbol of 4 letters
from the alphabet {0,1,2,3} (where the largest value maps
to the letter 0, the second largest to 1, the third largest to
2, and the smallest to 3). There are 4! = 24 permutations,
defining 24 symbols (ordinal patterns) whose frequencies are
then counted to measure the so-called permutation entropy that
acts as a complexity measure of the series [27]. Interestingly,
the probability of occurrence of each HVG motif indeed
reduces to the probability of occurrence of a set of possible
ordinal patterns (this is no longer the case for VG motifs
[31]). For instance, Z} is the probability of finding any of
the ordinal patterns 0123,1023,1203,1230,2103,2130,2310,
or 3210, and similarly the rest of the motif probabilities
can be linked to the probability of appearance of different
sets of ordinal patterns. Accordingly, HVG motifs indeed
induce a particular partition of the set of ordinal patterns. The
HVG motif profile is thus intimately linked with the so-called
permutation spectrum [29] that accounts for the histogram of
ordinal patterns.

A. iid.

Let us start by considering time series generate by i.i.d.
uniform random variables & ~ U[0,1]. In this case we have
a=0b=1,f(x)=1, and f(x]y) = f(x) Yy, and simply
enough, probabilities defined by Egs. (1) and (2) easily
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factorize. According to Table I, after a little bit of calculus

we find
21 8 6 6 2 2

Z3= =5 |5 4= _70’_5_7_7_ . (4)
33 24" 2424 24 24

Note that these results are in perfect quantitative agreement
with numerics performed for finite-size series (left panel of
Fig. 3); we will show in the next subsection that results for
finite series converge quite fast to the (asymptotic) theory as
the series size increases. Interestingly, results indeed coincide
despite the fact that the theoretical values were computed
for uniform white noise (f(x) = 1), while the numerics in
Fig. 3 were performed on Gaussian white noise [where f(-)
is the Gaussian function]. This suggests that i.i.d. may have a
universal HVG motif profile, indeed independent of f(-). We
now state and prove a theorem that actually guarantees this
result.

Theorem 1. Consider a bi-infinite series of i.i.d. random
variables extracted from a continuous distribution f(x) with
support (a,b), where a,b € R. Then the probability of finding
n-node HVG motifs (with n = 3,4) follows Eq. (4), indepen-
dently of the shape of f(x).

Proof. The proof is a constructive one. We only give here
the explicit proof for P}, as the proofs for the rest of the
probabilities follow analogously. We rely on the cumulative
distribution function F(x), defined as fa Y f(xdx' = F(x),
with properties F(a) = 0,F(b) = 1, and

dF"(x)

FOF"™ ! (x) = . ®)
ndx

‘We have
b b X
P = f f o) / oz, f Fld
X2 b b
Xf f(xa)dxs+/ f(xo)dXO/ fxdxy

b b
X/ f(xz)dx2/ f(x3)dxs.

Using the properties of F(x), the first term above is then

b b Xi X2
/f(xo)dxo/ f(xl)dx1/ f(xz)dx2/ f(x3)dxs

b b X1
=/ f(xo)dxo/ f(xl)dxl/ Fx2)F(x2)dxs

B b b F2(xl)
= Sfxo)dxo | f(x1) dx;

2
_ /b S, 1
- ; 6 0—6,

and analogously for the second term,
b b b b
[ s [ s [ oo [ fema
a X0 X1 a

b b
Z/ f(xo)dxof SGD[l = F(xpldx
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b 1 F2
- / f(xo)[i — Flxo)+ ;x‘”}dxo

b—l (6)
==

_ Fxo)  F’(xo) | F(x)
) 2 6

a

hence IP‘I‘ = 2/6 = 8/24, coinciding with the result for uni-
form and Gaussian series, and being independent of f(x). The
rest of the elements in Z* are computed analogously. ]

As a matter of fact, the independency from f(x) can be
trivially extended for an arbitrary size of the motif n. This is
intuitive so we only give here the strategy of a proof. The main
ingredient which is required for this independency to hold Vn
is that the limits of the nth integral are either the extremes of
the distribution support a,b [where the cumulative distribution
F(x) takes the constant values 0 and 1, respectively, and
independently of f(x)], or other variables xg . ..x,_;. In this
latter case, one can use iteratively the property in Eq. (5) to
solve these integrals up to the last one (in x(), whose range
is always (a,b) and where F(a) = 0, F(b) = 1 can be finally
applied, to give a result which will not depend on the precise
shape of f(x).

According to Theorem 1, Gaussian, uniform, power law,
etc., uncorrelated random series all have the same HVG motif
profiles. As a by-product, for any kind of sufficiently long
time series {x,}ﬁv= , where x; € f(x) and f(x) is continuous,
if we randomize (shuffle) the time series, the motif profile of
the randomized series is equal to Eq. (4). This is the reason
why, at odds with the standard definition of a network’s motif
profile, for HVGs we do not need to rescale Z in any way to
be able to compare across different time series and dynamical
process.

Another notable consequence of Theorem 1 is that it
guarantees that series for which Z* differ (even in the case of
sufficiently long time series) from Eq. (4) are not uncorrelated
random series. This suggests a simple test for randomness [15].
For instance, one can use a Pearson’s x 2 hypothesis test, where
the null hypothesis is that the observed time series of N data
is random and uncorrelated (white noise). The test statistic is
then

" [P4(observed) — P4(i.i.d.)|
2 [P(o ) — Pliid)]
XK=\ n)l;: PP} (observed) '

x? upper-critical values with p — 1 degrees of freedom, for
p=06 (n=4), are 11.07 and 15.086 at the 95% and 99%
significance level (meaning that values of the x2 larger than
11.07 suggest that the observed series is not random at the
95% significance level). More rigorously, as the type-II motif
is forbidden for aperiodic dynamics, we have only p =5
different motifs of size n = 4, so the x2 upper-critical values
should be considered for 4 degrees of freedom: 9.49 (95%)
and 13.28 (99%).

N

B. Deterministic chaos: Fully chaotic logistic map

As previously stated, deterministic maps x,+; = H(x) are
indeed Markovian, and for these situations the conditional
probability is simply f(xz]x;) = 8(xy — H(x1)), where §(x)
is the Dirac-delta distribution. Therefore Eqs. (1) and (2),
combined with inequality sets given in Table I, can be
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FIG. 4. Cobweb plot of the iterates of the fully chaotic logistic
map H(x) = 4x(1 — x).

used to compute the motif profiles for different deterministic
processes. In these cases, one has to deal with simple integrals
of the form

1
/qé(x—Y)dxz{ - Y elpal ®)
» 0

, otherwise.

While in principle any deterministic process can be studied,
we are interested in complex signals, so we focus on irregular,
aperiodic dynamics. As a paradigmatic case, we tackle the
fully chaotic logistic map

1
H(x) =4x(1 —x), x€[01], flx)= T/xd—x)

In this case, f(x) is the invariant measure that describes in a
probabilistic way the average time spent by a chaotic trajectory
in each region of the attractor. Let us start by considering
73 = (]P’3,IP’S), for which

1 1
Pl = [ fewdn [ st - Hoonx
0

X0

1
X f 8(x2 — H*(xo))dx2,
0
1 X0
F = / Flxo)dxo / 5(r1 — Hixo)dx:
0 0

1
X / 8(xy — H2(x0))dx».
X
According to property in Eq. (8), the Dirac-delta integrals
only have the effect of shrinking the range of integration of
xo. For instance, for IP’?, the integral in x; requires H(xp) >
xo, whereas the integral in x, simply requires H?(xo) € [0, 1].
While the latter inequality is fulfilled for all x € [0,1] (and
thus has no effect), the former one requires xy € [0,3/4]. This
can be easily seen from the cobweb plot of H(x) and its iterates
(see Fig. 4): H(x) > x for x € [0,3/4]. Altogether,

3/4

P = f(xo)dxo = 2/3.

On the other hand, motif normalization imposes P5 = 1/3. The
same result is obviously found if we compute IP’; explicitly: in
this case the integral in x; requires H(xg) < xo, which holds
when x¢ € [3/4,1], and the integral in x; requires H(x0) >
x1 < H?(x0) > H(xo). Looking at the cobweb plots, this final
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condition is met in two subintervals, so the intersection with
the first condition yields a final interval xo € [3/4,1], for which

1
P; = / f(xo)dxo = 1/3,
3/4

as expected. These results coincide with those found for i.i.d.
series, meaning that Z3 does not capture enough structure to
distinguish both processes. Let us proceed in an equivalent
way to compute Z* = (P}, ..., P}). It becomes evident that
integrals associated with x, deal with the cobweb plots of
H(x),H?(x), ..., H"(x). Accordingly, these integrals are ulti-
mately related to the structure of fixed points of H"(x), and to
the solutions of equations of the form H" (x) = H?*(x) for some
r and s. We only have algebraic closed expressions for the fixed
points of H(x) — {0,3/4} and H2(x) — {0,353 3/4,3555)
[forn > 3, H"(x) is a polynomial of order larger or equal to 6
and according to Abel-Ruffini’s theorem, the set of fixed points
does not have in general an algebraic expression; however we
can compute them up to arbitrary precision]. Other values of
interest include the roots of H3(x) = H?(x), and especially
the largest one x = 1/2 + V3/4.

Let us show how to compute one of these motif probabili-
ties. For instance,

1 X0
P; = / f(xo)dxo / 8(x1 — H(xo))dx
0 0

X0 1
« / 502 — H2(xo))dx2 / 5(rs — Ho(xo))dxs, (9)

X1 X2

which reduces to
q
Ps = f f(xo)dxo,
p

where [p,q] can be hierarchically obtained as

H(xp) < x0 N[0,1] = xo € [3/4,1];

H?(x0) < xo N H*(x0) > H(xo) N[3/4,1] = xp €
[385 1],

H3(xg) > H2(xo) N [%5,1] = X0 € [xp,1], where x,, is

the second largest root fulfilling > (x p) = Hz(x,,), ie,x, =
1/2 + /3/4. Altogether,

p“—/l -
: 1/2++/3/4 T/ X0(1 — xo)

1 11 1
- ;B[HﬁlJ(E’E) = 5=

(where B is the incomplete Beta function), which is indeed
quite different from the result found for i.i.d., P‘S‘(i.i.d.) =
2/24.

Similar arguments can be used to obtain analytically the
rest of the probabilities (explicit computations are put in
Appendix A), finding

21 8 4 8 4
=22 Z'=|57.057575:.0  (10)
33 247 72472424

Comparing this set of motif probabilities with the result
for i.i.d. [Eq. (4)], we can conclude that Z* distinguishes

the fully chaotic logistic map from a purely uncorrelated
stochastic process. Note, of course, that a similar derivation

d)C()
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can be performed in other deterministic maps; in this sense the
methodology is general (however one encounters problems
when the attractor has a fractal dimension, and one needs
to carefully choose a proper integration theory). These exact
results are also in excellent quantitative agreement with
numerics performed in finite series (left panel of Fig. 3),
so convergence to the theory with series size is quite fast,
enabling its use in empirical cases. To be more precise, in the
next subsection we make a study of how fast results for short
time series converge to the asymptotic theory as series size
increases.

C. Convergence of finite series

In order to be more precise about the convergence speed
of finite-size numerics to the theory (which in rigor only
holds for bi-infinite time series), we have computed for
series of size N the numeral estimate Z*(N) for both i.i.d.
and the fully chaotic logistic map, and compare it with the
asymptotic values Z*. Results are plotted in Fig. 5, where we
plot ®(N) = (Z*(N))/Z* as a function of the series size N
(the average is with respect to realizations). Results indicate
that convergence to the asymptotic theory is already reached
for N « 10* (which is the conservative size that is used
throughout this work).

D. Stochastic processes with correlations

To round off the theory section, and to explore how results
deviate from i.i.d. for correlated stochastic processes, we con-
sider colored noise with exponentially decaying correlations
as described by the AR(1) process:

xo = &,

xr=rxz—1+\/(1_”2)§z, =1,

where & ~ N(0,1) is Gaussian white, and r, 0 <7 < 1 is
a parameter that tunes the correlation. The autocorrelation
function C(¢), which describes the correlation of the position
at x,, and x,,, decays exponentially C(t) = e~"/*, where
the characteristic time t = 1/1In(r). In the limit r — 0, the
correlations vanish and the process reduces to a white noise
signal. The limit r — 1 is more delicate, but intuitively in this
limit the process gets completely correlated and tends to be
constant x, | = x; Vt.

This is a family of models parametrized by the coefficient r.
For 0 < r < 1, these models are indeed Gaussian, Markovian,
and stationary, with a probability density f(x) and transition
probability f(xz]x;)

(1)

_ /2
flx) = v
o) = SPI=0e = rx)?/2( = 2)])

V271 —r?)

respectively. Since x are Gaussian variables they can vary
in (—00,00). We focus on Z* that we know gave good
discriminatory results between i.i.d. and chaos. For illustration,
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FIG. 5. The measured frequency of appearance rescaled by its
theoretical value @ is plotted for each motif associated with Gaussian
white noise (a) and with a fully chaotic logistic map (b) as a function
of the time series size N; results are averaged over 100 realizations.
The curves oscillate with fast decreasing amplitude around the value
1 (for 2° the amplitude is less than 1072) indicating fast asymptotic
convergence of the measured motif profile to the theoretical profile
in both cases.

the first element reads

,X(Z] —(xl—rxo)z
X o3 e 2012
Pr= | —dxy | ———dx
—oo A/ 27 —00 /2m(1 —r?)
—(xp=rx))? —(3—rxp)?
X1 e 20-r2) X2 e 20-r2)
X ——dx, ——dx3
—o0 /21 (1 —r?) —00 /2 (1 —r?)
-2 —(x) —rxp)?
© , ST T
+ ——dx ——dx
—oo A2 xo /2wl —r?)
—(p=rx))? —(x3-rxp)?
b e 21-r2) o e 2A1-r2)

x5, (12)

—d —d
* x V2r(1l —r?) - —00 /2 (1 —r?)

For any particular value of r, these integrals can be evaluated
up to arbitrary precision using Mathematica [32]. In Table II
we report the theoretical values of Z4(r) for r € [0.02-0.99].
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TABLE II. Theoretical values of Z*(r) for the AR(1) process
evaluated at different values of the coefficient r.

: P} P4 P4, P! P4, P!
0.02 0.3370 0 0.2482 0.0833
0.04 0.3406 0 0.2464 0.0833
0.06 0.3443 0 0.2446 0.0832
0.08 0.3478 0 0.2429 0.0831
0.1 0.3514 0 0.2412 0.0830
0.2 0.3690 0 0.2333 0.0822
0.3 0.3862 0 0.2260 0.0809
0.4 0.4030 0 0.2192 0.0793
0.5 0.4196 0 0.2130 0.0772
0.6 0.4359 0 0.2072 0.0748
0.7 0.4521 0 0.2018 0.0722
0.8 0.4681 0 0.1967 0.0692
0.9 0.4841 0 0.1920 0.0660
0.95 0.4919 0 0.1897 0.0643
0.97 0.4945 0 0.1888 0.0636
0.99 0.4973 0 0.1879 0.1879

These are in perfect agreement with numerical simulations
performed on finite series of size N = 10* (ensemble averaged
over 100 realizations) for » = {0,0.1,0.3,0.5,0.7,0.9,0.99},
as shown in Fig. 6. As r > 0 the profiles deviate from i.i.d.
and thus, again, these features can easily distinguish between
exponentially colored and white noise.

IV. ROBUSTNESS

In the preceding section we have developed a general theory
to compute explicitly the motif profile of HVGs associated
with a given type of dynamics. We have applied this theory to
find theoretical expressions in the case of white and colored
noise as well as chaotic dynamics, and have shown that these
predictions perfectly match the results found in numerical

| e r=0
0-5 x r=0.1
r=0.3
0.4 = r=0.5 1
v r=0.7
4 _
7 A r=0.9
0.3 + r=0.99
| theory
0.2r 1
0.1r - o
| |
Or & ]

teee FEeD FEe eFer  Feew  FEed
FIG. 6. HVG significance profile Z* for AR(1) processes de-
scribed by Eq. (11), for different values of the correlation coefficient
r. When r increases the appearance probability of a motif of type I
increases while the rest of the probabilities decrease. This is simply

due to the fact that finding constant sequences x,13 = X412 = X, 4] =
Xx; becomes more probable as r increases.
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simulations for reasonably short time series. The theory (which
is exact in the limit of infinite-size series) is thus correct also
in the case of short time series. These are nonetheless only
idealized models; empirical time series, however, even if they
comply to a particular dynamical system, are usually polluted
with measurement noise. Therefore, before being able to apply
this technique to real world phenomena, we need to assess
its robustness and reliability against noise contamination. To
do that, we consider a situation where a chaotic time series
is contaminated with different amounts of white noise, and
explore the ability of Z* to detect the chaotic signal. Formally,
we pollute a chaotic signal x(¢) with uniform white noise &(a)
and thus construct a noisy chaotic signal Y (¢) such that

Yo =x +§,
X, =4x (1 —x-1), (13)
§~Ul0,a], 0<a<xl,

where a tunes the noise power. The noise-to-signal ratio of the
signal Y, is defined as NSR = 07 /0§ (where 67 denotes the
variance of signal e); thus NSR will increase monotonically
with a. For NSR « 1, the noise contamination is small. Any
technique that is able to distinguish Y (¢) and &£ (¢) for increasing
values of NSR is said to be robust to noise. For NSR = 1 the
levels of the signal and the noise contamination are comparable
and for NSR > 1 the underlying chaotic signal is effectively
hidden. Of course, when a reaches a certain value it will not be
possible any more to distinguish the underlying chaotic nature
of the time series by looking at the motif profile. To estimate
this threshold we can use two different tests:

(1) The first test makes use of the (L) distance in motif
space between the signal and the noise d(a) = |Z*(Y) —
ZA(i.i.d.)|. This is just a simple, motif-based similarity metric
between two graphs, that we use here to measure the similarity
between two series. Ideally, the threshold of distinguishability
is the smallest value of a for which d(a) = 0. However, in
practice, as we are dealing with finite-size series, there will
always be a small uncertainty associated with small finite-size
deviations from the theory. That is, if one estimates the
Z*(i.i.d.) with an ensemble average of m realizations of a
finite random time series of N data, then for each element in the
profile, the standard deviation of the estimate IE”;1 will be a finite
value (that converges to zero as N and m increases). We define
o (Z*(i.i.d.)) as the vector where the ith term is such standard
deviation, for the same values of N and m used in the analysis
of Y(¢). Then, we define the uncertainty threshold a* as the
smallest value of a such that d(a) < |o(Z*(i.i.d.))| (intuitively,
a* is the smallest value for which we do not know whether the
difference in the motif profile between the empirical results
and the theory is due to the fact that there is a chaotic signal
underlying the process, or just due to finite-size effects).

(2) The second possibility is to use a Pearson’s x>
hypothesis test such as Eq. (7) with 4 degrees of freedom,
where the null hypothesis is that Y (¢) (the observed series) is
just white noise (no hidden signal). In this latter case, we are not
taking into account the deviations associated with finite-size
effects in the profile of i.i.d., though. If X2 < 9.49, then we
cannot reject the null hypothesis at the 95% significance level:
this is the limit of what we could call certain distinguishability.
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FIG. 7. Robustness of motif profiles for chaotic series (fully chaotic logistic map) polluted with white noise. (a) By increasing the amount
of extrinsic noise (parametrized by a) the distance in motif space between the noisy chaotic signal and white noise decreases (see the text). The
method is extremely robust as one can distinguish the noisy chaotic signal from pure white noise up to a noise-to-signal ratio NSR =~ 2.67.
(b) The 4-node motif profile of the noisy chaotic signal Y, for different degrees of noise contamination (a). Motifs III, IV, V, and VI are the

most informative as they concentrate most of the profile variability.

For each value of the parameter @, we have simulated a
time series of N = 10 steps from the process Y (¢), and results
were ensemble averaged over m = 100 realizations. In panel
(b) of Fig. 7, we plot the motif profile as a function of a. It is
interesting to observe that the probabilities which vary most
with a are related to types III, IV, V, and VI, while type I seems
to maintain approximately the same rate of appearance (we will
show later that this is not always the case). In the panel (a) of the
same figure we plot d(a). As expected, d(a) is a monotonically
decreasing function of a, and we find a* &~ 1. Remarkably, this
corresponds to a value of the noise-to-signal ratio NSR ~ 2.67.
This is indeed confirmed by Pearson’s x test, where we found
that the limit for confidently rejecting the null hypothesis—
certain distinguishability—is a & 1 (i.e., NSR & 2.67). These
results prove that Z* is indeed an extremely robust feature with
respect to measurement noise contamination, hence useful for
applications.

V. PRINCIPAL COMPONENT ANALYSIS

According to the last sections, we can conclude that the
HVG Z* is an informative feature of complex dynamics.
Here we summarize and gather the findings on i.i.d., fully
chaotic logistic maps (with and without noise contamination),
and colored noise, and we complement those with additional
chaotic maps (Ricker’s map, cubic map, sine map). Each pro-
cess is described by the six-dimensional vector Z* (although
in practice this space is 5-dimensional as P4 = 0). As this
representation is obviously not very convenient for readability,
we have projected each point into a 2-dimensional space
spanned by the principal components of the data. We recall
that principal component analysis (PCA) [33] is a common
statistical procedure to perform dimensionality reduction on
data. It uses an orthogonal transformation to project our
set of observations, originally described in R®—where each
direction describes the probability of occurrence of a given

motif, this being possibly correlated among observations—
into a lower dimensional subspace spanned by the so-called
principal components, obtained from the eigenvectors of the
data set covariance matrix. These particular directions are such
that (i) they are orthogonal, (ii) the first principal component
has the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and each
succeeding component in turn has the highest variance possible
under the constraint that it is orthogonal to (i.e., uncorrelated
with) the preceding components. If the data can be efficiently
projected in a lower dimensional space, then the eigenvalues
associated with each of the principal components sum up
a large percentage of the data variability. In that case, the
projection is said to be faithful, and constitutes an accurate
description of the data.

To summarize, the following processes have been consid-
ered (for all of them, we have estimated Z* from a time series of
N = 10* points, and have averaged this over 100 realizations):

(1) White noise (i.i.d.) with Gaussian, exponential, uni-
form, and power-law probability densities.

(2) Chaotic maps—in particular, the fully chaotic logistic
map x4+ = 4x,(1 — x;), Ricker’s map x,41 = 20x,e™", the
cubic map x4 = 3x,(1 —x,z), and the sine map x4 =
sin(7 x;).

(3) The noisy logistic map witha = {0.2,0.4,0.6,0.8,1.0}.

(4) Colored noise for » = {0.1,0.3,0.5,0.7,0.9,0.99}.

The projection into the space spanned by the first two
principal components is shown in Fig. 8. Interestingly, these
first two components capture about 98.3% of the variabil-
ity of the set of variables {Z*}. This means that motif
probabilities are indeed highly correlated, and as few as
two real numbers per time series seem already enough to
describe them. The patterns related to the different pro-
cesses in this 2-dimensional component space help visualize
some of the results previously found and make interesting
considerations:
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FIG. 8. Two-dimensional projection obtained via principal com-
ponent analysis on Z* for time series generated from different
deterministic and stochastic processes: different white noise series
respectively with Gaussian, exponential, uniform, and power law
(blue squares), chaotic maps (brown diamonds), noisy logistic map
for different levels of contamination (purple dots), and different
stochastic correlated AR(1) processes (green triangles). The relative
weight of each motif in this projection principal component analysis
is also plotted using red solid axes.

(1) All the i.i.d. processes have the same coordinates in
the 2-dimensional space which do not correspond to the
coordinates of any other class of processes considered. Indeed
according to the theory, i.i.d. processes share the same Z*.

(2) Red solid axes describe the projection of each motif in
this new basis (see also Table III) and give an idea of which
motif types are more related to different processes, thus helping
to interpret a particular trajectory in this space, as a given
process changes. For instance colored noise which interpolates
between white noise (r — 0) and a constant series (r — 1)
projects into a straight linelike trajectory, departing from the
ii.d. coordinates and following the direction where type-I
motif increases as r increases. Analogously, as the noise level
a increases the noisy logistic map interpolates between the
fully chaotic logistic coordinate and i.i.d. following a specific
path.

(3) The distance in this space between i.i.d. and the
(a = 1)-noisy logistic map gives us a rough idea of the
distinguishability or coarse-graining distance, a lower bound
below which any two processes cannot be distinguished.

TABLEIII. Weights of each motif in the 2-dimensional projection
of the set of all dynamical processes analyzed (i.i.d., white noise,
colored noise with exponentially decaying correlations, chaotic maps,
noisy chaotic logistic map).

First component Second component

eeooe 0.814 0.2114
oo —8.6x 10718 1.5 x 10716
om0 —0.2506 —0.5670
o—o—n —0.4926 0.4030
o oo —0.1569 0.4608
oo 0.0852 —0.5090
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We conclude that Z* is a highly informative and robust
feature, which in principle could be used to assess similarities
and differences across empirical complex signals. To test this
hypothesis, in the final section we will explore this idea and
will show that clustering of complex physiological processes
is possible with this simple feature.

VI. UNSUPERVISED LEARNING: DISENTANGLING
MEDITATIVE FROM OTHER RELAXATION STATES
USING HVG MOTIF PROFILES FROM HEART
RATE TIME SERIES

It is well known that meditation has a measurable effect on
well-being. In particular, neuroscience has shown that medi-
tation promotes EEG high-amplitude gamma synchronization
[34], or increases sustained attention [35] among others effects
on the brain [36]. In this final section we explore, via an HVG
motif profile analysis, whether one can distinguish purely
meditative states from general states of relaxation by only
looking at a single physiological indicator: the heart rate series
[37,38]. This analysis is based on experiments performed in a
former publication [39]. Data are freely available online [40].

A. Data

Data are collected for five different groups of healthy
subjects [39].

(1) The first group of 4 subjects (two women and two
men in the age range 20-52) were expert Kundalini yoga
meditators. Their heart rate was recorded for approximately
fifteen minutes before the yoga practice (premeditative state)
and for approximately one hour during the breathing and
chanting exercises (meditative state) (a total of 8 time series).

(2) The second group comprised 8 Chinese chi meditation
practitioners (five women and three men in the age range
26-35) relatively novice in the practice. The heart rate of the
subjects was recorded for approximately five hours during the
premeditation (premeditative state) and for approximately one
hour during the meditation session (meditative state) (a total
of 16 time series).

To better compare the premeditation and meditation states,
three healthy, nonmeditating control groups were considered
from a database of retrospective electrocardiogram (ECG)
signals:

(3) a spontaneous breathing group of 13 subjects (eight
women and five men in the age range 25-35) during sleeping
hours (general relaxation state) (a total of 13 time series);

(4) agroup of 9elite triathlon athletes (six women and three
men, age range 21-55) in the prerace period during sleeping
hours (general relaxation state) (a total of 9 time series);

(5) a group of 14 subjects (nine women and five men, age
range 20-35) during supine metronomic breathing at 0.25 Hz
(a total of 14 time series).

Sample time series from each group are plotted in Fig. 9. In
the original study the authors addressed the frequency spectra
and observed prominent heart rate oscillations in the time
series recorded during the two meditation practices with a
peak in the range 0.025-0.35 Hz, and an overall variability of
these series with respect to those from nonmeditative states.
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FIG. 9. Sample heart rate time series from patients in meditative
and nonmeditative states.

B. Unsupervised clustering based on HVG motif profiles

The total data set is made of a total of 60 time series (60
observations). A priori, we assume that each series is a different
process. For each subject and state, we extract from the heart
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beat series the corresponding Z* (detailed results are put in
Appendix B).

As a first analysis, we only consider the expert meditators
(first group) performing two different tasks and we explore
whether Z* can disentangle the two tasks. Results are shown
in panel (a) of Fig. 10. In PCA space, we have 8 points
scattered over the subspace spanned by the first two principal
components. These aggregate more than 99% of the data
variance and are thus a faithful projection. Interestingly,
already a visual inspection clusters the 4 subjects in the
meditative state (red circles, right-hand side of the plane)
from those in the premeditative state (green squares). A simple
k-means algorithm [33] with k = 2 correctly distinguishes the
two states by assigning different clusters to both states (a black
dotted oval is depicted with the purpose of visualizing the result
of the k-means clustering).

In a second step, we consider the second group, formed
now by novice chi meditators before and during the practice.
We repeat the analysis in the panel (b) of Fig. 10. Again
the first two principal components capture more than 99%
of the variability of the motifs considered. The scores related
to the first principal component are very close to the ones
found for the yoga data subset (see Appendix B). For this
meditation technique however it is not that easy to perfectly
distinguish premeditative from meditative state clusters: the
partition obtained with the k-means algorithm with input
k = 2 (visualized by the black dotted line) contains “false
meditators” and “false nonmeditators.” In order to quantify
the performance of the clustering we use the so-called purity
coefficient [41] defined by

1 0

n, +n,
1 0 0 1’
My + 0y 1, +0n,

purity = (14)

where n,h is the number of meditators in cluster 1, which is
defined as the cluster where most of the meditators are found;
n?n is the number of meditators in cluster 0, which is defined as
the cluster where most of the nonmeditators are found (“false
nonmeditators”); n,ll is the number of nonmeditators in cluster
1 (“false meditators™); ng is the number of nonmeditators in
cluster 0. Purity takes value in [0,1] and was measured for
the different partitions reported in Fig. 10 (see Table IV); in
this case we found purity ~ 0.83. Now, as in this experiment
the subjects were inexperienced chi meditators, it is plausible
that some of them were not able to concentrate or perform
the task adequately, which would put their motif profile
mixed among the premeditative state subjects. As we can see
in the figure, there is some evidence of finding the “false
nonmeditators” intertwined among nonmeditators, but not the
“false meditators” intertwined among meditators.

We then perform the same analysis by considering data
from the first two groups (yoga group and the chi group)
altogether. Here we also aim at distinguishing meditative
from premeditative states; however this is in principle much
more delicate and problematic as we have different subjects
performing different tasks. The results are reported in panel
(c) of Fig. 10, and are consistent with the first two analyses
conducted before. In PCA space, the first two principal
components still capture more than 99% of the data variability
(scores are reported in Appendix B). The k-means algorithm
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FIG. 10. Two-dimensional principal component space of Z* extracted from heart rate time series of subjects performing different tasks.
(a) Four yoga meditators recorded during meditation (red dots) and during premeditation (green squares). The k-means algorithm (black dotted
line) correctly assigns each of the 8 observations to the correct cluster. (b) Eight chi meditators recorded during meditation (magenta triangles)
and during premeditation (blue reverse triangles). The k-means algorithm correctly assigns 12 out of 16 observations; however in this case
subjects were novice meditators, hence clusters are not that well defined (see the text). (c) The two clusters found by the k-means algorithm
correctly clusters the points related to yoga meditation and yoga premeditation, and 12 out of 16 points related to different chi meditators (black
dotted line). (d) Although the k-means clustering (small panel on the top right) fails to precisely distinguish a cluster related to meditation from
a cluster related to nonmeditation, all the meditation points are surprisingly well separated from all the remaining points, on the right side of

the plane.

correctly clusters together most of the premeditative states
and distinguishes them from the meditative states (yoga and
chi style), with purity = 0.75. There are two clear “false
nonmeditators” which seem to correspond to two novice chi
meditators that falsely fall in the nonmeditation state despite
that they were supposedly performing meditation. The two
“false meditators” are not mixed among the meditators but
placed in the boundary of the cluster, meaning that a refined
clustering algorithm would very likely do a better job. On
the other hand, it is worth highlighting that meditators show
lower scattering than nonmeditators, and are placed at the
right-hand side of the plane. Among these, chi meditators
(the experienced subjects) appear even more towards the
right-hand side in the PCA plane. According to the motif scores
(Appendix B), one can conclude that meditation promotes
the onset of type-I motifs, that is to say, generates a relative
decrease of high-frequency heart rate fluctuations.

Finally, in panel (d) of Fig. 10 we show the results for the
analysis of the whole data set (the projection in PCA space still
gathers more than 94% of the data variability). Here we have
highly heterogeneous subjects performing totally different
tasks, which somehow can be classified into “meditative”
and “nonmeditative” states. In the inset panel of the same
figure, each observation is labeled according to the result of
the k-means algorithm (crosses for nonmeditative and dots for
meditative states). Despite the heterogeneity of subjects, the
purity of the partition obtained is high (~0.81), and most of the
observations associated with the meditative state concentrate
towards the right-hand side of the PCA plane (which, again
according to the scores, corresponds to an overcontribution of
the type-I motif). We conclude that meditative practices leave
a unique physiological fingerprint in the heart rate time series
of its practitioners, which can be distinguished from other
relaxation techniques and states such as metronomic breathing
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TABLE IV. Purity measures [41] of the k-means clustering
analysis depicted in the four panels of Fig. 10: yoga meditators [panel
(a)], chi meditators [panel (b)], yoga and chi meditators [panel (c)],
and all states [panel (d)].

Panel (a) Panel (b) Panel (¢) Panel (d)

1 0.83 0.75 0.81

or sleeping by using the HVG motif profile of each time series.
This is a remarkable result, taking into account that this profile
only consists of a vector of 6 numbers (actually 5 as }P‘z‘ =0)
per observation.

VII. CONCLUSIONS

The theory of visibility graphs (VG and HVG) allows us
to describe and characterize time series and dynamics using
the powerful machinery of graph theory and network science.
Here we have introduced the concept of horizontal visibility
graph (HVG) motifs, substructures present in the HVG of a
time series, whose statistics have been shown to be informative
about the time series structure and its underlying dynamics
(comparison with VG motifs will be published elsewhere [31]).
We have advanced a mathematically sound theory by which the
motif profile of large classes of stochastic and deterministic
dynamics can be computed exactly. Interestingly, under the
HVG framework, graph motifs are in direct correspondence
with ordinal patterns [27-30]. This means, for instance, that the
theory developed here can be exported to find rigorous results
on the permutation entropy [28] and permutation spectra [29]
of different dynamical systems. In the same vein, one could
import concepts and ideas from ordinal patters to the context
of visibility graphs. For instance, one can define an HVG motif
entropy S, = —}l >~ Z! In(Z!) and explore its similarities with
permutation entropy. More generally, the relation (and possible
equivalences) between ordinal pattern analysis (so-called per-
mutation complexity [28,30]) and horizontal visibility graph
analysis should be studied in more depth. We have found that
this graph feature is surprisingly robust, in the sense that it is
still able to distinguish among different dynamics even when
the signals are polluted with large amounts of measurement
noise, which enables its use in practical problems. Despite
the apparently difficult combinatorial interpretation of the
visibility criteria, these latter results further suggest that HVG
motifs are more than just an arbitrary partition on the set
of ordinal patterns. As an application, we have tackled the
problem of disentangling meditative from general relaxation
states from the HVG motif profiles of heartbeat time series
of different subjects performing different tasks. We have
been able to provide a positive, unsupervised solution to this
question by applying standard clustering algorithms on this
simple feature.

To conclude, HVG motifs provide a mathematically sound,
computationally efficient, and highly informative simple fea-
ture (a few numbers per time series) which can be extracted
from any kind of time series and used to describe complex
signals and dynamics from a new viewpoint. In direct analogy
with the role played by standard motifs in biological networks,
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further work should evaluate whether HVG graph motifs
can be seen as the building blocks of time series. In this
sense a study of standard network motifs on visibility graphs
can be of interest, especially in the case of directed and
weighted HVGs where the edge weights describe temporal
relations between nodes. Potential applications of visibility-
graph analysis pervades the biological, financial, and physical
sciences. Finally, other questions for future work include to
assess which motifs are more informative for a given class
of dynamics, and to extend this analysis to the realm of
multivariate time series [17].
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APPENDIX A: EXPLICIT COMPUTATION OF Z* FOR THE
FULLY CHAOTIC LOGISTIC MAP

(1P,

1 1
Pt = / f(xo)dxo / 861 — Hxo)dx,
0

0

« / " 8 — H2x0)dxs / " (s — HOo))dxs
0 0

1 1
+ / Flxo)dxo / 5(r1 — Hixo)dx:
0

1 1
« f 8(vs — H2(xo)dx2 / 503 — H3(ro))dxs.
x| 0

The first integral on the right gives the following conditions:
H3(x0) < H2(x0),
H2(x0) < H(xp),
which are never satisfied. The second integral gives
HA(x0) > H(xo),
H(xo) > xo,
which are satisfied for xy € [0,1/4]. Thus

1 11 1
#= () =3

2) IP"Z‘ = 0 since the probability of having H?(xo) = H(xo)
is of zero measure.

(3) P,

(=8/24).

1 o
IP’§ = / f(xo)dXO/ 8(x1 — H(xp))dx,
0 0

« / " 8 — H2x)dxs / " (s — HOo))dxs

X1 0

1 X0
+ / Flxo)dxo / 5(r) — H(xo)dx:
0 0

1 1
x / 8(xy — H2(x0))d x> / 8(x3 — H3(x0))dx3.

X0 0

In the first term,
H(xo) < xo = x0 € [3/4,1],
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H2(xg) > H(xo) N H2(x0) < xo N [3/4,1] = xp € ! *0
Ay =il ' + / f (o) / 8(0x1 — H(xo))dx,
8 9 b 0 0
H3 (o) < HAx0) N [255,1] = xp € [355,1 4 4, 3 =
Analogoously for thoe seconil term, ’ o2 X / 8(x2 — H*(x0))dx2 / 8(x3 — H(x0))dx3.
H(xo) < X0 = xo € [3/4,1], 0 =
H2(x0) > xo N [3/4,11 = xo € [3/4, 5],

Altogether,
! ! The first integral on the right gives the following
Py= — By p0(1/2,1/2) = 2(=4/24). conditions:
HZ(XO) > H*(x0),
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1
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FIG. 11. HVG motif significance profile Z* obtained by analyzing heart rate time series form different groups of subjects in different states:
(a) 8 chi meditators before the meditation practice; (b) 4 yoga meditators before the meditation practice; (c) 11 subjects during sleeping; (d)
same 8 chi meditators of (a) during the meditation practice; (e) same 4 yoga meditators of (b) during the meditation practice; (f) 9 elite athletes
during sleeping; (g) 14 subjects during metronomic breathing at 0.25 Hz.
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TABLE V. Principal component scores obtained from PCA
considering the yoga meditators data subset (left) and the chi
meditators data subset (right).

PHYSICAL REVIEW E 93, 042309 (2016)

TABLE VI. Principal component scores obtained from PCA
considering the subset data of yoga and chi meditators together (left)
and considering all the data set (right).

Yoga Chi Chi and Yoga All States
First Second First Second First Second First Second
component component component component component component component COIIlpOIleIlt

oo 0.874 0.0346 0.871 0.171 oo oo 0.874 0.08 0.881 0.133
oo 0029 —0.203 —0.023 —0.239 oo 0027 —0.181 0.007 0.073
oo 0379 0.074 —0.376 0.207 eeooe 0378 0.089 —0.315 0.477
oo 0204 0.731 —0.272 0.666 eeeo® 0235 0.714 —0.294 0.4
oo 0043 0.01 —0.048 —0.173 oo 0045 —0.039 —0.13 —0.58
oo 0219 —0.647 ~0.152 ~0.631 oo 0188 —0.664 —0.15 —0.503

which are satisfied for xo € [1/2 + +/3/4,1]. Thus

P 1 11
T ;[3[5,31(55) + B[Hf»l](?iﬂ =8/24.

(5) PL.

1 X0
P = /0 Flxo)dxo /0 5(ry — Hixo)dx:

X0 1
x f 50z — H2(xo))dx2 / 503 — H(ro))dxs

X X2
gives the following conditions:
H3(x0) > H>(x0),
H(x0) < H*(x0) < Xo,
which are satisfied for xo € [1/4 + +/3/4,1] and

p= L

5 11 1
- [1+f-1]<§’§>‘8

1 X0
Py = fo f(xo)dxo /0 8(x1 — H(xo))dxy

(=4/24).

(6) P,

X 1
x / 502 — H2(xo))dx2 / 803 — H3(ro))dxs
0

X1

gives the following conditions:

H3(x0) > H(xg) > H(x0),

H(x0) < xo,
which are never satisfied for the H(x) map [this is indeed
based on the fact that the pattern x; > x;; < x;4, is indeed a
forbidden pattern in the orbit of H(x)]. Hence

P; = 0.

APPENDIX B: MOTIF PROFILES FOR ALL SUBJECTS
IN THE EMPIRICAL STUDY

In Fig. 11 we give an overview of the 4-node motif profiles,
measured for the different subjects in the different states.
Interestingly, the motif that shows more variability in each
of the given states is the one related to the type-I motif, which
we have seen to play a minor role in the case of the chaotic
dynamics polluted with noise.

1. Scores

The scores of the two components in terms of motifs are
reported in Tables V and VI, and as expected the highest
contribution to the first component (0.874) is given by the
motif of type I.
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