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Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity
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Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from
this assumption by considering mixed games, where the game played at each interaction is drawn uniformly
at random from a set of two different games. While in well-mixed populations the random mixture of the two
games is always equivalent to the average single game, in structured populations this is not always the case.
We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the
parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only
if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which
often involves the promotion of cooperation. The presented results support preceding research that highlights the
favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population
structure in amplifying facilitators of cooperation.
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I. INTRODUCTION

Evolutionary game theory [1–5] is a powerful theoretical
framework for studying the emergence of cooperation in
competitive settings. The concept of a social dilemma is
particularly important, where what is best for an individual is at
odds with what is best for the society as a whole. Probably the
most-often studied social dilemma is the prisoner’s dilemma
game [6]. During a pairwise interaction, each player can
choose either to cooperate or to defect. If both players choose
to cooperate they receive the reward R, while mutual defection
leaves both with the punishment P . A defector exploiting
a cooperator receives the highest payoff, the temptation T ,
whereas the exploited cooperator receives the sucker payoff S.
The typical payoff ranking for the prisoner’s dilemma game
is T > R > P > S [5,7,8]. Evidently, whichever strategy the
opponent chooses, it is always better to defect. If both players
are rational and adhere to this, they both end up with a payoff
that is lower than the one they would have obtained if they
had chosen to cooperate. Despite its simplicity, however, the
iterated prisoner’s dilemma game continues to inspire research
across the social and natural sciences [9–27]. If the ranking
of the payoffs is changed, other social dilemmas, such as the
snowdrift game for T > R > S > P , are obtained, which has
also received substantial attention in the recent past [28–34].

Although defection is the rational choice, cooperation in
nature abounds. Eusocial insects like ants and bees are famous
for their large-scale cooperative behavior [35], breeding in
birds prompts allomaternal behavior where helpers take care
for the offspring of others [36], and chief among all, we
humans have recently been dubbed supercooperators [37] for
our unparalleled other-regarding abilities and our cooperative
drive. This fact constitutes an important challenge to Darwin’s
theory of evolution and natural selection, and accordingly,
ample research has been devoted to the identification of
mechanisms that may lead to cooperative resolutions of social
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dilemmas. Classic examples reviewed in Ref. [38] include kin
selection [39], direct and indirect reciprocity [40,41], network
reciprocity [42], as well as group selection [43]. Diffusion and
mobility have also been studied prominently [44–47], as were
various coevolutionary models [8], involving network topol-
ogy, noise, and aspiration [48–56], to name but a few examples.
In particular, it was found that heterogeneities in the system,
sometimes also referred to as diversity [57], independent of its
origin, can significantly enhance cooperation levels in social
dilemmas [58–66].

A key assumption behind the vast majority of existing
research has been, however, that individuals play the same
type of game with their neighbors during each interaction.
Hashimoto [67,68] was among the first to study so-called
multigames, or mixed games [69] (for earlier conceptually
related work see Ref. [70]), where different players in the
population might adopt different payoff matrices at different
times. Considering how difficult it is to quantify someone’s
perception of an interaction, it is reasonable to assume that
payoff values have numerical fluctuations. Moreover, there
is no evidence that the perceived payoff of individuals never
changes during their lifetime [71]. Based on this, it is natural
to analyze games where the payoff matrices are composed of
mixtures of different games at different times, as representative
of the natural environment where each individual is subject to
diverse stimuli. This kind of analysis of multi and mixed games
could represent a new line of research in evolutionary game
theory, considering the merging of various different games
as statistical fluctuations. A complementary approach to the
study of mixed games is the study of games on interdependent
networks [72–74], where two distinct structured populations
interact via dependency links using different games. A canon-
ical example of a mixed game perspective is how the owner
of a cheap car can have a very different risk perception on a
highway crossing compared to the owner of a new expensive
car. Recent research has revealed that this is an important
consideration, which can have far-reaching consequences for
the outcome of evolutionary games [71,75,76].
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Here we wish to extend the scope of mixed games
[69,76], by studying a model where during each interaction
individuals play a game that is drawn uniformly at random
from an ensemble. In particular, we consider a setup with
two different payoff matrices (G1 or G2), and we study
evolutionary outcomes on the square lattice, on scale-free and
on random networks. As we will show, our results strongly
support preceding research that highlights the importance of
heterogeneity, as well as the importance of the population
structure in ensuring favorable resolutions of social dilemmas.
First, however, we proceed with a more detailed description of
the studied evolutionary setup.

II. MIXED GAMES IN STRUCTURED POPULATIONS

In the mixed game model, individuals play different
games during each interaction. The available strategies are
cooperation (C) and defection (D). The games are represented
by the payoff matrix

(C D

C 1 S

D T 0

)
,

where T ∈ [0,2] and S ∈ [−1,1]. The parametrization G =
(T ,S) spans four different classes of games, namely the
prisoner’s dilemma game (PD), the snowdrift game (SD), the
stag-hunt game (SH), and the harmony game (HG), as shown
in Fig. 1.

The mixed game, Gm, is defined by the random mixture
of two games: G1 = (T ,S1) and G2 = (T ,S2). Each pair of
games, G1 and G2, have an average game, Ga , given simply
by Ga = (G1 + G2)/2. Thus, Ta = T and Sa = (S1 + S2)/2.
Each average game, Ga , can be formed by any combination
of two games that are symmetrically distributed around it.
Different mixtures that correspond to the same average single
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FIG. 1. Schematic presentation of the T -S parameter space, as
obtained if using R = 1 and P = 0. The four evolutionary games are
marked in their corresponding quadrants (see main text for details).
Moreover, we depict graphically that for each pair of games (SD = G1

and PD = G2, for example), there will be an average game that lies
in the middle of the two. Here, �S denotes how different G1 is from
G2 regarding the parameter S.

game can be characterized by the distance �S, and each mixed
game is from the average single game, namely �S = |S1 −
Sa| = |S2 − Sa|. We consider �S as a measure of the payoff
heterogeneity of the mixed game. In particular, �S defines
how far apart G1 is from G2 in the T -S parameter plane (as
they are symmetric with respect to Ga). Figure 1 illustrates
this definition schematically. We have chosen to focus on the
combination of the prisoner’s dilemma and the snowdrift game
because they are the most demanding social dilemmas, and also
because these two evolutionary games have been studied most
commonly in the past. We have verified that our main results
remain valid also for other combinations of games on the T -S
parameter plane.

We used the Monte Carlo simulation procedure to obtain
the dynamics of cooperation in structured populations [7]. The
initial configuration is homogeneous: half of the population is
C and half is D, distributed uniformly at random. For a Monte
Carlo step (MCS), each player collects the payoff from all of
its direct neighbors. In each pairwise interaction, we randomly
choose the matrix G1 with probability w, or the matrix G2

with probability 1 − w, to be the game that is played between
the two players during this particular interaction. After the
payoff of every site is obtained, we assume a copy mechanism
that allows sites to change their strategy. The selected site,
i, randomly chooses one of its neighbors j , and copies the
strategy of j with probability p(�uij ). The probability of
imitation is given by the Fermi-Dirac distribution [7]:

p(�uij ) = 1

1 + e−(uj −ui )/K
, (1)

where ui is the payoff of player i and K can be interpreted
as the irrationality of the players, which was taken as 0.3. We
did extensive simulations varying the value of K , and we have
found that all our main results remain qualitatively the same.

We studied two update rules. In the synchronous update,
one MCS consists of the copy phase applied to every player
at the same time. In the asynchronous update, one MCS is the
repetition, N times (N is the population size), of the process
of randomly choosing a player to copy one of its neighbors.
We stress that biological and human processes are usually
best described by the asynchronous update [77]. Nevertheless,
here we present the results of the synchronous model as a
comparison to some properties of the mixed games.

We run the Monte Carlo dynamics until the network
achieves a stable state, where the variables fluctuate around
a mean value. We average each quantity over many MCS after
the stable state is reached, and then repeat the process for many
independent samples [78].

The population is structured in complex networks and
square lattices. The complex networks are generated with the
Krapivsky-Redner algorithm [79], a type of growing network
with redirection (GNR) method. We initially create a closed
loop with six vertices, each one having two directed connec-
tions. Then we add a new vertex by randomly connecting it
to any of the vertices from the network (growing) and then
redirect the connection to the ancestor of this vertex with
probability r (redirection). We repeat this process until the
network achieves its final size N . Using r = 0.5, we can
create a final distribution that has the properties of a scale-free
network [80,81], with average connectivity degree of 2.7. The
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Krapivsky-Redner algorithm is useful because it is relatively
fast in computational terms and we can easily change r to
obtain a random network (r = 0).

In complex networks each player can have a different
number of neighbors, which gives rise to a “topological
heterogeneity” [82–84]. To analyze how the mixed games are
affected by topological heterogeneity, we used two different
payoff models, namely the absolute and the normalized value
[85,86]. In the absolute value, the total payoff of each player i

is just the sum of the payoffs obtained in the interactions with
the direct neighbors, denoted as {�i}:

ui =
∑

j∈{�i}
G(si,sj ), (2)

where si ∈ {C,D} is the strategy of player i and G(si,sj ) is
the payoff of player i when strategies si and sj are adopted. In
the normalized payoff, the total payoff of player i is divided
by the number its neighbors:

ui =
∑

j∈{�i} G(si,sj )

ki

, (3)

where ki is number of direct neighbors of player i. The
normalized payoff model works on the assumption that main-
taining many connections is costly, so the payoff is reduced
as you get more neighbors [87]. It is important to notice that,
in the absolute payoff model, sites with many connections
can achieve total payoffs much greater than the average
network payoff. By using these four models (synchronous and
asynchronous update rules with either absolute or normalized
payoffs), applied to different interaction networks (square
lattice, random, and scale-free), we are able to confirm the
robustness of our results in a broad range of settings. While
we do observe quantitative variations in different setups,
qualitatively we always obtain the same results, which are
thus robust to differences in the accumulation of payoffs, the
updating protocol, and the interaction networks.

III. RESULTS

We analyzed the mixed game model in populations struc-
tured in scale-free networks (r = 0.5), random networks (r =
0.0), and square lattices. The population size is with N = 104.
We used both synchronous and asynchronous Monte Carlo
update rules with absolute and normalized payoffs. The MC
dynamics was run until the system reaches an equilibrium
region where the fraction of cooperation fluctuates around
a mean value. The mean value was calculated over 3 × 103

MCS in the equilibrium region. The transient time needed
to reach equilibrium varies: 7 × 103 MCS for the normalized
asynchronous and the normalized synchronous; 6 × 104 MCS
for the absolute asynchronous; and 4.5 × 104 MCS for the
absolute synchronous. The equilibrium average was then
averaged over 100 different networks generated with the same
parameters. Note that the absolute payoff models have a very
long relaxation time, compared to the normalized ones. This
happens because hubs can obtain huge total payoffs, even
when the system is far away from the equilibrium, generating
metastable states.

A. Small game heterogeneity

We found that for all synchronization and payoff rules
studied here the final fraction of cooperators in the mixed
game is the same as in the average game as long as the mixed
game does not differ much from the average single game,
more specifically, as long as the �S < 0.2. Figure 2 shows all
four models used in scale-free networks. The average game
is represented by the lines and the mixed game by symbols.
Here we used a mixture of prisoner’s dilemma and snowdrift
(S1 = 0.1 and S2 = −0.1) for the normalized asynchronous,
absolute asynchronous, and absolute synchronous models. The
normalized synchronous used a combination of two snowdrift
games (S1 = 0.5 and S2 = 0.3). As can be seem in the figure,
the mixed game behaves as the average game for small � in
the four models. Figure 3 shows the asynchronous model in
detail, the lines represent the single games G1, G2 and their
average Ga , while the symbols are for the mixed game (Gm)
composed by G1 and G2.

It is important to notice that each model exhibits different
behaviors: different cooperation levels and different critical
values of T for the extinction of cooperation (an extensive
review can be found in Ref. [7]). We do not wish to analyze
these differences, as they are well known in the literature.
Instead, our goal is to analyze the effect of game heterogeneity
in all models.

The average payoff is the same in the average single game
and in the mixed game. As in Refs. [71,75], the addition of
cooperative games together with more selfish games do not
change the mean payoff. In contrast, punishment mechanisms
often increases cooperation while lowering the average payoff
[88]. The equivalence between the mixed game and the average
single game also holds for different values of w. We also
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FIG. 2. Fraction of cooperation as a function of T for small-game
heterogeneity. The graph shows simulation results of the mixed-game
model (symbols) and the single game defined by the average game
(lines) for normalized asynchronous (NA), normalized synchronous
(NS), absolute asynchronous (AA), and absolute synchronous (AS).
Note that the mixed game has the same behavior as the average game
in each model, as long as the game heterogeneity remains small
(here �S < 0.1). The parameters for AA, AS, and NA are S1 = 0.1,
S2 = −0.1, and Sa = 0, respectively. The NS model uses S1 = 0.5,
S2 = 0.3, and Sa = 0.4.
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FIG. 3. Fraction of cooperation as a function of T for small game
heterogeneity in the normalized asynchronous model. The mixed
game is composed of two prisoner’s dilemma games. The lines
represent single games with parameters G1 = (T ,S1) = (T , − 0.1)
(doted, black line), G2 = (T ,S2) = (T , − 0.5) (dashed, red line), and
the average single game Ga = (T , − 0.3) (continuous, green line).
The mixed game, Gm, composed of S1 and S2, is represented by the
blue circle. Note that the mixed game Gm behaves as the average
game Ga .

studied random networks (r = 0) and super-hubs networks
(r = 1.0; every vertex is connected to one of the six initial
nodes) [79]. For our models the main result shown in Fig. 3 still
holds: the mixed game is equivalent to the average single game
in the terms of the final number of cooperators and the average
payoff, as long as the game heterogeneity �S is small. This
result reinforces what was already know for mixed games in
well-mixed populations, rings, and square lattices [69,76]. We
point out that the dynamic of cooperation is highly dependent
on the topology [7,9,80,83,86,89–92]; nevertheless, the mixed
game still behaves as the average game. It is very interesting
to notice that the topology, irrationality, update rule, and copy
mechanism drastically alters the final fraction of cooperators,
but it seems not to change the equivalence between the average
and the mixed game if heterogeneity is small. We found that
the only thing that considerably changes this behavior is how
distant the parameters (S or T ) are from their mean value. In
the next section we proceed to study the effect of large-game
heterogeneity.

B. Large-game heterogeneity

Game heterogeneity in the mixed game model can be
measured by �S. If the mixed game was equivalent to the
average single game for any condition, the variation of �S

would be irrelevant. We found impressive results showing that
game heterogeneity enhances cooperation, as shown in Fig. 4
for scale-free networks (in this case, the average game is a weak
prisoner’s dilemma given by Sa = 0 and Ta = 1.7). Note that
although the average game remains the same, the games G1

and G2 become more distinct as �S increases. Obviously, for
�S = 0 we get the trivial case G1 = G2 = Ga . It is interesting
to notice that an increase in �S favours cooperation despite
the fact that, at the same time G1 becomes more “cooperative,”
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FIG. 4. Cooperation increase in mixed games (ρ), compared to
the average game (ρa), as game heterogeneity increases in scale-free
networks. The average game is the weak prisoner’s dilemma. Greater
heterogeneity benefits cooperation, although asynchronous models
seems to obtain a greater advantage. The weak prisoner’s dilemma
parameters are Sa = 0 and T = 1.7.

G2 becomes more “selfish.” Figure 5 shows the effect of large
game heterogeneity in random networks for a mixture of games
in which the average game is a weak prisoner’s dilemma with
T = 1.8. The effect of heterogeneity is stronger in random
networks than in scale-free networks. Results from Figs. 4 and
5 show that although the final fraction of cooperation can be
increased by game heterogeneity, it is highly sensitive to the
model.

The enhancement of cooperation due to game heterogeneity
on S happens for all values of T , as shown in Fig. 6 for
scale-free networks. The increase in �S benefits cooperation,
but there are optimal values of T where cooperation is most
promoted. For the normalized asynchronous model, a boost
of 0.15 is obtained at T = 1.45. Figure 7 shows the fraction
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FIG. 5. Cooperation increase in mixed games (ρ), compared
to the average game (ρa), as game heterogeneity increases in
random networks. The behavior of each model is different from
the complex networks. Nevertheless, the cooperation still benefits
from the heterogeneity. We used the weak prisoner’s dilemma for the
average game and T = 1.8.
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FIG. 6. Color map showing how game heterogeneity (�S) affects
cooperation for various T values in the absolute asynchronous (a)
and normalized asynchronous (b) scale-free network model. Each
model has an optimum T value, where the evolution of cooperation
is enhanced the most.

of cooperation as a function of T in random networks. The
cooperation boost is of almost 0.3 in some points.

The analysis of the mixed-game model in square lattices
was very surprising. For T values where cooperation usually

FIG. 7. Color map showing how �S affects cooperation in the
absolute asynchronous (a) and normalized asynchronous (b) model
for different values of T in the random network. It can be seem
here, comparing to the scale-free color map, how the optimum T

value for increasing cooperation is highly dependent on the topology
and synchronization of the model. On this points cooperation can be
enhanced in even 0.3 compared to the average game.
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FIG. 8. Total fraction of cooperation as �S increases on the
square lattice using T = 1.04. The asynchronous model exhibit
enhancements due to game heterogeneity, but for T = 1.04 the
synchronous model should have the cooperation extinct in the average
game. Nevertheless, for some �S values the cooperation reappears
even after the extinction threshold.

survives in the average single game, we found that large
game heterogeneity in S promotes cooperation in the mixed
game. More interestingly, we found that for the synchronous
update cooperation can spontaneously reemerge even after
the critical value of cooperation extinction (Tc ≈ 1.04 for
the synchronous model in single games [7]), as shown in
Fig. 8. Game heterogeneity make the cooperation reemerge for
some values in the range 0.2 < �S < 0.6. In scale-free and
random networks, heterogeneity merely enhanced the fraction
of cooperation. But in square lattices, the mixed game is totally
dominated by defectors until the heterogeneity reaches 0.2,
when the cooperators reemerge.

To understand how game heterogeneity promotes cooper-
ation, we investigate asymmetries introduced by the mixture
of PD and SD games on the square lattice. We analyze the
histogram describing the number of times each cooperator
plays G1 (SD game), or G2 (PD game), during a typical Monte
Carlo step. The average game is the weak prisoner’s dilemma,
G1 favors cooperation (S > 0), while G2 favors defection
(S < 0). This creates a natural separation in the population
between SD (ρ+) and PD (ρ−) players. However, the separation
is not fixed but changes during the evolution. By recording
who plays PD and who plays the SD game, and when, we
find that most players usually play both games with equal
probability over time. Nevertheless, there are some differences
across the population. Results presented in Fig. 9 reveal that
the fraction of cooperators who play SD more often is higher
than the fraction of cooperators who play PD more often.
This asymmetry indicates that even if the games are randomly
chosen at each step, there is a flux of cooperation towards
sites where cooperation is favored. In contrast, defectors do
not benefit from the PD population.

The histogram analysis indicates that cooperation enhance-
ment is due to the intrinsic asymmetry between cooperators
and defectors. Players that often play the SD game have a
higher chance of becoming cooperators, even in the presence of
defectors, because of the high positive value of S. Conversely,
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FIG. 9. Difference in the populations of cooperators playing the
snowdrift (ρ+) and the prisoner’s dilemma (ρ−) game as T increases
for various values of �S. Notice the asymmetry, where cooperators
play the SD game more frequently. The difference is always positive
and grows with increasing values of �S.

for greater negative values of S, players that often play the
PD game have no incentive to become defectors when they
are surrounded by defectors (recall that the P value remains
the same). In the long run, players will play PD and SD with
the same frequency on average. But, locally, some players
can play SD more frequently, increasing their chance to start a
cooperation island. The asymmetric effect of the negative S on
PD will not cause the opposite; i.e., high negative values of S

does not lead to the formation of defectors clusters [61,71,75].
In time, these small islands of cooperation can grow and
eventually become stable, enhancing the cooperation of the
model. This is the same asymmetric effect that is observed in
heterogeneous multigames [61,71,75].

IV. DISCUSSION

We have studied mixed games on random and scale-free
networks, and on the square lattice, focusing specifically on
the effect of game heterogeneity. We showed that for small
heterogeneity, mixtures of randomly chosen games behave
as the average single games, which agrees with previous

work using mean-field analysis for the square lattice and ring
topologies [69,76]. We showed that the equivalence between
the mixed game and the average single game is still valid
for all various topologies, different synchronization rules, and
different values of irrationality. Nevertheless, our main result
is in large game heterogeneity regime, where heterogeneity
breaks the equivalence between the mixed game and the
average single game and enhances cooperation. In particular,
the enhancement is highly sensitive to the topology and
the applied updating rule used to simulate the evolutionary
dynamics. On the square lattice, for example, sufficiently
strong heterogeneity resurrects cooperation after the single-
game extinction threshold value of T .

Interestingly, the mean-field model predicts that the mixed
game should always behave as the average game [76],
in contrast to what was found for the networks and the
square lattice here. This further highlights the importance of
population structure and how cooperation can thrive by simple
mechanisms such as network reciprocity and heterogeneity.
Future work could study mixed games using a normal
distribution of games, instead of just two games. Based on
the results presented in this paper, it seems reasonable to
expect that the variance of the distribution would affect the
final frequency of cooperators.

Finally, we note that our results strongly supports preceding
works on how different types of heterogeneity, regardless of
origin, promote cooperation [23,57–66,93–95]. While game
heterogeneity does offer advantages to both cooperators
and defectors, only the former can reap long-term benefits.
Defectors are unable to do so because of a negative feedback
loop that emerges as their neighbors become weak due to
the exploitation. As we have shown, this holds true also for
mixed games, and we hope that this paper will motivate further
research along this line.
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