
PHYSICAL REVIEW E 93, 042303 (2016)

Cooperative epidemics on multiplex networks

N. Azimi-Tafreshi*

Physics Department, Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran
(Received 13 November 2015; published 4 April 2016)

The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we
treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network.
We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of
the diseases increases the probability of getting infected with the other. Using the generating function method,
we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the
stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing
cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally,
we compare the coinfected clusters in the case of cooperating diseases with the so-called “viable” clusters in
networks with dependencies.
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I. INTRODUCTION

Cooperation between two epidemics occurs when the
spread of one disease increases the spreading of the other. It
was estimated in 2011 [1] that, about one-third of a total world
population of 7 billion people, had tuberculosis (TB). But if
one restricted oneself to the ∼33 million people with human
immunodeficiency virus (HIV), about 30% also had active
or latent TB. Inversely, of the active TB cases, about 15%
also had HIV, which is nearly a factor of 100 higher than the
incidence rate in the total population. People with HIV and TB
coinfection typically also experience faster disease progression
than those with TB or HIV alone. Another dramatic example
where two diseases mutually enhance their spreading is HIV
and hepatitis C virus (HCV) [2]. Also there, it is estimated
that about one-third of all people with HIV are also coinfected
with HCV.

These numbers show already that mutual coinfection is a
huge problem. But there are also other recent examples like
HIV and hepatitis B [3], while historically the case of Spanish
flu and TB was one of the most devastating [4].

Therefore, much effort recently has been devoted to
studying the dynamics of spreading of two or more cooperating
pathogens [5–12]. Let us discuss just a few of these papers.
Newman et al. [6] assumed an asymmetric rule for cooperation,
such that the first disease spreads independently of the second
one, but the second can propagate only among those that had
already been infected with the first disease. This simplifies the
analysis, of course, but prevents the most dramatic scenarios
that may occur if the cooperation is mutual and symmetric,
as assumed in [7–9]. Sanz et al. [7] proposed a framework,
based on the heterogeneous mean-field approximation, for the
spontaneous spreading of two diseases and studied different
effects of one disease on the spreading of the other. Also, in [8]
and [9], each disease can spread independently of the other,
but the secondary infection rates are enhanced compared to
the rates for infection by the first diseases. Such a model was
treated in mean-field theory in [8], while detailed simulations
in various types of networks are reported in [9].
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The main result in [9] was that the typical “continuous”
phase transition observed in simple epidemic models can
be replaced—depending on details of the networks and of
the infection processes—by “discontinuous” ones, where the
incidence rate at threshold does not increase continuously
but jumps immediately to a finite value. In typical dis-
continuous (or “first-order”) phase transitions, there is no
sign of warning—like enhanced fluctuations, an increasing
correlation length, or a slowing-down of the dynamics, which
occur in single epidemics [13]—as the threshold for large-
scale spreading is approached. This is of course the most
worrying aspect for health policies, but fortunately most of
the discontinuous transitions found in [9] were “hybrid”; i.e.,
they combined the jumps of first-order transitions with the
anomalies in the approach to the threshold seen in continuous
(or “second-order”) transitions.

The results in [5–12] are extremely interesting, but most
were obtained either by some sort of mean-field theory (i.e., all
network properties were neglected and/or stochastic fluctua-
tions were assumed to be absent) or by simulating very specific
cases. The range of phenomena found in [9] strongly suggests
that one should look for analytic results that do take into ac-
count fluctuations and at least some simple network structure.

This is the main aim of the present paper. Another aim is
to understand the links between coinfections and catastrophic
cascades in networks with interdependencies [14]. The latter
can be understood most easily [15–19] as “viable” clusters
in multiplex networks. Multiplex networks [20–22] have
nodes of one type and multiple types of edges. They can be
treated as a superposition of several network layers, where
nodes are coupled to their counterparts in different layers.
Hence multiplex networks can be represented as edge-colored
multigraphs, where each edge color corresponds to a network
layer. Here we consider a multiplex network with two types of
edges, such that each type of edge allows for spreading of one
of two types of agents. A cluster in such a network is called
viable [16] if each of its nodes can be reached from any other
node by both types of agents. Obviously there is an analogy
with cooperating coinfections if we identify the two agents
with the two pathogens: In the limit of strong cooperativity,
large infected clusters will always be coinfected, i.e., each
node in such a cluster will be reachable by both pathogens

2470-0045/2016/93(4)/042303(6) 042303-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.042303


N. AZIMI-TAFRESHI PHYSICAL REVIEW E 93, 042303 (2016)

propagating only on the cluster. But the detailed nature of this
connection has remained elusive up to now. It is clarified in
the present paper.

Finally, we should also point out that the case of cooperating
epidemics is very much different from the case of competing
or antagonistic epidemics [23–32]. Although the latter are also
of huge practical interest, their dynamics is very different and
leads in general to less dramatic effects.

The paper is organized as follows. In Sec. II, we introduce
a coinfection model in a multiplex network with two types
of edges and present an analytical framework enabling us to
describe the nature of the transitions corresponding to the
emergence of coinfected clusters. We apply our general results
to the Erdős-Rényi multiplex networks. The paper is concluded
in Sec. III.

II. COOPERATIVE EPIDEMICS

A. Analytical framework

Let us consider an uncorrelated multiplex network having
two types of edges, i = a,b. The network can be treated as
a superposition of two network layers with edges of types
a and b, such that overlapping of two types of edges can
exist for some pairs of nodes. We define degree ki as the
number of edges of type i that are incident to a node and kab

denotes the number of overlapped edges of each node. The
multiplex network is completely described by the joint degree
distribution P (ka,kb,kab), and we assume that each layer has
a locally treelike structure in the infinite network limit.

A coinfection model is defined for two diseases, a and
b, spreading in the multiplex network. Each of i diseases
spreads with transmission probability Ti through only edges of
type i, while the overlapped edges can transmit both diseases
with probability Tab. We assume that both diseases follow the
susceptible-infective-recovered (SIR) dynamics [33]. A given
random node can be infected with disease i if it has at least
one edge of type i connecting it to its infected neighbors. We
assume that during the spreading process, if a node can receive
both diseases, each one through at least one edge of each
type i, it receives the diseases with a higher probability, such
that the transmissibilities Ta and Tb are increased by a factor
α > 1. Also, through the overlapped edges both diseases can
be transmitted with the enhanced transmissibility Tab > TaTb.

It was shown that there is a mapping between the SIR
epidemic model and the bond percolation theory, such that the
set of individuals infected by a disease outbreak with transmis-
sibility T has the same size as the giant connected cluster of
occupied edges with occupation probability T [13,34]. The
mapping can be extended to multiplex networks and one
can treat percolation in multiplex networks as an epidemic
spreading process [15]. Each edge of type i is occupied with
probability Ti , equal to the probability that the end node of
that edge (the neighbor of an infected node) will become
infected with disease i. Here, we consider the cooperation
between two diseases. If a given node has at least one edge
of each type, connecting the node to the infinite infected
clusters, the transmissibility of these edges is enhanced. The
probability that a node belongs to the giant coinfected cluster
is equal to the probability that a given node has enhanced
occupied edges of both types, connecting it to the giant

connected cluster of enhanced occupied edges. Hence, using
percolation theory and the generation function method, we
can solve exactly for the fraction of individuals infected with
both diseases in configuration model networks with arbitrary
degree distributions.

Those nodes connected with the occupied overlapped edges
can behave as a whole, since if one of them is infected by both
diseases, all others will also be infected. Hence we can merge
theses nodes into a single node, a so-called supernode [35,36].
In other words, the network is renormalized to a network with
supernodes connected with only the nonoverlapped edges.
One can find the probability that a random node belongs to
a supernode of size m, denoted R(m,Tab) [37]. Assuming
that there is no correlation between the overlapped and
the nonoverlapped edges in the original network, namely,
P (ka,kb,kab) = P (ka,kb)P (kab), the size distribution of the
supernodes is obtained for every arbitrary overlapping degree
distribution P (kab),

R(m,Tab) = T m−1
ab 〈kab〉
(m − 1)!

[
dm−2

dxm−2
[G1(x)]m

]
x=1−Tab

, (1)

in which G1(x) is the generation function for the distribution
of the overlapped degrees of nodes, reached by following a
randomly chosen overlapped edge, and is given by [38]

G1(x) =
∑
kab

kabP (kab)

〈kab〉 xkab−1. (2)

We define q ≡ (qa,qb) as the degree of supernodes, which
denotes the number of nonoverlapped edges of each supern-
ode. From renormalization theory, the degree distribution of
supernodes of size m, Pm(q) is determined as the distribution
of the sum of m random variables chosen from the marginal
(nonoverlapped) degree distribution P (ka,kb), which is the
mth-order convolution of P (ka,kb) [39].

To find the size of the giant coinfected cluster, for each type
i = a,b of edge we define xi to be the probability that the end
node (supernode) of a randomly chosen edge of type i is the
root of an infinite subtree infected with disease i. The subtree
infected with disease i, by definition, means that the subtree’s
nodes have disease i, but they can have the other disease or not.
The probabilities xa and xb are shown schematically in Fig. 1.
These probabilities play the role of the order parameters of
the phase transition associated with the emergence of the giant
coinfected cluster. We can write the self-consistency equations
for probabilities xi using the locally treelike structure of the
renormalized networks,

xi = R∞ +
∞∑

m=1

R(m,Tab)
∑

q

qiPm(q)

〈qi〉
× ([1 − (1 − αTixi)

qi−1][1 − (1 − αTjxj )qj ]

+p[1 − (1 − Tixi)
qi−1](1 − Tjxj )qj ), (3)

where R∞ is the probability that a given node belongs to a
supernode of infinite size.

Let us explain the right-hand terms in Eq. (3). The
probability that the end node (supernode) of a randomly chosen
edge of type i has degree qi is qiPm(q)/〈qi〉. There are two
possibilities: If the end node of the randomly chosen edge
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FIG. 1. Schematic of the self-consistency equations for the probabilities xa and xb. Solid black and dashed blue lines with infinity symbols
at one end represent probabilities xa and xb, respectively. For the sake of clarity, we do not show the edges leading to finite components, namely,
the probabilities 1 − xa and 1 − xb.

of type i has at least one edge of each type i, which leads
to an infinite infected cluster with disease i (probability xi),
the transmissibility of each edge is increased by a factor α.
The second line of Eq. (3) indicates the contribution of this
possibility. Setting Ti = 1 and α = 1, this part gives us the size
of the giant viable cluster [15,16]. The second possibility is
when the end node is only connected to type i edges, leading
to an infinite infected subtree of type i. In this case, there is no
cooperation between two diseases. The third line in Eq. (3) is
related to this possibility. Note that these terms do not make any
contribution toward deriving the giant viable clusters. In order
to compare the giant coinfected and the viable clusters, we add
the contribution of these terms by factor p, which is equal to
1 in our coinfection model and is 0 for the viable clusters.

Using these probabilities, we can obtain the probability that
a randomly chosen node belongs to the giant coinfected cluster,
denoted Sab. This probability, shown schematically in Fig. 2,
is given by the following expression:

Sab = R∞ +
∞∑

m=1

R(m,Tab)
∑

q

Pm(q)

× [1 − (1 − αTaxa)qa ][1 − (1 − αTbxb)qb ]. (4)

We can rewrite Eqs. (3) and (4) in terms of the generating
functions of each network as

xi = R∞ +
∞∑

m=1

R(m,Tab)

× ([
1 − Gi

1(1 − αTixi)
][

1 − G
j

0(1 − αTjxj )
]

+p
[
1 − Gi

1(1 − Tixi)
]
G

j

0(1 − Tjxj )
)

(5)

and

Sab = R∞ +
∞∑

m=1

R(m,Tab)

× [
1 − Ga

0(1 − αTaxa)
][

1 − Gb
0(1 − αTbxb)

]
, (6)

where Gi
0(x) and Gi

1(x) are the generating functions for
the degree distribution and the excess degree distribution,

FIG. 2. Schematic of the probability that a node belongs to the
giant coinfected cluster.

respectively:

Gi
0(x) ≡

∑
qi

P (qi)x
qi ,

Gi
1(x) =

∑
qi

qiP (qi)

〈qi〉 xqi−1. (7)

Index i for the generation functions refers to types of edges
i = a,b.

B. Erdős-Rényi networks

Let us consider multiplex networks such that each layer
is an ER network with P (ki) = c

ki

i e−ciki /ki! for i = a,b

and P (kab) = c
kab

ab e−cabkab/kab!, where ci = 〈ki〉 and cab =
〈kab〉. For ER networks the generating functions are G0(x) =
G1(x) = e−c(1−x). Substituting G1(x) into Eq. (1) we find

R(m,Tab) = (mTabcab)m−1e−mTabcab

m!
. (8)

Also, for ER uncorrelated networks, the degree distribution of
supernodes is given as

Pm(q) = e−mca (mca)qa

qa!

e−mcb (mcb)qb

qb!
. (9)

For the sake of simplicity, let us consider the symmetric
case Ta = Tb = T and ca = cb = c. Also, we assume Tab =
α2T 2. In this case, xa = xb ≡ x, obtained from Eq. (5) for ER
networks as

x = R∞ +
∞∑

m=1

R(m,Tab)

× [(1 − e−mαcT x)2 + p(1 − e−mcT x)e−mcT x]. (10)

Using Eq. (8), R∞ is given as

R∞ = 1 −
∞∑

m=1

R(m,Tab)

= 1 − 1

cabTab

∞∑
m=1

(m)m−1(cabTabe
−cabTab )m

m!

= 1 + W (−cabTabe
−cab )

Tabcab

, (11)

in which W (x) is the Lambert function. Equation (10) can
be simply rewritten in terms of the Lambert function, which
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FIG. 3. Lines of transition points for (a) T = 0.4 and (b) T = 0.7, on the plane (c,cab). Lines corresponding to α = 1.1 and 1.2 indicate
continuous transition points and lines with α = 1.3 and 1.4 show discontinuous transition points. The solid line with α = 1.22474 . . . shows
the line of tricritical points.

enables us to solve the equation analytically,

x = �(x) ≡ 1 + 1

Tabcab

[−W (−cabTabe
−cabTab−2αcT x)

+ 2W (−cabTabe
−cabTab−αcT x)

−pW (−cabTabe
−cabTab−cT x)

+pW (−cabTabe
−cabTab−2cT x)]. (12)

Equation (12) is a self-consistent equation for x with parame-
ters c, cab, T , and α. To obtain the phase diagram of model, let
us define f (x) ≡ x − �(x). Demanding that f (x) = f

′
(x) =

0 for x > 0, we find the position of hybrid transitions, while
a continuous transition occurs when f (0) = f

′
(0) = 0 and

f
′′
(0) > 0.
The lines in Fig. 3 show the position of transition points in

the plane (c,cab) for each value of α. For α < 1.22474 . . ., we
find a line of continuous transition points. As α increases, the
type of transition changes and the lines indicate the positions
of hybrid transitions.

Moreover, Fig. 4 shows the phase diagram of the coinfection
model obtained for cab = 1 and for different values of T .
For low values of cooperation α, the transition is continuous,

1 1.1 1.2 1.3 1.4
α

0

0.5

1

1.5

2

2.5

c

T=0.6

T=0.5

T=0.4

T=0.7

FIG. 4. Phase diagram of the model of an ER multiplex network
for cab = 1. Dashed lines indicate the positions of discontinuous
phase transitions, while solid lines represent continuous phase
transition points. The tricritical point occurs at α = 1.22474 . . . for
every value of T .

while with increasing α, the transition becomes discontinuous.
The point α = 1.22474 . . . is a tricritical point, determined by
solution of f (0) = f

′
(0) = f

′′
(0) = 0.

Following the derivation of Eq. (4), we can obtain the
probability that a given node belongs to the giant coinfected
cluster:

Sab = 1 + 1

Tabcab

[−W (−cabTabe
−cabTab−2αcT x)

+ 2W (−cabTabe
−cabTab−αcT x)]. (13)

We plotted Sab for different values of cooperation α in terms
of the mean degree of networks c and the transmissibility T

in Figs. 5 and 6, respectively. For α > 1.22474 . . ., the giant
coinfected cluster emerges discontinuously at the transition
point. As the fraction of overlapped edges is decreased, the
jump values become smaller. However, even for cab = 0, the
jump values are not 0 and the transitions occur discontinu-
ously. As the cooperativity increases, the epidemic threshold
decreases to the smaller values of c and T , which means that
the cooperation between two diseases decreases the network’s
robustness against the propagation of both diseases.

At the end, we compare the size of the giant coinfected
cluster with the giant viable cluster. In multiplex networks,
a viable cluster by definition is a set of nodes in which,

2 2.5 3 3.5 4

c

0

0.2

0.4

0.6

0.8

1

S
ab

T=0.4

α=1

α=1.2
α=1.4

α=1.6

FIG. 5. Relative size of the giant coinfected cluster vs mean
degree c for cab = 0.1. Each curve corresponds to a different value
of cooperativity.
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0.1

0.2

0.3

0.4

0.5
S

ab

α=1.1

α=1.2
α=1.3

α=1.4

FIG. 6. Relative size of the giant coinfected cluster for cab = 0.5
and c = 2 vs transmission probability T . Each curve corresponds to
a different value of cooperativity.

for every type of edges, each two nodes are interconnected
by at least one path following only (occupied) edges of this
type. By this definition, the paths must pass through only
the nodes in the cluster. Setting p = 0 and α = 1 in Eqs. (3)
and (4), we can derive the size of the giant viable clusters. It
was shown that viable clusters emerge discontinuously for
every value of overlapping [35]. Figure 7 shows the size
of the viable cluster compared with the coinfected clusters.
The particular case of (p = 1, α = 1) is the overlap area of
the giant connected components of two layers with occupied
edges of types a and b. The overlapped cluster includes the
viable cluster since, between each two nodes of the cluster,
there is at least one path following each type of occupied
edge, but the paths can pass through nodes outside of the
cluster and then return to the cluster. The overlapped cluster,
which corresponds to an infected cluster without cooperativity,
emerges continuously. For α > 1, cooperation between two
diseases occurs and diseases can infect a greater fraction
of the nodes. With increasing values of α, the size of the
coinfected cluster becomes greater. Also, with increasing α,
the common terms in the derivation of the coinfected and viable
clusters make a larger contribution. Hence coinfected clusters
show hybrid transitions similar to those seen for the viable
clusters.

III. CONCLUSION

In this paper, we have introduced a coinfection model for
two diseases spreading in multiplex networks with the edges
overlapping. Two diseases can propagate simultaneously in

1 2 3 4
c

0

0.2

0.4

0.6

0.8

1

S
ab

p=0, α=1
p=1, α=1
p=1, α=1.2
p=1, α=1.4

T=0.7

FIG. 7. Relative size of the giant coinfected clusters with (p =
1, α > 1, T < 1) compared with the size of the giant viable cluster
(p = 0, α = 1) in an ER multiplex network for cab = 0.1. The curve
corresponding to (p = 1, α = 1) shows the size of the giant infected
cluster without cooperativity.

one multiplex network, such that both diseases can infect the
same set of nodes. Our model illustrates how the existence of
one infectious disease can enhance the propagation of the other
disease. Using the generating function technique, we have
given an analytic solution for the size of the giant coinfected
cluster, i.e., the set of nodes infected with both diseases, for
uncorrelated multiplexes with arbitrary degree distribution. We
have shown that the cooperation of two diseases decreases
the network’s robustness against propagation of both diseases,
such that the epidemic threshold is shifted to smaller values
of the edge transmission probability or the mean degree of
networks. Our results show that for low cooperativity, the
coinfected cluster emerges continuously. However, increasing
the strength of cooperation, the type of phase transition
changes to hybrid. Hence a tricritical point appears in our
coinfection model. We have compared the size of the giant
coinfected cluster with that of the viable cluster for multiplex
networks, considering edge overlapping. With increasing
cooperativity, the coinfected cluster shows behavior similar
to that of the viable cluster at the emergence point. The viable
cluster is a subgraph of the coinfected cluster. However, for
large infected clusters these two clusters can coincide.
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[30] C. Granell, S. Gómez, and A. Arenas, Phys. Rev. Lett. 111,

128701 (2013).
[31] W. Wang, M. Tang, H. Yang, Y. Do, Y.-C. Lai, and G. W. Lee,

Sci. Rep. 4, 5097 (2014).
[32] X. Wei, N. C. Valler, B. A. Prakash, I. Neamtiu, M. Faloutsos,

and C. Faloutsos, IEEE J. Select. Areas Commun. 31, 1049
(2013).

[33] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. A 115,
700 (1927).

[34] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[35] Y. Hu, D. Zhou, R. Zhang, Z. Han, C. Rozenblat, and Sh. Havlin,

Phys. Rev. E 88, 052805 (2013).
[36] B. Min, S. Lee, K.-M. Lee, and K.-I. Goh, Chaos Solitons

Fractals 72, 49 (2015).
[37] M. E. J. Newman, Phys. Rev. E 76, 045101(R) (2007).
[38] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E

64, 026118 (2001).
[39] M. Z. Bazant, Physica A 316, 29 (2002).

042303-6

http://dx.doi.org/10.1073/pnas.1507820112
http://dx.doi.org/10.1073/pnas.1507820112
http://dx.doi.org/10.1073/pnas.1507820112
http://dx.doi.org/10.1073/pnas.1507820112
http://dx.doi.org/10.1038/ncomms6975
http://dx.doi.org/10.1038/ncomms6975
http://dx.doi.org/10.1038/ncomms6975
http://dx.doi.org/10.1038/ncomms6975
http://dx.doi.org/10.1155/2015/275485
http://dx.doi.org/10.1155/2015/275485
http://dx.doi.org/10.1155/2015/275485
http://dx.doi.org/10.1155/2015/275485
http://dx.doi.org/10.1016/0025-5564(82)90036-0
http://dx.doi.org/10.1016/0025-5564(82)90036-0
http://dx.doi.org/10.1016/0025-5564(82)90036-0
http://dx.doi.org/10.1016/0025-5564(82)90036-0
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1209/0295-5075/97/16006
http://dx.doi.org/10.1209/0295-5075/97/16006
http://dx.doi.org/10.1209/0295-5075/97/16006
http://dx.doi.org/10.1209/0295-5075/97/16006
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevE.89.040802
http://dx.doi.org/10.1103/PhysRevE.89.040802
http://dx.doi.org/10.1103/PhysRevE.89.040802
http://dx.doi.org/10.1103/PhysRevE.89.040802
http://dx.doi.org/10.1103/PhysRevE.90.052809
http://dx.doi.org/10.1103/PhysRevE.90.052809
http://dx.doi.org/10.1103/PhysRevE.90.052809
http://dx.doi.org/10.1103/PhysRevE.90.052809
http://dx.doi.org/10.1103/PhysRevE.91.062806
http://dx.doi.org/10.1103/PhysRevE.91.062806
http://dx.doi.org/10.1103/PhysRevE.91.062806
http://dx.doi.org/10.1103/PhysRevE.91.062806
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1140/epjb/e2015-50742-1
http://dx.doi.org/10.1140/epjb/e2015-50742-1
http://dx.doi.org/10.1140/epjb/e2015-50742-1
http://dx.doi.org/10.1140/epjb/e2015-50742-1
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1103/PhysRevE.84.026105
http://dx.doi.org/10.1103/PhysRevE.84.026105
http://dx.doi.org/10.1103/PhysRevE.84.026105
http://dx.doi.org/10.1103/PhysRevE.84.026105
http://dx.doi.org/10.1103/PhysRevE.89.062817
http://dx.doi.org/10.1103/PhysRevE.89.062817
http://dx.doi.org/10.1103/PhysRevE.89.062817
http://dx.doi.org/10.1103/PhysRevE.89.062817
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1038/srep05097
http://dx.doi.org/10.1038/srep05097
http://dx.doi.org/10.1038/srep05097
http://dx.doi.org/10.1038/srep05097
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.88.052805
http://dx.doi.org/10.1103/PhysRevE.88.052805
http://dx.doi.org/10.1103/PhysRevE.88.052805
http://dx.doi.org/10.1103/PhysRevE.88.052805
http://dx.doi.org/10.1016/j.chaos.2014.12.016
http://dx.doi.org/10.1016/j.chaos.2014.12.016
http://dx.doi.org/10.1016/j.chaos.2014.12.016
http://dx.doi.org/10.1016/j.chaos.2014.12.016
http://dx.doi.org/10.1103/PhysRevE.76.045101
http://dx.doi.org/10.1103/PhysRevE.76.045101
http://dx.doi.org/10.1103/PhysRevE.76.045101
http://dx.doi.org/10.1103/PhysRevE.76.045101
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1016/S0378-4371(02)01212-8
http://dx.doi.org/10.1016/S0378-4371(02)01212-8
http://dx.doi.org/10.1016/S0378-4371(02)01212-8
http://dx.doi.org/10.1016/S0378-4371(02)01212-8



