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Microsaccades are very small eye movements during fixation. Experimentally, they have been found to
play an important role in visual information processing. However, neural responses induced by microsaccades
are not yet well understood and are rarely studied theoretically. Here we propose a network model with a
cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical
synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence
of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper
responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic
spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We
also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays
an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation
and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for
further investigation of the functional roles of microsaccades in visual information processing.
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I. INTRODUCTION

Microsaccades are involuntary, fast, and very small eye
movements during fixation. Recently, the investigations of
microsaccades have been mainly focused on experimental
studies of their behavioral properties and functional roles [1,2].
However, neural responses induced by microsaccades are not
yet well understood and have been rarely studied theoretically
[3,4].

Experimentally, it has been found that microsaccades play
an important functional role in counteracting visual fading
during fixation [5,6]. Several studies have assumed that
microsaccades refresh retinal images by moving the receptive
fields of less adapted photoreceptors over stationary stimuli,
thereby preventing perceptual fading [5,7]. Indeed, retinal
adaptation has been extensively found in experiments [8–12].
According to the above assumption, retinal adaptation should
affect the microsaccade-induced neural responses.

Short-term depression (STD) is a typical synaptic plasticity
[13]. Recently, STD has been extensively found at thalamo-
cortical synapses from the lateral geniculate nucleus (LGN) to
the primary visual cortex (V1) in vitro [14,15] and in vivo [16]
in cats. Previously, network models of V1 neurons with STD
at thalamocortical synapses have been used to account for im-
portant response properties of cortical neurons [17–19]. Some
other computational studies have also explored the impact of
STD on network dynamics and found various rich dynamical
properties [20–29], suggesting many important roles of STD in
neural computations. Especially, our recent work proposed that
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STD at thalamocortical synapses could provide an alternative
explanation for microsaccades in counteracting visual fading
during fixation [30]. The adapted synapses subjected to STD
lead to response depression in V1 during fixation; when
microsaccades occur, the neural responses return owing to
relative moving of the fixated dot to neurons with less adapted
synapses. Our further simulations showed that this alternative
STD model can reproduce several experimentally observed
features in microsaccade-induced neural responses [30]. The
model can produce several further predictions about the
dependence of the responses on experimental parameters [31],
such as stimulus brightness, microsaccade size, and so on.

However, this existing literature has not considered retinal
adaptation in the study of the effect of STD. Actually, retinal
adaptation is not exclusive with STD at thalamocortical
synapses. When these two levels of adaptations are put into
a cascading network, their interplay is expected to generate
richer dynamics in V1 neurons. The neural activity in V1
is a crucial component for understanding visual information
processing in the brain [32,33]. Since the thalamocortical
synapses subjected to STD are directly linked to neurons in V1,
STD is supposed to play an important role in microsaccade-
induced responses of the V1 neurons together with the retinal
adaptation. In this paper, we study the role of STD in
the cascading-adaptation network, including simultaneously
retinal adaptation and STD at thalamocortical synapses.

II. MODEL

According to visual pathway [34,35], a feed-forward
network model with cascading adaptations is proposed in
Fig. 1(a), including both the retinal adaptation and STD at
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FIG. 1. The feed-forward cascading-adaptation network model
including retinal adaptation and STD during fixation with microsac-
cades. (a) A schematic sketch of the visual pathway. The received
optical strengths Ok from the fixated dot induce the firings in retina
cells; the firings with rate Rk in the retina are directly projected to
LGN, then the produced firings with rate Rj in LGN are straightly
projected to V1, and finally the firings with rate Ri are generated in
V1. (b) Illustration of the feed-forward network structure. There is
the same number of N neurons in the retina, LGN, and V1. These
neurons in the retina, LGN, and V1 are all labeled and arranged
corresponding to the center positions xk , xj , and xi of their receptive
fields distributed uniformly in the ranges from −L to L, respectively.
xf denotes the position of the fixated point. The retina cells are
connected to LGN by neural synapses with linking weights Wjk .
The LGN are then connected to V1 by thalamocortical synapses
with linking weights Wij and with synaptic strengths Sj , which are
subjected to the modification by STD. The microsaccades during
fixation can be regarded as instantaneous relative movements of the
fixated dot. In order to eliminate the effect of boundaries due to
limited network scale, periodic boundary conditions are applied to
the three layers of the network (thus to the coupling between layers
and the input curve Ok [i.e., O(xk)], i.e., O(xk + 2Ln) = O(xk)
[if (xk + 2Ln) /∈ [−L,L]; n is an integer].

the thalamocortical synapses. The model is composed of
excitatory neurons, described by membrane potential and
firing rate. The firings with rate Rk in the retinal cell k are
directly projected to the neuron j in LGN. Then, the firings
with rate Rj in the neuron j are straightly projected to the
neuron i in V1 by synapses with STD.

More details of the feed-forward network structure are
shown in Fig. 1(b) and described in its caption. In visual
systems, a neuron sees only a small portion of the visual field.
This small area is called receptive field of the cell. Because
of receptive fields (Gaussian filters) in retinal cells [36,37],
the distribution of received optical strength Ok is assumed
to be a Gaussian profile: Ok = O(xk) = A exp−(xk−xf )2/σ 2

1 .
Here A represents the amplitude of a visual input at the
fixated-dot position xf . σ1 denotes the width of the tuning
curve. The spatial connecting weights Wjk and Wij caused
by the receptive fields of LGN and V1 neurons follow
Gaussian tuning curves [30,35]: Wjk = exp−(xk−xj )2/σ 2

2 and

Wij = exp−(xj −xi )2/σ 2
2 , respectively. σ2 of the Gaussian curves

denotes the width of the connecting strength distributions. In
principle, the projection widthes to LGN and to V1 could
be different, but they do not change the results qualitatively.
For simplicity, we ignore the time courses of microsaccades
since microsaccades are very fast eye movements [1]. Thus it
is assumed that a microsaccade with magnitude M happens
instantaneously. Here, microsaccades can be regarded as
instantaneous relative movements of the fixated dot over the
retina with magnitude M , i.e., movements of the optical
strength curve Ok evoked by the fixated dot.

In our model, we assume that the N neurons in the retina,
LGN, and V1 are, respectively, spread uniformly in the ranges
from −L to L, which denote the physical positions of the
centers of the receptive field of these neurons. Compared
with the responsive region of neurons induced by the fixated
dot, L should be large enough that the new place of fixated
dot after a microsaccade is far from the boundary neurons.
In order to limit the simulating time with reasonably finite
L, but to eliminate the effect of boundary, we use periodic
boundary conditions for the three layers. The received optical
strength Ok is thus extended to a period boundary function
with periodic value 2L [see the caption of Fig. 1(b)]. In
this way, the value of L does not qualitatively change the
results. Since microsaccades happen rather quickly, here they
are modeled by instantaneous relative displacement M of the
curve Ok on the one-dimensional straight direction of retinal
neural positions. With suitable scale transformation, the size L

and displacement M can be used to represent realistic range of
microsaccades [1].

In the neural network, the dynamics of membrane potential
Vj in the LGN neuron j is described by

τm

dVj

dt
= −Vj +

N∑

k=1

gWjkRk. (1)

The parameter τm denotes the membrane time constant. g

represents the maximal synaptic conductance. Wjk denotes the
projection weight from the retinal cell k to the LGN neuron
j . N is the number of neurons in retina. Each LGN neuron j

integrates inputs coming from retinal cell k with firing rate Rk .
Biologically, when the potential Vj reaches a threshold value,
the neuron j emits a spike, and then the membrane potential is
reset to a relatively low value. In order to avoid the short-time
dynamics required to simulate spikes of the action potential
and chemical synapses, we here adopt a firing rate model,
which is much easier to simulate on a computer. The firing
rate Rj of the neuron j is related to the membrane potential
by the logistic function [38],

Rj = α

1 + e−β(Vj −θ) , (2)

where α, β, and θ are constants. α is the maximal rate, β is
the steepness of the response function, and θ , the midpoint
of the function, represents the effective firing threshold. The
logistic function is often used in neural network models to
introduce nonlinearity in neural rate responses, which can
well approximate the dynamics of spiking neurons [38]. The
logistic firing rate model provides an attractive approach for
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studying large neural network because it can be simulated
rapidly.

In addition, there is similar neural dynamics in the V1
neuron i to Eqs. (1) and (2) as follows:

τm

dVi

dt
= −Vi +

N∑

j=1

gWijSjRj (3)

and

Ri = α

1 + e−β(Vi−θ)
, (4)

where Wij represents the linking weight from the LGN neuron
j to the V1 neuron i, N is the number of neurons in LGN and
Sj denotes the synaptic strength from neuron j to neurons in
V1. In biological spiking neuron, the synaptic strength Sj is
subjected to the following STD mechanism [13,19,39]:

dSj

dt
= 1

τS

(1 − Sj ) − (1 − fS)Sj

∑

μ

δ(t − tμ), (5)

where tμ is the time of the μth spike generated by neuron j

and δ(t − tμ) is the Dirac δ function. The parameter fS (0.0 <

fS < 1.0) determines the amount of depression at synapse
j induced by each spike from neuron j . The parameter τS

denotes the recovery time of the neuron transmitters from
depletion. When the afferent neuron j fires a Poisson spike
train at rate Rj , the synaptic strength will quickly decrease
to the approximate steady state (SS) Sj (SS) = 1

1+(1−fS )τSRj
for

a high rate Rj [13,19]. For a very small firing rate Rj , the
synaptic strength approximately maintains its original value 1.
This depression model gives a good fit of experimental data
[13]. To simplify calculation with the rate model, we transform
Eq. (5) into the following equation with the firing rate Rj :

dSj

dt
= 1

τS

(1 − Sj ) − (1 − fS)SjRj . (6)

Obviously, the synaptic strength in Eq. (6) has the same
solution of its steady state (SS),

Sj (SS) = 1

1 + (1 − fS)τSRj

, (7)

as in Eq. (5) for a high firing rate Rj . In this way, we avoid
direct simulations of the spike trains in the neuron j , which
can reduce the amount of computation.

In the retina, neural responsive adaptation has been exten-
sively found in experiments [40,41]. The adaptive response
is mainly reflected in the output of retinal ganglion cells. It
has been experimentally observed that the responses of retinal
ganglion cells become weaker and weaker in the presence
of sustained stimulus from light [42]. However, the retinal
adaptation has not been successfully described by using a
physiologically realistic model that can fit actual experimental
data [43]. Based on the experimental observation of reduced
responses [42], we here propose a phenomenological model
for the retinal adaptation. Motivated by the mathematical
description of the synaptic STD, the firing rate Rk in retinal
cell k could be described by

Rk = rkOk, (8)

where rk is an adaptation factor of the neural response from
the received optical strength Ok (coming from the fixated
dot) to the firing rate Rk . The factor rk denotes resources
required for the response. Here, we suppose that the variation
of the resources is similar to that of synaptic transmitter
resources responsible for STD, which can be regarded as
the interaction between two processes including activity-
dependent depletion and slow replenishment after each firing
spike of the presynaptic neuron [13,16,39]. Similar to the
property of STD in Eq. (6), we can describe rk by using the
following adaptation scheme:

drk

dt
= 1

τr

(1 − rk) − (1 − fr )rkOk, (9)

where τr and fr denote constants with biophysical significance
similar to τS and fS in Eq. (6).

In the simulations, we take N = 1000 and L = 10. The
other parameters in our model are given by τm = 30 ms,
σ1 = σ2 = 1.5, α = 200, β = 1, θ = 6, A = 60, τS = τr =
200 ms, and fS = fr = 0.75, except for special description
for comparisons. The main results, however, do not sensitively
depend on these parameters. Choosing different parameter
values does not alter the qualitative results.

III. RESULTS

A. Fast and sharp response

By using the above network model, we compute V1 neural
responses to microsaccades in the following simulations. In
Fig. 2(a), we plot the V1 network-averaged firing rate 〈Ri〉
induced by fixation and successive microsaccades. Clearly,
the neural activity begins to fade within several hundreds
of milliseconds after the start of fixation in the absence of
microsaccades. If a microsaccade occurs, the neural excitation

FIG. 2. Response in V1 to many microsaccades with frequency
F . (a) The network-averaged firing rate 〈Ri〉 induced by periodic
microsaccades with a frequency F = 4 Hz. (b) The time-averaged
neural activity 〈Ri〉 during the fixation lasting for t = 100 s with ran-
dom microsaccades (in Poisson train) as a function of microsaccade
frequency F . Here, the parameters are g = 1.8, M = 2.2.
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FIG. 3. Comparison of V1 response time scale induced by microsaccade in the cascading-adaptation network model and in the absence of
STD. (a) The network-averaged firing rate 〈Ri〉 evoked by the fixation and a microsaccade which occurs at the time interval TI after the onset
of the fixation. In (a), solid verticals denote response peaks and half-high values between peak and baseline. The response time RT [(b) and (d)]
and the sustaining time ST [(c) and (e)] of the effective responsiveness as a function of the microsaccade magnitude M [(b) and (c)] and the
fixation-microsaccade time interval TI [(d) and (e)]. In (b) and (d), zero response time denotes noneffective response, i.e., the nonoccurrence
of the response peak after the microsaccade in (a). For further comparison, the response time and the sustaining time are given in (b)–(e) for
the case without STD, but with a higher level of the retinal adaptation (by increasing the time scale τr to 500 ms, so that the retinal adaptation
recovers more slowly). Here, we use g = 1.8, TI = 150 ms [(a)–(c)] and M = 2.2 [(a), (d), and (e)].

will return and persist for a few hundreds of milliseconds.
The neural activity is sustained and does not fade away
completely if there are more microsaccades with high enough
frequency (e.g., F = 4 Hz), which is consistent with the
fact that microsaccades occur a few (about 4) times per
second [1]. As suggested in Ref. [30], the neural activity
induced by microsaccades can provide a possible dynamical
explanation for microsaccades’ role in counteracting visual

fading. Here, we calculate the time-averaged neural activity
〈Ri〉 related to microsaccades during fixation as a function
of microsaccadic frequency F , shown in Fig. 2(b). Approxi-
mately, the neural activity increases linearly with the frequency
F . This result suggests that the new neural response induced
by a microsaccade can be regarded as being independent
of that by the previous microsaccade, although there exist
successive microsaccades. This happens because the neural
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activity effectively comes to the baseline due to adaptations
before a new microsaccade happens if the frequency F is not
very high [Fig. 2(a)]. In the following investigations, we focus
on the neural activity induced by an isolated microsaccade
after the initial fixation.

In order to study the effect of STD, we compare the response
time of the neural activity related to microsaccade in the
cascading-adaptation model with that in the absence of STD
at the thalamocortical synapses. As shown in Fig. 3(a), the
response time (RT) is measured as the time interval from
the start of the microsaccade to the response peak after the
microsaccade. If the response peak does not occur after the
microsaccade, the response time will be marked as 0, which
denotes that the microsaccade does not induce an effective
response. Here, we study the effects of the microsaccade
magnitude M and the time interval (TI) between the onsets
of the fixation and the microsaccade. From Figs. 3(b) and
3(d), we can see that there is no effective response induced by
microsaccades with too small M or too short TI. When M or TI
increases respectively to a certain threshold, the microsaccade
can induce an effective neural response (i.e., appearance of
a response peak correlated with the microsaccade). Namely,
there exists a critical value M∗ [(TI)∗] so that if M > M∗
[TI > (TI)∗], then the microsaccade can induce an effective
neural response in V1. We note that the critical values
M∗ and (TI)∗ in the cascading-adaptation model (i.e., with
STD) are both smaller than those without STD (i.e., only
the retinal adaptation is present). This observation suggests
that the cascading-adaptation model can more easily produce
effective response to microsaccades with small magnitude M

or short interval TI, when compared to the model without STD.
Moreover, we find in Figs. 3(b) and 3(d) that the response time
RT related to the microsaccade is shorter in the cascading case
than that in the absence of STD. These results indicate that
STD in the cascading model can easily and quickly produce
effective response to microsaccades.

Importantly, for the effective response to microsaccades,
we specifically compare the sustaining time of the response
in the cascading-adaptation model with that in the absence of
STD. The sustaining time (ST) is regarded as the time interval
from response peak to half-height value before decaying to
the baseline after the microsaccade [Fig. 3(a)]. Figures 3(c)
and 3(e) clearly show that the sustaining time is shorter in the
cascading case than that without STD. Thus, STD can reduce
the duration of the microsaccade-related response and produce
a sharp (fast-depressed) response.

It is plausible to argue whether the effects of the cascading
adaptation due to STD could be equivalent to those of a
stronger adaption at the retina in the absence of STD. In
Figs. 3(b)–3(e), we also give the response time and the
sustaining time in a model without STD (i.e., only having
retinal adaptation), but with a higher level of the retinal
adaptation (by increasing the time scale τr of the retinal
adaptation, so that the recovery time is longer at the retina).
It is found that, the response time and the sustaining time
can slightly decrease. That is, the increasing of adaptation
level at the retina could slightly compensate for the lack
of STD. However, the critical values M∗ and (TI)∗ induc-
ing the effective response are not reduced, but are even
increased.

FIG. 4. Comparison of LGN network-averaged firing rate 〈Rj 〉
(a), synaptic strength 〈Sj 〉 (b), and multiplication 〈RjSj 〉 (c) induced
by a microsaccade in the cascading-adaptation network model and
in the absence of STD. Solid vertical lines denote response peaks in
(a) and (c), respectively. Here, we use g = 1.8, TI = 150 ms, and
M = 2.2.

The above properties of fast and sharp response to mi-
crosaccades induced by STD are found to be generic, i.e.,
robust to parameters (results not shown). Here we study
the underlying mechanism of the generic properties. The
V1 response results from the input of each thalamocortical
synapse from the LGN neuron j , which is proportional to the
network-averaged 〈RjSj 〉 [13]. So, the LGN response 〈RjSj 〉
can be used to reflect V1 response 〈Ri〉. We compare the
〈RjSj 〉 in the cascading-adaptation network model with that
in the absence of STD. In Fig. 4, we plot the time evolutions of
the network-averaged firing rate 〈Rj 〉, synaptic strength 〈Sj 〉,
and the multiplication 〈RjSj 〉 from LGN neurons after the
fixation and the microsaccade. Clearly, the LGN response 〈Rj 〉
increases to a peak and then decreases after the microsaccade
[Fig. 4(a)]. According to Eq. (6), the synaptic strength will
exponentially decrease to the approximate steady value Sj =

1
fS+(1−fS )Rj τS

[13], where Sj is roughly inversely proportional
to Rj . The time evolution of 〈Sj 〉 is opposite to that of 〈Rj 〉 with
time delay determined by Eq. (6) [Fig. 4(b), black solid line].
Clearly, 〈Sj 〉 sequentially decreases when 〈Rj 〉 increases to
the response peak after the microsaccade. Thus, the response
peak of 〈RjSj 〉 appears before the response peak of 〈Rj 〉.
Without STD, the synaptic strength Sj is always invariant
(here, we let the value to be 1) [Fig. 4(b), red dashed line].
We can get 〈RjSj 〉 = 〈Rj 〉 in the absence of STD. Therefore,
the appearance of the response peak after the microsaccade in
the cascading model with STD is always ahead of that without
STD [Fig. 4(c)]. So, STD contributes to faster response to
microsaccades.

Next, we focus on the time scales of the decreasing
components in the neural response after the microsaccade,
in order to study the mechanism of sharp response induced
by STD. According to Eqs. (8) and (9), we can theoretically
get an exponential decay 〈Rk〉 ∼ e−t/τ after the response
peak with a time scale τ � τr/1 + (1 − fr )Aτr . So, the LGN
response behaves also as an exponential decay 〈Rj 〉 ∼ e−t/τ1
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FIG. 5. The same as in Fig. 4, but for the comparison between
the two cases with different microsaccade magnitudes (M = 2 and 3).
The solid vertical line denotes the response peaks in (a). Here, we use
g = 1.8 and TI = 150 ms.

[Fig. 4(a)] with another time scale τ1 due to the exponential
inputs from retinal responses. According to Eq. (6), 〈Sj 〉
gives another exponential decay 〈Sj 〉 ∼ e−t/τ2 [Fig. 4(b), black
solid line] after the microsaccade in the cascading-adaptation
network model. Therefore, the multiplication 〈RjSj 〉 can be

approximately described by 〈RjSj 〉 ∼ e
−( 1

τ1
+ 1

τ2
)t = e−t/τ3 with

a smaller time scale τ3 [Fig. 4(c), black solid line], where τ3

is theoretically smaller than both τ1 and τ2. In the absence
of STD, 〈RjSj 〉 = 〈Rj 〉 ∼ e−t/τ1 exponentially decreases with
the larger time scale τ1 [Fig. 4(c), red dashed line] after the
response peak induced by the microsaccade. Since τ3 < τ1,
the sustaining time of the response to the microsaccade in the
cascading model with STD is shorter than that in the absence
of STD.

Moreover, it is noteworthy to see from Fig. 3(c) that the
sustaining time in the cascading adaption decreases as M

grows. This behavior is contrary to the case where STD is
absent. The opposite variations can be explained in Fig. 5.
For the larger microsaccadic magnitude M , the response 〈Rj 〉
to the microsaccade can produce a larger peak because of
a new large input to LGN by moving the fixated dot over
the neurons with less retinal adaptation. The response with a
larger peak can last for a longer sustaining time, so the larger
peak decreases exponentially with a larger time scale after the
response peak [Fig. 5(a)]. In the absence of STD, the time
scale of decreasing response 〈RjSj 〉 = 〈Rj 〉 for large M is
longer than that for small M . Therefore, with the increase of
M , the sustaining time of V1 response increases in the model
without STD, as shown in Fig. 3(c). When we consider STD
at the thalamocortical synapses, 〈Sj 〉 displays the opposite
relation of time scales for large and small magnitudes M

[Fig. 5(b)], compared with the relation of time scales of 〈Rj 〉
[Fig. 5(a)]. This is because the synaptic strengths 〈Sj 〉 of the
newly fixated LGN neurons with the less adaptation for large
magnitude M will be more strongly suppressed and decrease
immediately and substantially [Fig. 5(b), red dashed line]
when the microsaccade appears. The multiplication 〈RjSj 〉

FIG. 6. The same as in Fig. 5, but for the comparison between
the two cases with different fixation-microsaccade intervals (TI =
130 ms and 300 ms). Here, g = 1.8 and M = 2.2 are given.

can display the same relation of time scales for 〈Sj 〉 for large
and small magnitudes M in the cascading model with a strong
STD [i.e., the large τS and the small fS in Eq. (6)], as shown
in Fig. 5(c). Thus, the sustaining time of V1 response to the
microsaccade can decrease with the increasing of M in the
presence of strong STD [e.g., the parameters τS = 200 ms
and fS = 0.75 adopted in this paper, which are fitted by
experimental data [13], Fig. 3(c)].

As shown in Fig. 3(e), the sustaining time increases with
the increase of TI (within the small region) in the cascading
adaptation, while it decreases in the absence of STD. The
opposite trends in these two models can be explained in Fig. 6.
When the fixation-microsaccade time interval TI is large, the
depressed time of the retinal neuron during the fixation is
long and the adaptation factor rk is small in Eq. (9) after
the microsaccade. The small rk produces small response with
small time scale for the decrease of 〈Rj 〉 in LGN [Fig. 6(a)]. In
the absence of STD, the responses of 〈RjSj 〉 and 〈Rj 〉 display
the same decrease with small time scale after the response peak

FIG. 7. Phase diagrams of the thresholds M∗ (a) and (TI)∗ (b) in
τS-fS plane. Here, g = 1.8, TI = 150 ms (a), and M = 2.2 (b).

042302-6



FAST RESPONSE AND HIGH SENSITIVITY TO . . . PHYSICAL REVIEW E 93, 042302 (2016)

FIG. 8. The same as in Fig. 3, but for the comparison of V1 response effectiveness and sensitivity. Here we adopt g = 1.8 from retina to
LGN, but g = 2.8 from LGN to V1 for the cascading-adaptation model in order to modulate the approximate response peaks after the fixation
for eliminating the effect of responsive scale [see (a)]. In (c) and (e), �(M) = 0.2 and �(TI) = 10 ms are given, respectively.

for large TI. Therefore, the sustaining time of V1 response
〈Ri〉 decreases with the increase of TI in the absence of STD
[Fig. 3(e)]. With STD, the synaptic strength 〈Sj 〉 in LGN is
large at the microsaccade onset time, and decreases with large
time scale after the microsaccade for large TI [Fig. 6(b), red
dashed line] due to the inverse ratio relation Sj = 1

fS+(1−fS )Rj τS

between Sj and Rj . The multiplication 〈RjSj 〉 can display
the same relation of time scales of 〈Sj 〉 for large and small
intervals TI in the cascading model with a strong STD, as
shown in Fig. 6(c). Thus, the sustaining time of V1 response
to the microsaccade can increase with TI in the presence of
strong STD considered here.

As noted above, the critical values M∗ and (TI)∗ are smaller
in the cascading model with STD [see Figs. 3(b)–3(e)], so STD
can more easily evoke the effective response to microsaccades.
Here we investigate the dependence of the critical values M∗
and (TI)∗ on the parameters τS and fS of STD, as shown in
Fig. 7. It is found that the critical values M∗ and (TI)∗ are
independent of τS for a given fS . But, they both decrease as fS

becomes smaller (i.e., the adaptation level of STD increases)
for a given τS . Thus the effective response to microsaccades is
sensitive to the variance of STD level by changing fS . The
stronger the STD (by decreasing fS), the more easily the
effective response to the microsaccade will occur.
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B. High effectiveness and sensitivity

The above fast-produced and fast-depressed (sharp) re-
sponse could contribute to providing more resting time for
preparing the response to the next microsaccade. So, these
results of fast and sharp response induced by STD could
imply a highly effective and sensitive response to successive
microsaccades or the tiny movements in the visual world. In
this section, we investigate in detail the effect of STD on
the effectiveness and sensitivity of response to microsaccades
in the cascading-adaptation model. The microsaccade-related
effectiveness is defined by a relative change of the neural
response to the microsaccade, i.e., the difference of the neural
responses between the peak after a microsaccade and the
baseline before the microsaccade, divided by the baseline.
The sensitivity of the effective response to the change of M

or TI by an amount �(M) or �(TI) is defined as the change
of the effectiveness evoked by a given �(M) or �(TI) divided
by �(M) or �(TI). Actually, this definition denotes the slope
of effectiveness curve as the function of M or TI if �(M)
or �(TI) is infinitesimal. In our simulations, spatial change
induced by the microsaccade is assumed to be momentary,
and the time interval and microsaccade-microsaccade time
interval (i.e., microsaccadic time interval) both denote the
time interval between two neighboring fixations. Thus, the
fixation-microsaccade time interval TI can be regarded as
microsaccadic time interval in the presence of successive
microsaccades. Since �(TI) and �(M) respectively denote
microsaccadic temporal and spatial variations, the defined
sensitivity can be used to reflect the change rate of the
neural response effectiveness for detecting microsaccadic
spatiotemporal changes.

In Fig. 8, we compare the response effectiveness and
sensitivity in the cascading-adaptation model with those in
the absence of STD. As shown in Fig. 3(a), the response
amplitudes are different in the two models when their
parameters are the same. In order to eliminate the effect of
the response amplitudes, the amplitudes of the two response
peaks in the two cases are modulated to be the same by
increasing the synaptic conductance g from LGN to V1 in
the cascading-adaptation model, shown in Fig. 8(a). Similarly
to Figs. 3(b) and 3(d), there are two critical values M∗ and
TI∗. When M > M∗ or TI > TI∗, the effective response (i.e.,
nonzero effectiveness) appears in Fig. 8(b) or 8(d). Obviously,
the response effectiveness is larger in the cascading-adaptation
model than that in the absence of STD, indicating that STD
enhances the response effectiveness.

Particularly, STD greatly increases the sensitivity to small
changes, �(M), in the value of microsaccade size M

[Fig. 8(c)]. In the cascading model, the sensitivity is approx-
imately two times larger than that in the absence of STD.
STD can also enhance the sensitivity to small changes �(TI)
at small values of TI [Fig. 8(e)]. But as TI increases to large
values, the sensitivity with STD is slightly smaller than that
without STD. This is because STD can easily make response
effectiveness saturated for large TI [Fig. 8(d)] owing to sharp
response with fast decay to baseline [Fig. 8(a)]. These results
suggest that STD enhances the effectiveness and sensitivity of
the neural responses to microsaccades and therefore improves
the detection of microsaccadic spatiotemporal variations.

IV. CONCLUSION AND DISCUSSION

To sum up, we proposed a cascading-adaptation network
model including both the retinal adaptation and STD at the
thalamocortical synapses. It was found that STD not only can
more easily induce the effective response to microsaccades but
also can make the response faster and sharper when compared
to the case without STD. Moreover, STD can enhance the re-
sponse effectiveness and sensitivity to microsaccade-generated
spatiotemporal changes, which indicates that STD can improve
the detection of microsaccades.

In our model, microsaccades are regarded as the relative
slight movements of the fixated dot. Actually, both neural
processing dynamics as well as the perceptual interpretation
of a stimulus can also depend on sensory history (e.g., slight
movement of the fixated dot) [44]. Thus, the reported effects of
STD on the neural responses to microsaccades can also denote
contributions of STD to neural activity related to moving visual
stimuli. Therefore, STD can also give rise to fast and sharp
response to visual motion. Moreover, it can also enhance the
response effectiveness and sensitivity to slight movement of
visual stimuli, implying that STD could improve the detection
of slight movement of visual objects.

It is noteworthy that changes of the sustaining time as
a function of M and of TI in the cascading adaptation
and those in the absence of STD display opposite trends
[Figs. 3(c) and 3(e)]. The sustaining time of the responsiveness
monotonously decreases (increases) with M (TI) (within the
region of small values) in the cascading adaptation, while it
monotonically increases (decreases) in the absence of STD.
Since microsaccades could be required for counteracting
visual fading during fixation [1,2], the sustaining time of the
neural response induced by microsaccades can reflect the time
interval between two consecutive microsaccades. Therefore,
according to Fig. 3(c), we could give a behavioral prediction of
the relation between microsaccadic magnitudes and intervals
in the presence of STD: a smaller micacrosaccdic interval
could follow the previous microsaccade with a larger size (in
the sense of statistical average). Without STD, the relation
however could behave oppositely. Similarly, according to
Fig. 3(e) we could also give another behavioral prediction
about the relation of two adjacent microsaccadic intervals.
STD contributes to a slightly linear positive relation between
two adjacent microsaccadic intervals. Namely, if the mi-
crosaccadic time interval is large, the next microsacadic time
interval could also tend to be large (in the sense of statistical
average), and vice versa. However, in the absence of STD the
behavioral relation might exhibit an opposite trend. Therefore,
the two predictions could be used to experimentally verify the
important role of STD in the neural response to microsaccades
by finding the evidence for the above relationships.

The STD mode in Eq. (6) is a deterministic description
of synapse depression (i.e., the release of synaptic vesicles
is deterministic). Recent work has shown that the role of
stochasticity in synapses with STD plays an important role
in explaining important aspects of V1 responses [45,46].
Since microsaccades are stochastic [1], the interplay between
two stochastic dynamics could make the study of successive
microsaccades both interesting and challenging by using the
stochastic STD model. In the future, further investigations are
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expected to explore more dynamical properties induced by
successive microsaccades.

Generally, our cascadingadaptation model considers simul-
taneously retinal adaptation and STD at the thalamocortical
synapses in the study of neural activity related to microsac-
cades, therefore it may provide a starting point for modeling
visual processes of microsaccades. Our model can provide
a useful tip for the understanding of behavioral properties
and functional roles of microsaccades and other types of eye
movements in the future.
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