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Chaotic and ballistic dynamics in time-driven quasiperiodic lattices
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We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based
on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct
velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block
decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is
performed.
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I. INTRODUCTION

One of the workhorses in the field of classical chaotic dy-
namics of time-driven setups are driven lattices, i.e., spatially
periodic potentials subjected to a temporally periodic forcing.
In particular, their resulting transport properties have received
tremendous attention as they provide working principles for
Brownian or molecular motors [1–9] or have even found
direct technical applications, e.g., in particle species separation
[10–13]. In terms of the direct experimental realization of
such driven lattice potentials, cold atoms loaded into shaken
optical lattices as generated by counter propagating laser
beams have been shown to provide an ideal toolbox as they
allow for precise control of the system parameters and thus
for an experimental verification of many of the theoretically
introduced concepts on ratchet transport [14–17].

An interesting aspect of driven lattice physics has been
the effect of deviations from a purely periodic setup. Here,
for coupled, dissipative systems it was shown how iso-
lated impurities may stabilize soliton solutions [18,19] or
how—more generally—the introduction of disorder initiates
synchronization in the asymptotically reached state [20,21].
Recently, it was also demonstrated how disorder may lead
to ordering, in the sense of increased autocorrelations and
strongly peaked velocity distributions, even in Hamiltonian
lattice systems [22]. At this point it is certainly worth
mentioning that the two structurally limiting cases of strictly
periodic and fully randomized lattices have, of course, also
been investigated keenly in the quantum domain. Here the
periodic regime is characterized by extended Bloch waves
[23], whereas randomness is often accompanied by the
celebrated Anderson localization effect [24]. In the quantum
domain, however, a third form of spatial structure has also
attracted considerable attention, namely quasiperiodic lattices,
triggered particularly by the pioneering work of Shechtman
et al. [25], where the possibility of long-range order even
in the absence of translational symmetry was demonstrated.
In fact, it was shown how quasiperiodicity leads here to
a qualitatively new phenomenology compared to both the
periodic and the random cases [26,27], specific examples being
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self-similar critical states or singularly continuous energy
spectra [28,29].

In the classical regime, however, quasiperiodic lattices and
their associated chaotic nonequilibrium dynamics have so far
been largely unexplored. Shining light on this dynamics is
the purpose of the present manuscript. To this end, we study
periodically driven lattices built of individual scatterers which
are arranged in a quasiperiodic, as compared to a periodic
or randomized, manner. We hereby focus on quasiperiodicity
as generated by the Fibonacci sequence, constituting one of
the commonly studied implementations of quasiperiodicity
[29]. Indeed, we showcase observables, in particular, the
ballistic flight length distribution, where qualitative differences
between the quasiperiodic and the periodic and random
lattices are apparent. Specifically, we find velocity domains
where particles perform exceptionally long ballistic flights,
a feature shown to be absent in the randomized lattice
and hence hinting at the high degree of long-range order
in the Fibonacci chain [30–32]. We demonstrate how the
quasiperiodic lattice can be decomposed into a hierarchy of
building blocks, where each hierarchy is shown to naturally
induce a set of Poincaré maps which describe the dynamics
on increasingly larger length scales. By this approach, we
are able to relate invariant subsets of the Poincaré maps
corresponding to distinct hierarchical levels to the observed
long ballistic flight events. Here we stress that the routinely
employed analysis tools, in particular Poincaré surfaces of
section, rely intrinsically on the driven systems periodicity.
Hence, they cannot be applied straightforwardly to driven
quasicrystalline systems, making their analysis and physical
interpretation of obtained results a genuinely challenging
prospect. For this reason, we believe that the introduced
notion of a set of Poincaré maps, adapted specifically to the
given quasiperiodic lattice, should be of conceptual interest in
the investigation of the chaotic dynamics of aperiodic driven
systems.

Our manuscript is structured as follows: In Sec. II we
introduce the driven lattice Hamiltonian for the periodic,
quasiperiodic, and randomized cases. In Sec. III, some basic
notions of chaotic dynamics in driven lattices are introduced.
Section IV contains a comparison of the flight length distri-
butions for all three cases. These results are further analyzed
in Sec. V and explained by means of a block decomposition
of the Fibonacci lattice in Sec. VI. Finally, we provide our
conclusions in Sec. VII.
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II. THE DRIVEN LATTICE HAMILTONIAN

Throughout this work we study the dynamics of noninter-
acting classical particles of equal mass m governed by the
driven lattice Hamiltonian:

H (x,p,t) = p2

2m
+

∞∑

n=1

Vn�(l/2 − |x − Xn − d(t)|). (1)

That is, the potential consists of a semi-infinite array of
individual barriers of width l and site-dependent heights Vn.
Furthermore, the barriers oscillate around their equilibrium
positions Xn ≡ n × L, where L denotes the lattice spacing,
according to the driving law d(t) = A sin(ωt) with driving
amplitude A, driving frequency ω, and resulting temporal
periodicity T = 2π/ω. (Throughout the manuscript, initial
conditions will be chosen randomly at large x, such that the
boarders of the lattice are not reached within the simulation
time.) Such a Hamiltonian may be seen as minimalistic
model for time-dependent lattice systems as occurring in
radiated semiconductors or in cold atom physics. The major
advantage of it is that, via appropriate choices of the site
dependent barrier heights Vn, different spatial structures of
the lattice can be realized and dynamical processes occurring
there can be analyzed and compared. We are interested here
in three different types of lattices which will be shown to
yield substantially different dynamical evolutions for particle
ensembles. Specifically, these three cases are periodic lattices
(PL), randomized lattices (RL), and quasiperiodic Fibonacci
lattices (FL). Each of these can be realized by introducing two
types of barriers denoted symbolically by A and B. Barriers of
different type are thereby distinguished by their height, i.e., Vn

takes either of the two different values VA or VB throughout the
lattice [see Fig. 1(a) for a sketch of the setup]. A and B barriers
are then arranged in a periodic, quasiperiodic, or randomized
manner:

PL: Vn = VA

RL: Vn = VA, for σn = 1, Vn = VB for σn = 0

FL: Vn = VA, for Fn = 1, Vn = VB for Fn = 0, (2)

where σ is a randomized sequence of zeros and ones.
Contrarily, F is a quasiperiodic sequence, again of zeros
and ones but whose elements Fn are arranged according to
a construction principle based on the Fibonacci numbers (see,
e.g., Ref. [32] for details), such that the first few elements are
given by:

F = 1 10 101 10110 10110101 . . . . (3)

Interestingly, the Fibonacci sequence, although never peri-
odically repeating, contains a plethora of structurally highly
nontrivial properties, such as local parity symmetry on all
scales [32], and has been the subject of intensive research in
both physics [29,33] and mathematics [30,31].

III. MOTION IN PERIODIC, QUASIPERIODIC, AND
RANDOMIZED DRIVEN LATTICES: BASIC CONCEPTS

In the periodic case, the setups mixed phase space can
be visualized conveniently by the Poincaré surface of section

FIG. 1. (a) Sketch of a laterally oscillating lattice build of two
barrier types A and B distinguished by their potential heights VA and
VB. Between consecutive barriers are the Poincaré surfaces (orange).
(b) Extract of the Poincaré surface of section of a periodic lattice
consisting only of A-type barriers with VA = 1.5. The horizontal
dashed line indicates the maximal velocity vC

max that particles can
acquire in the chaotic sea. Also shown is the period three fixed point
of the Poincaré map MA centering the three corresponding regular
islands. Each arrow indicates one application of MA on a trajectory
in the fixed point. Remaining parameters are ω = A = m = l = 1.0
and L = 5.0.

(PSS). Here we denote velocities and phases φ ≡ (t mod T )
at positions XPSS = {x, x = n × L} for n ∈ N [cf. Fig. 1(a)].
The extract of the resulting PSS for a PL, which is of
relevance for the results presented in this manuscript, is shown
in Fig. 1(b), revealing the typical ingredients: a “chaotic
sea”, regular or “ballistic” islands embedded in it, and,
finally, invariant curves confining the chaotic sea at higher
velocities (because of the time reversal symmetry of the used
Hamiltonian, the PSS is mirror symmetric around v = 0).
An exemplary trajectory of the PL with initial conditions
belonging to the chaotic sea is depicted in Fig. 2(a) and
shows a mostly erratic motion with frequent changes of
magnitude and sign of the velocity, accompanied by phases
of motion where its velocity only fluctuates slightly; see, e.g.,
the inset of Fig. 2(a). These “stickiness” events are known
to be quite generic for Hamiltonian systems and, simply put,
originate from the fact that a chaotic trajectory gets drawn in
by the intricate network of stable and unstable fixed points
surrounding a regular structure which borders the chaotic sea
[34]. Furthermore, the maximal speed of a trajectory in the
chaotic sea is denoted by vC

max [see the horizontal dashed lines
in Fig. 1(b) and Fig. 2].

For the randomized lattice, there is no such bound on the
particle’s energy and it is in fact expected that the RL features
Fermi acceleration, as was demonstrated for comparable,
randomized setups [35]. If we again consider an exemplary
trajectory for the RL [Fig. 2(b)], then we see, somewhat
analogously to the PL, an apparently irregular motion at
velocities corresponding to the chaotic sea of the PL, which is
interrupted by long unidirectional flights at higher velocities.
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FIG. 2. Exemplary trajectories v(t) for the periodic (a), random-
ized (b), and quasiperiodic lattices (c). In all three cases, the horizontal
line denotes ±vC

max [see Fig. 1(b)]. The inset in (a) shows a zoom
into a typical stickiness event. Parameters are VA = 1.5 [same as in
Fig. 1(b)] and VB = 1.0. Remaining parameters are the same as in
Fig. 1.

A similar behavior can be observed for the sample trajectory
in the quasiperiodic lattice [Fig. 2(c)], where again the particle
motion at small velocities with |v| � |vC

max| is accompanied
by large fluctuations in the velocity and is interrupted by
long flights at higher velocities. Hence, at least from this
simple analysis based on sample trajectories, it appears that
differences in the dynamical properties of the three studied
lattice types are manifest mostly in the dynamics at |v| � |vC

max|
rather than in the low-energy regime.

IV. FLIGHT LENGTHS IN PERIODIC, QUASIPERIODIC,
AND RANDOMIZED DRIVEN LATTICES

We now focus on a systematic investigation of the question
if and how any of the structural properties of the Fibonacci
sequence translate into dynamical properties of the nonequi-
librium dynamics of particles. As indicated above, a promising
candidate for an effect where the periodic, randomized, and
quasiperiodic lattices significantly differ from one another are
long flight events at velocities |v| � |vC

max|. Here, a particle
traverses many barriers and thus correlations between lattice
sites even on large scales can be expected to play a role.

In order to investigate these long flight events quantitatively,
we calculate the flight length distribution �(�x) of particles,
where the flight length �x is defined as the distance that
a particle travels between two consecutive flips of the sign

of its velocity. Particularly, for large �x, the three different
lattices types can be expected to deviate from one another,
which we will explore in the following. Numerically, �(�x)
is obtained by propagating N = 2 × 104 particles up to tmax =
108 × T with randomized initial velocities −0.1 < v0 < 0.1,
so all initial conditions would be located within the chaotic
sea of the PL. The starting positions are chosen randomly
within the interval 5 × 108 + 103 < x0/L < 5 × 108 − 103

and numerical convergence with respect to N and tmax, as well
as independence from the choice of the initial positions, was
checked very carefully. For the RL [Fig. 3(a)] we observe,
to good approximation, for several orders of magnitude a
power-law dependence �(�x) ∝ (�x)αRL with some exponent
αRL. In some sense, this simple power-law decay of �(�x) for
the RL can be seen as a benchmark for the two other setups,
as it represents the result for a completely uncorrelated lattice.
Hence any deviations from �(�x) for the PL, and particularly
for the FL, can be expected to relate to structural properties
of the phase space of the corresponding lattice. In fact, the
flight length distribution for the PL [Fig. 3(b)], while still

FIG. 3. (a) Flight length distribution �(�x) for large �x in
double logarithmic representation for the randomized lattice. (b)
�(�x) for periodic and quasiperiodic lattice. Shaded intervals
correspond to extraordinarily long flights. (c) Ratio of �(�x) of
the periodic or quasiperiodic lattices and �(�x) of the randomized
lattice. Shaded intervals are identical as in (b). Also shown are
velocity-resolved flight length distributions �(�x,v̄) for the random
(d), periodic (e), and quasiperiodic lattices (f). In the latter case,
the dashed rectangle highlights the horizontal branch of long
flights.
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featuring an overall polynomial decay, also reveals deviations
from the pure power-law-like behavior and shows a small
amplitude oscillation around 5 � log �x � 5.5. Interestingly,
these deviations from the power-law-like decay of �(�x) can
also be observed for the FL. This can be seen even clearer
when calculating the ratio of �(�x) for the PL or the FL with
respect to the RL [see Fig. 3(c)]. Here, in particular for the
FL, pronounced maxima are apparent at distinct flight lengths,
indicating that certain �x are favored for the PL and the FL
when comparing their flight length distributions to the one of
the RL.

More insight into this effect can be obtained by calculating
velocity resolved flight length distributions �(�x,v̄) [see
Figs. 3(d), 3(e), and 3(f)], where v̄ is the average velocity
for a given flight of length �x. [Similarly to the previous
discussion, the time-reversal symmetry of the Hamiltonian
ensures that �(�x,v̄) = �(�x, − v̄)]. For the RL, we observe
that �(�x,v̄) is concentrated around higher velocities for
longer flight lengths �x. This is in accordance with the obser-
vation made from the sample trajectories, namely that as soon
as |v| < |vC

max| the velocity sign changes rapidly. Contrarily,
once a particle reaches the high-velocity regime, the particles
kinetic energy is large compared to the lattice potential and
the influence of the lattice potential on the particles velocity
can expected to be small. Hence the particle’s velocity change
upon collision with a barrier tends to be smaller the higher
its velocity, which supports the effect of longer unidirectional
flights at higher velocities. Apparently, for the PL this simple
line of argument fails and �(�x,v̄) looks qualitatively different
[see Fig. 3(e)], revealing that �(�x,v̄) �= 0 only along two
branches centered around v̄ ≈ 2.4 and v̄ ≈ 2.6, respectively.
First, as there is an upper bound of vC

max on the particles velocity
in the PL, this bound holds of course also for the average
velocities v̄ and hence �(�x,v̄) = 0 for v̄ > vC

max (keep in
mind that the particle ensemble used to determine the flight
length distributions is started with low energies and is hence
located entirely within the chaotic sea). Second, the reason
for the appearance of these two branches can be understood
conveniently by considering again the systems PSS [Fig. 1(b)].
As mentioned above, long unidirectional flights in the PL
are closely related to the stickiness of trajectories at regular
structures which bound the chaotic sea. Apparently, there are
notably two such regular structures present: the chain of three
islands around v ≈ 2.5 as well as the first invariant spanning
curve (FISC) acting as an upper bound of the chaotic sea
at around v ≈ 2.9. Please note that the three islands should
indeed be interpreted as a single regular structure, since they
share a common central orbit with a periodicity of three unit
cells. Indeed, one can check, by inspecting the corresponding
trajectories, that the flights at large �x around ∼2.4 are caused
by particles getting sticky to the island chain, while the branch
around ∼2.6 is caused by particles becoming sticky to the
FISC. The fact that both branches in �(�x,v̄) appear to
be at slightly smaller velocities than the associated regular
structures has, in fact, a very simple explanation. For the PSS
[Fig. 1(b)], the velocity of a particle is denoted at positions
between scatterers and hence at positions where the potential
is zero. While passing through the lattice, the particle has to
surpass the repulsive barriers, and thus momentarily its kinetic
energy is lowered. Hence the average velocity of a particle

moving along some regular structure can indeed be expected
to be smaller than the velocity suggested by the PSS as
shown in Fig. 1(b).

Finally, lets turn our attention to the quasiperiodic case
[Fig. 3(f)]. Again, �(�x,v̄) reveals the overall trend that longer
flights possess larger average velocities, as already observed
for the RL. Strikingly, we also see a horizontal branch centered
around v̄ ≈ 3.2, similarly to the two branches as observed for
the PL. These, however, were remnants of regular structures of
the PL’s phase space, which—particularly in the case of regular
islands—can be traced back to a synchronization of the particle
motion with the lattice oscillation. As this, apparently, hinges
on the periodicity of the lattice, it is now an intriguing question
as to what is the cause of the horizontal branch in �(�x,v̄) of
the FL.

V. TRANSIENT MOTION IN QUASIPERIODIC LATTICES

While for the PL, all the regular structures of the corre-
sponding phase space can be investigated conveniently by
means of the PSS, the same procedure cannot be applied to
the FL, simply because the PSS inherently exploits the systems
spatial periodicity. Hence, we must opt for a different approach
and again turn to an observable related to the flight lengths.
Here we calculate the flight length of a given initial condition
(x0,φ0,v0) by propagating particles until their velocity passes
v = 0 for the first time. At this point, the modulus of the
current position x of the particle minus x0 gives the flight
length �x(x0,φ0,v0) for this particular initial condition. The
results for the PL, RL, and the FL are shown in Figs. 4(a),
4(b), and 4(c) respectively for an initial position x0 = 0. For
the PL, we very clearly see the counterparts of the regular
structures as present in the PSS [cf. Fig. 1(b)]. If the trajectory
is started within one of these structures, then it performs an

FIG. 4. Flight length �x(x0,φ0,v0) starting at x0 = 0 as a function
of the initial phase and initial velocity for the periodic (a), randomized
(b), and quasiperiodic (c) lattice. (The shorter cutoff in the PL is for
illustrative purpose only). In (d) we show �x(x0 = 100 × L,φ0,v0)
for the quasiperiodic case. Dashed rectangles highlight plateaus of
extraordinarily long flights. Parameters are the same as in Fig. 2.
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unidirectional motion through the lattice and �x(x0,φ0,v0) is,
in fact, infinite. In this sense, calculating �x(x0,φ0,v0) can be
seen simply as an alternative approach to determine the regular
structures in the phase space of the PL. Its major advantage is
that it does not intrinsically rely on the spatial periodicity of the
system and can thus be applied for nonperiodic lattices also.
Here, we, of course, have to keep in mind that �x(x0,φ0,v0)
is expected to depend on x0 and in particular does not obey
�x(x0,φ0,v0) = �x(x0 ± n × L,φ0,v0) as it does for the PL.
Nevertheless, we will see that calculating the flight lengths for
some exemplary x0 for the RL and the FL does indeed reveal
some valuable insight. Starting with the RL [Fig. 4(b)], we
observe no apparent separation between regular and diffusive
motion as seen in the PL, and, in fact, it is reasonable to assume
that every trajectory will eventually pass v = 0, thus leading to
a finite flight length �x for all initial conditions. As a general
trend, we again see that larger initial velocities v0 tend to
lead to longer flights, which agrees well with the discussion
concerning the flight length distribution �(�x,v̄) [Fig. 3(d)].
Finally, for the FL [Fig. 4(c)], �x(0,φ0,v0) qualitatively differs
from both the periodic and the randomized cases. Here we
see a sharp increase of the flight length at around v0 ∼ 3.
Furthermore, we see a plateau of extraordinarily long flights
centered around φ0 ∼ 0/2π and v0 ∼ 3.5, which is very
much reminiscent of the regular islands as seen for the PL.
Interestingly, like the regular islands in the PL, the plateau
falls together with a horizontal branch in the flight lengths
distribution �(�x,v̄) as shown in Fig. 3(f) [for the same
reason as before, the plateaus’ velocity in �x(0,φ0,v0) appears
slightly higher than the velocity of the corresponding branch
in �(�x,v̄)]. At this point, the question arises regarding how
�x(x0,φ0,v0) changes upon changing x0. Exemplarily, we
show the result for x0 = 100 × L in Fig. 4(d), revealing that
the observed plateau appears again within the same velocity
interval but centered around a different phase. By repeating this
for various x0 we can convince ourselves that the appearance of
a plateau of long flights at velocities of v0 ∼ 3.5 seems to be a
“global” property of the FL rather than a peculiarity for some
distinct parts of the lattice. Despite the similarities between
the plateau as observed in the FL and the regular islands in
the PL, there is also a major difference, which is the finite
flight length within the FL even for trajectories started within
the plateau, thus making this a phenomenon of a transient
dynamics.

Lets us briefly summarize what we know about the motion
in the FL so far: Apparently, we have found domains of
initial conditions leading to exceptionally long unidirectional
flights. In particular, these defy the simple overall trend of
longer flights for higher velocities, thereby contrasting the
dynamics in the RL. Additionally, the flight lengths remain
finite, which—in turn—is in contrast to motion on a ballistic
island of the PL. However, all the described features are
reminiscent of a stickiness event of a trajectory in the PL.
Hence, it appears as if trajectories in the FL would follow
some phase-space structure to which they become sticky for
a long time but are eventually able to escape. Naturally, the
question arises regarding what this phase-space structure is
and what is its physical origin and, maybe more importantly,
if we can somehow deduce and understand is location around
v ∼ 3.5 (and φ ∼ 0 for x0 = 0).

VI. BLOCK DECOMPOSITION OF THE
FIBONACCI LATTICE

At this point, we need to make use of some distinct
properties of the FL. In particular, we will argue that it can
be decomposed into building blocks on various hierarchical
levels. Based on this block decomposition of the FL, we
will construct a set of PSS of periodic lattices and their
corresponding Poincaré maps, which govern the dynamics
in the FL on different length scales. Finally, we show how
invariant subsets of these Poincaré maps are related directly to
the observed long ballistic flight events.

A. Poincaré maps and their application to randomized systems

For the PL, we defined the Poincaré surfaces to be at
positions XPSS = {x, x = n × L} for n ∈ N [cf. Fig. 1(a)].
Subsequent coordinates on these surfaces of a trajectory
moving through the lattice are then linked via the Poincaré
map:

(φk+1,vk+1) = MA(φk,vk), (4)

which is thus determined implicitly by the scattering properties
of the lattice barriers (the subscript “A” denotes that, as before,
the PL consists of A-type barriers). Note that dynamical
processes occurring on length scales below the distance of
adjacent Poincaré surfaces are not resolved by MA for the
given choice of the surfaces. For example, orbits trapped
between two positions of adjacent Poincaré surfaces which are
present even for oscillating repulsive barriers (see Ref. [36])
are not captured (but these are also not relevant for our work).
The main features of MA can be read off directly from the
setups PSS [Fig. 1(b)]. Particularly, a stable fixed point (φf ,vf )
of a given period p:

(φf ,vf ) = Mp

A(φf ,vf ), (5)

where the superscript denotes a p-fold application of MA,
is made apparent as p regular islands in the PSS. Thereby,
each of the fixed point surrounding closed curves constitutes
an invariant set under the action of Mp

A.
Equivalently, we can describe the dynamics in nonperiodic

lattices by means of successive applications of the Poincaré
maps MA and MB . An intriguing question is now whether
a randomized lattice may allow for periodic motion on the
level of Poincaré maps. One straightforward way this could be
realized is by demanding that MA and MB share a common
fixed point: (φf ,vf ) = MA(φf ,vf ) = MB(φf ,vf ). If such a
point exists, then one might say that (φf ,vf ) constitutes a fixed
point of the dynamics in the entire nonperiodic lattice. While
by fine-tuning of parameters it might indeed be possible to
match fixed points of MA and MB , in a generic setting this
cannot be expected to happen. Also, even if such a point exists,
in order for it to be stable, the surrounding invariant sets ofMA

and MB would also have to be invariant under the action of
bothMA andMB . This seems to be even harder to accomplish
by means of fine-tuning parameters and in fact we see no such
stable fixed points in both studied nonperiodic cases. Finally,
for nonperiodic lattices, fixed points of MA or MB of order
p > 1, corresponding to ballistic unbounded motion, are not
relevant as these would require a repeating sequence of A and
B barriers.
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FIG. 5. Block decomposition of the Fibonacci lattice in symbolic
notation according to the decomposition rule given in Eqs. (6) and
(7). The first row depicts the first few elements of the Fibonacci
sequence [cf. Eq. (3), where a 1 (0) corresponds to a barrier
of type A (B)]. At the same time, this first row is the “zeroth
generation” of the decomposition hierarchy. All further rows show
block decompositions of increasing generations.

B. Symmetry adopted Poincaré maps of the Fibonacci lattice

Naively, one might argue that in order for the FL to support
ballistic islands, again one would have to match fixed points of
MA and MB and their invariant subsets. As we will see in the
following, this is, however, too simplistic and the FL requires
a more sophisticated analysis. At this point, we would like to
stress that we checked the validity of the numerical results,
presented in the following, beyond the for this manuscript
relevant scales.

The key idea is to realize that the FL can be decomposed
into building blocks as illustrated in Fig. 5. In the first decom-
position, we define the building blocks to be A1 ≡ AAB and
B1 ≡ AB. If we again focus on unbounded motion, then we
can now describe the dynamics on the level of the Poincaré
maps MA1 and MB1 , which iterate trajectories between
positions between adjacent blocks. This decomposition can
be continued, by defining the “next generations” of blocks as:

Ag = Ag−1Ag−1Bg−1, Bg = Ag−1Bg−1 for g � 2, (6)

Ag = Bg−1Ag−1Ag−1, Bg = Bg−1Ag−1 for g > 2, (7)

with the corresponding Poincaré mapsMAg
andMBg

and with
A0 ≡ A and B0 ≡ B. Hence, the FL allows for unbounded
regular motion if two Poincaré maps of any given generation
feature two identical regular structures (in contrast to the RL,
where only the two maps for g = 0 are relevant).

The invariant subsets of the Poincaré maps of any gener-
ation can be visualized conveniently by means of the PSS of
the corresponding periodic system (e.g., AgAgAg . . . ) with

FIG. 6. Poincaré surfaces of section of lattices consisting of
periodic repetitions of blocks: B1 (a), A1 (b), B4 (c), A4 (d), B7

(e), and A7 (f). Dashed rectangles are at the same locations as in
Fig. 4(c) denoting a domain of long flights in the quasiperiodic lattice.
Remaining parameters are as in Fig. 2.

Poincaré surfaces between each adjacent building blocks.
While the “zeroth generation” PSS corresponding to A0 is
already shown in Fig. 1(b), some of the relevant PSS of various
higher generations are shown in Fig. 6. We find that the PSS
of blocks of some generations feature indeed a regular island
around the same phase-space coordinates as the plateau of long
ballistic flights as observed in the FL [cf. Fig. 4(c)].

In order to understand how these regular structures are
linked with the long flights in the FL, let us consider the PSS
corresponding toA4 andB4 [Figs. 6(c) and 6(d)]. For example,
a trajectory starting at x0 = 0 and with (φ0,v0) corresponding
exactly to the fixed point centering the regular island of MB4

will pass the first surface of section at x = 34 × L (as this
is the length of one B4 block) with the same coordinates
(φ1,v1) = (φ0,v0). The next block is of type A4 (and thus
of length 55 × L) and, consequently, the coordinates on the
next Poincaré surface at x = 89 × L are given by (φ2,v2) =
MA4(φ1,v1). Even though (φ1,v1) does not correspond exactly
to the fixed point of MA4 , it does correspond to one of the
invariant curves of the surrounding regular island and hence
the trajectory will surpass the block confined to this particular
invariant curve. Because the regular islands of both mapsMA4

and MB4 are rather similar to one another, we can expect that
the trajectory needs many such iterations before it can finally
leave this particular domain of phase space, which ultimately
causes the observed stickiness and, equally, the long ballistic
flights at this particular velocity domain.
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Even though one may describe the dynamics on different
lengths scales in the FL by means of any of the possible
decompositions, we see that only the PSSs of blocks of
some particular generations contain notable common regular
structures which then relate to domains of extraordinarily long
ballistic flights. We find, numerically, that the appearance
of similar regular structures in the PSS of Ag and Bg is
suppressed more strongly with increasing g with an increasing
difference in the potential heights VA and VB. In this way, one
may, to some extent, choose which of the generations of the
decomposition support long ballistic flights in the FL and thus
also manipulate the length scale of these long flight events.
For example, we find that by setting VA = 1.5 as before and
VB = 0.1 (instead of VB = 1.0), the two maxima in the flight
length distribution in the FL [as shown in Fig. 3(c)] are shifted
by roughly one order of magnitude to smaller �x as compared
to the case of VB = 1.0. Additionally, the regular structures
in the hierarchical PSSs decay approximately one generation
earlier, matching the observation of the shorter preferred length
scale in the flight length distribution.

VII. CONCLUSION

We have investigated the chaotic dynamics of classical par-
ticles exposed to a periodically driven, spatially quasiperiodic
lattice potential. As two points of reference, we compare
our results to periodic- and fully randomized lattices and
indeed find unique features of the particle dynamics for the

quasiperiodic lattice. Specifically, we show that particles per-
form exceptionally long ballistic flights at distinct velocities.
Since the usual tools as commonly applied in the investigation
of periodic systems, such as Poincaré surfaces of sections,
intrinsically rely on the spatial periodicity of the system,
they cannot be applied straightforwardly here. However, we
show how a suitable set of Poincaré surfaces of periodic
lattices provides the decisive insights into the dynamics of
the quasiperiodic lattice. These Poincaré surfaces and their
corresponding Poincaré maps are introduced naturally to the
system by an underlying hierarchy of block decompositions
of the lattice. Thereby, each Poincaré map associated to a
decomposition of a given level of the hierarchy describes the
particle dynamics on a different length scale and we show
how regular structures of these maps translate directly into the
observed domains of long ballistic flights in the quasiperiodic
lattice. Even though the block decompositions work up to
arbitrarily large length scales, which of these scales are actually
of relevance to the dynamics is determined by the scattering
properties of the individual barriers constituting the lattice.
Hence, the shown results are caused by an intricate interplay
of the global structures of the quasiperiodic lattice on the one
hand and of the “local” scattering properties of individual
barriers on the other hand.
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