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Cluster statistics and quasisoliton dynamics in microscopic optimal-velocity models
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Using the non-linear optimal velocity models as an example, we show that there exists an emergent intrinsic
scale that characterizes the interaction strength between multiple clusters appearing in the solutions of such
models. The interaction characterizes the dynamics of the localized quasisoliton structures given by the time
derivative of the headways, and the intrinsic scale is analogous to the “charge” of the quasisolitons, leading
to non-trivial cluster statistics from the random perturbations to the initial steady states of uniform headways.
The cluster statistics depend both on the quasisoliton charge and the density of the traffic. The intrinsic scale is
also related to an emergent quantity that gives the extremum headways in the cluster formation, as well as the
coexistence curve separating the absolute stable phase from the metastable phase. The relationship is qualitatively
universal for general optimal velocity models.
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Modelling traffic flow, especially in an attempt to un-
derstand the occurrence of the traffic jams [1–6], has been
a fascinating subject leading to interesting development in
many related fields. Several common approaches in modeling
the evolution of the traffic flow include the microscopic
car-following model [7–9], cellular automata [10,11], and the
macroscopic hydrodynamic model [12,13]; more thorough
reviews can be found in [14–16]. Most microscopic models
involve anisotropic nearest neighbor interactions. One elegant
class of models is the optimal velocity (OV) models, with an
explicit optimal velocity function dependent on the relative
distance between the car and the next one ahead, or the
headway [8]. Extensions of such models include additional
force terms so that the acceleration or deceleration of the cars
leaving or entering jammed region is not too large [17–20].
Other more realistic microscopic models include the intelligent
driver models (IDM) [21], Shamoto’s models [22], and various
types of the sophisticated three-phase traffic models [23–25].
The relationships between these models are also explored
in [26]. Multiple preceding cars and even following cars
are included to better model the driver decision-making
process [27,28], and non-linear velocity difference effects are
studied in [29].

Controversies still remain on what aspects of real traffic
dynamics can be captured by simple models like the optimal
velocity model [30–32]. Such models assume the existence of
a fundamental diagram, thus all steady states have a unique
relationship between the flow and density. This is in contrast
with the fundamental assumptions of the three-phase traffic
theories [33], that a multitude of steady states with non-unique
flow-density relationship exists in the “synchronized phase”.
While one does not expect such simple traffic models to
capture all the empirical features of the congested traffic flow,
these models offer a physically intuitive way to understand the
formation of jams from the non-linear interactions between the
system components, which are useful in designing intelligent
mass transport systems [28] made of, for example, sensor
equipped driverless cars. In addition, they have the potential to
characterize a wide range of physical phenomena including

the complex spatiotemporal traffic patterns, dynamics of
(quasi-)one-dimensional granular flows and the clustering of
dissipative “granular gases” [34]. It is thus of great theoretical
interest to study the universal behaviours of these models
especially in the non-linear regime.

In this paper, we do not concern ourselves with the
capabilities of the models in capturing the empirical features
of the traffic flow. Instead, we study the formal non-linear
dynamics of the OV model class, especially focusing on
the multi-cluster solutions. Using the original OV model as
an example for its simplicity, we show that by properly
non-dimensionalizing the model, the emergent symmetry of
the cluster formation is rendered explicit, and the extremum
headway of the clusters is an emergent quantity which gives
the coexistence curve separating the absolutely stable and
metastable phase of the model. Our numerical calculation
shows that the probability distribution of cluster numbers
depends both on an intrinsic scale of the model and the density
of the traffic lane. This can be explained by the dynamics of the
“quasisolitons” in the domain of headway velocity, which will
be explained in details later. The strength of attraction between
quasisolitons of opposite charges depends both on the intrinsic
scale and the distance between them. The intrinsic scale is thus
analogous to the charge of the quasisolitons.

A general car-following model can be written as

τ v̇n = −vn + V (hn−i ,ḣn−i , · · · ,hn,ḣn, · · · ,hn+j ,ḣn+j ), (1)

where the dot represents time derivative and n ∈ Z+ is the
index of the cars; vn is the velocity of the nth car; hn+i is
the distance between the nth car and the (i + 1)th car in front
of it, while hn−i is the distance between the nth car and the
ith car behind it, which by convention is negative. The first
viscosity term on the right models the increasing tendency for
the driver to decelerate when the car travels faster, and τ is the
reaction time for the driver to maintain the optimal velocity
given by the second term on the right. In this work the higher
derivatives are suppressed as we assume the reaction time
is small. The periodic boundary conditions gives vN+n = vn,
where N is the total number of cars. For physically relevant
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cases the optimal velocity is non-linear: it is generally assumed
that V is monotonically increasing for all its arguments, and
it is bounded from above and below by the maximum and
minimum acceleration of the car.

We will now proceed with the simplest case of the OV
model, where the optimal velocity function only depends on a
single headway and is given by

V (hn) = V1 + V2 tanh(sn), sn = C1(hn − l) − C2. (2)

The physical significance of different parameters in Eq. (2)
can be found in [8,17]. We can now rewrite Eq. (1) as

s̈n + κ1ṡn = κ2(tanh sn+1 − tanh sn), (3)

where κ1 = τ−1,κ2 = τ−1C1V2. By rescaling the time variable
t → κ2t/κ1, the only dimensionless parameter in Eq. (3) is κ =
κ2

1 /κ2. This equation in general describes an array of particles
moving in a viscous media with anisotropic non-linear nearest
neighbor interaction.

We will now focus on Eq. (3), where sn is dimensionless.
The change of variable in Eq. (2) not only tells us seemingly
different driving behaviors are actually equivalent within the
model; it also makes the symmetry of ODE’s in Eq. (3) explicit.
While the physical headway hn has to be positive, there is
no such constraint on sn; one should note the average of sn

over all cars is inversely proportional to the linear car density
of the lane with a shift, according to Eq. (2). Thus Eqs. (2)
and (3) completely define the physical model at hand, and
mathematically Eq. (3) alone is sufficient.

We will first discuss the properties of the individual clusters
appearing in the solutions of Eq. (3). While many of these
properties are known, here we derive them in the most general
way. We also present the relations of the coexistence curve
with the emergent extremal headways from the non-linear
dynamics, which are not reported before and useful for
numerical analysis. Linear analysis leads to a stable phase
of sn = s0 against small perturbation above the spinodal line
(or the neutral stability line) given by

2sech2s0 = κ. (4)

In the regime |s0| > sc1 = |sech−1√κ/2|, a small perturbation
to a uniform headway s0 with sn(t → 0) = s0 + δsn leads
to sn(t → ∞) = s0. Here we take

∑
n δsn = 0 for technical

convenience. Thus a random small initial variation of the
positions of the cars in a single lane would not lead to the
development of clusters, or traffic jams, in this regime. Note
Eq. (4) is only exact in the limit when the perturbation goes
to zero; close to the spinodal line, the uniform headway
configuration is metastable, a large enough perturbation will
also lead to the formation of clusters [35].

We now show that the coexistence curve that separates
the metastable phase and the absolutely stable phase can
be numerically read off from the cluster formation alone.
Firstly, in the regime |s0| < sc1, it is well known that small
perturbations will grow in time with the formation of clusters,
as shown in Fig. 1, where a random initial condition settles into
a configuration with the majority number of cars having two
extremum headways given by ±sc2. As smaller sn implies
higher physical car density, cars with headway −sc2 form
clusters or jams of very high density with minimal velocity,
while cars with headway sc2 moves with very high velocity,
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FIG. 1. The plot of the headway as the function of the car index,
when a jam or a cluster is formed. This cluster configuration evolves
from a random initial headway distribution, as shown in the top inset.
The bottom inset is the spinodal curve [the solid line without circles,
plotted from Eq. (4)], and the coexistence curve from numerical
calculations (the solid line fitting the solid circles). The solid circles
are numerically observed extremum headways at different κ .

forming anti-clusters. Interestingly like sc1, the numerical
value of sc2 only depends on κ but not on s0, even for s0

in the metastable regime.
Secondly the number of cars involved in the “kink” or

“anti-kinks” are independent of s0 and the total number of cars
N . A “kink” is the “go front”, or the transition region from a
cluster with sn ∼ −sc2 to an anti-cluster with sn ∼ sc2, while
an “anti-kink” is the “stop front”, or the transition region from
an anti-cluster to a cluster. Thus for large N we can ignore cars
in the “(anti-)kink”. Since the sum of the headways over all
vehicles is conserved during the time evolution, the number of
cars in the cluster is given by

Nj = N

2

sc2 − s0

sc2
. (5)

Clearly for s0 � sc2, no clusters can be formed, given random
initial perturbations of any magnitude. Similarly, no anti-
clusters can exist for s0 < −sc2. We thus identify sc2 as the
coexistence curve [35–37] and plot it together with sc1 in Fig. 1.
The numerically calculated coexistence curve and the spinodal
line coincides at the critical neutral stability point located
at s0 = 0,κ = 2, agreeing with previous analysis [27,38].
Note that sn can be negative, and the physical car density
is calculated from Eq. (2). There is also a duality between
s0 ↔ −s0, where clusters at s0 corresponds to anti-clusters at
−s0, and all behaviors at s0 are identical to those at −s0.

Progresses have been made in treating non-linear ODE
describing car-following models analytically [37–40]. For
Eq. (3) it is generally accepted that one can do a controlled
expansion near the critical neutral stability point and close to
the neutral stability line; the former leads to modified KdV
equations plus correction terms, that gives the approximate
“(anti-)kink” solutions; the latter reduces the original model
to KdV equations plus corrections that give rise to soliton
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solutions [44]. However, away from the neutral stability line,
it is clear from numerical calculation that if one makes the car
index continuous, the transition between the two extremum
headways is discontinuous and analytically intractable.

One can, however, show that the “kink” and “anti-kink”
of a single cluster move at the same velocity, by taking s =
∑j

n=i sn. For the “kink”, the ith car is located in the cluster,
while the j th car is located in the anti-cluster. From Eq. (3) we
have

s̈ + κ1ṡ = 2κ2 tanh sc2, (6)

The relevant set of solutions is s = (2κ2 tanh(sc2)/κ1)t + C,
where C is an unimportant constant of integration. This gives
the velocity of the “kink” as the number of cars per unit time
as follows:

vk = κ2

κ1

tanh sc2

sc2
. (7)

The velocity of the “anti-kink” is calculated similarly, thus vk

gives the velocity of the cluster, which again is independent of
the car density of the traffic lane. Here we make the assumption
that for cars far away from the “(anti-)kink”, their headway
takes the value of ±sc2. More importantly, if we concatenate
two clusters together, as long as the assumption holds (e.g.,
when the two clusters are far away), they will move at the same
velocity and will never merge.

We will proceed to study the dynamics of the multi-cluster
solutions. One would naively expect that a random initial state
like the inset of Fig. 1 should lead to a random number of
clusters [41], at least in the limit of large N , subjecting to
the constraint of Eq. (5). However, our numerical results show
that the probability distribution of the number of clusters is
not random; it strongly depends on the initial headway s0 and
κ . We first calculate the probability distribution by fixing the
strength of the initial random perturbation and κ in Eq. (3),
and only vary the initial headway s0. For each value of s0,
sufficiently large number of random initial states are generated
until the probability for each number of clusters converges. The
probability distribution is plotted in Fig. 2, which is one of the
main results of this work.

A few comments are in order here. In Fig. 2 we take κ = 1
and only plot the part where s0 is negative, because the prob-
ability distribution is identical for s0 and −s0. For |s0| > 0.87
we can see the final state is dominated by one cluster, and this
is true even for an infinitely long traffic lane as N → ∞; in this
case, most probably one very large cluster develops, instead
of several clusters with smaller lengths. As |s0| decreases, the
probability of having more than one cluster increases, and for
|s0| < 0.82, it is almost impossible to have just one cluster.
As |s0| further decreases towards zero, the average number of
clusters most probably will tend to infinity. This cannot be
observed numerically for a finite number N , since at s0 = 0
the total number of cars in the clusters is ∼ N/2 [see Eq. (5)].
For a physical traffic lane, from Eq. (2) the maximum number
of jams will occur at car density ∼ (C2/C1 + l)−1. Increasing
or decreasing from that car density reduces the number of
jams. This phenomenon of large number of “phantom jams”
occurring at some intermediate density could be used to
empirically check the validity of the OV model.
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FIG. 2. The probability of having one to six clusters in a single
traffic lane, plotted as the function of the initial average headway
s0. The probability is calculated with three hundred cars and random
initial headway perturbation. Inset: The probability of having only one
cluster, as the function of the initial average headway. The probability
is calculated for 300 cars to 700 cars, showing some numerical
evidence that in the limit of large number of cars, the probability
curve converges to a well-defined limit. The probability is calculated
at t = 30 000s.

To understand the probability distribution of the number
of clusters, we characterize quantitatively the strength of
interaction between two clusters by the time it takes for them
to merge. It is useful to plot dsn/dt instead of sn as a function
of the car index n. The “kinks” and “anti-kinks” lead to
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FIG. 3. The quasisoliton structure of dsn/dt as a function of the
car index. The fewer the cars involved in the quasisoliton, the smaller
the width of the quasisoliton, which depends only on κ and not on the
initial headway s0. By convention a kink gives a positively charged
quasisoliton as shown in this figure. An anti-kink gives a negatively
charged quasisoliton. The top inset shows the dependence of the
annihilation time ta on the number of cars between the quasisolitons
of opposite charges, the exponential fit is numerically perfect. The
intrinsic scale as a function of sc2 is shown in the bottom inset.
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exponentially localized “quasisolitons” of opposite charges
[see Fig. 3)], which closely resemble the “autosolitons” in
dissipative non-linear systems [42]. When quasisolitons of
opposite charges annihilate each other, two (anti-)clusters
merge into one. We numerically observe that the time needed
for annihilation, ta , increases exponentially with the number
cars n between the peaks of these two quasisolitons, giving the
relationship

ta ∼ en/n0 . (8)

While Eq. (7) dictates that kinks and anti-kinks travel at the
same velocity, implying they would never merge, one should
note the velocity is calculated from the extremal headways
sc2. The extremal headways are only attainable infinitely far
away from the kink (or the anti-kink). Thus in principle, when
multiple kinks and anti-kinks coexist in the same solution, they
only move at the same velocity when they are infinitely apart.
For finite separations, Eq. (7) is only an approximation, thus
leading to the annihilations between the kink and anti-kink
pair.

One thus note that when |s0| increases, the cluster (for
s0 > 0) or the anti-cluster (for s0 < 0) region gets narrower
[see Eq. (5)], leading to higher probability of short distances
between the quasisolitons. Thus the probability of having
multiple (anti-)clusters is suppressed, as shown in Fig. 2. The
intrinsic “scale” n0 in Eq. (8) depends on sc2 or κ , which is
also plotted in Fig. 3. This is analogous to the interaction and
collapsing of kinks and anti-kinks in the Ginzburg-Landau
theory [43], though here the total number of cars in the cluster
has to satisfy Eq. (5), so that at least one cluster will remain
for a finite system with periodic boundary condition. Thus
the greater the intrinsic scale, the stronger the interactions
between quasisolitons, so this scale can be used to quantify
the absolute value of the quasisoliton charge. The interaction
leads to merging of clusters, reducing the probability of having
a large number of clusters in the traffic lane.

While the magnitude of the charge does not depend on s0,
Fig. 2 will look qualitatively the same if the x-axis is replaced
with increasing sc2. The dependence of average number of
clusters as a function of s0 and sc2 are plotted separately in
Fig. 4, numerically supporting the above explanation. For any
finite number of cars, all clusters will eventually merge in
the limit of very long time; thus the statements here are only
rigorous in the limit that the number of cars N → ∞. However
because of the exponential dependence of the annihilation
time on the number of cars between quasisolitons of opposite
charges, the statements here are true for all practical purposes
when the number of cars is reasonably large (even for computer
simulation because of the finite numerical resolutions).

We would also like to make a cautionary note here that both
the cluster statistics in Fig. 2 and the average number of clusters
in Fig. 4 depends on the number of vehicles N and the time
of simulation t . In principle, however, those two quantities
are only well defined in the limit of both N and t going to
infinity. The finite scaling of the OV model is unfortunately
very expensive numerically. On the other hand, the exponential
dependence of the annihilation time on the number of cars
between quasisolitons of opposite charges implies the cluster
statistics and the average number of clusters converge very fast
when N increases [see also the inset of Fig. 2)]. One should
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FIG. 4. The average number of clusters of a single lane traffic
as a function of the initial headway (the top plot, while keeping the
perturbation strength and κ fixed), and as a function of sc2 (the bottom
plot, while keeping the perturbation strength and s0 fixed).

also note that formally, the emergent quantities discussed in
this paper are only well defined when we take the limit of
N → ∞ first, followed by the limit of t → ∞.

In conclusion, we have investigated the OV model in the
non-linear regime, where the metastable phase is delineated by
the critical average initial headway sc1 and sc2. The behavior
of the traffic jam evolution seems to be completely determined
by the charge of, and the distance between, quasisolitons of
opposite signs. This leads to non-trivial statistics of multiple
clusters that depends both on s0 and sc2. This property is
not only present in the OV model shown in details here. We
have done extensive (but not necessarily thorough) numerical
calculations for various extended OV models, which suggests
that all features discussed above are qualitatively the same.
A comprehensive and quantitative study of extended OV
models will be presented elsewhere. Apart from its theoretical
interest, we believe such studies are useful in designing and
optimizing autonomous intelligent transport systems, where
multiple clusters lead to undesirable wear-and-tear and need
to be suppressed. It would also be interesting to see how
the cluster statistics could be modified for more complicated
traffic lanes with road works [9]. Given the universality of our
results, it is also important to check the cluster statistics against
the empirical data when modeling of real traffic dynamics is
concerned, so as to understand what aspect of the real traffic
complexity can really be captured by the General Motors
model classes [31].
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