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Solitary waves in diatomic chains
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We consider the mechanism of formation of isolated localized wave structures in the diatomic Fermi-Pasta-
Ulam (FPU) model. Using a singular multiscale asymptotic analysis in the limit of high mass mismatch between
the alternating elements, we obtain the typical slow-fast time scale separation and formulate the Fredholm
orthogonality condition approximating a sequence of mass ratios supporting the formation of solitary waves
in the general type of diatomic FPU models. This condition is made explicit in the case of a diatomic Toda
lattice. Results of numerical integration of the full diatomic Toda lattice equations confirm the formation of these
genuinely localized wave structures at special values of the mass ratio that are close to the analytical predictions
when the ratio is sufficiently small.
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I. INTRODUCTION

Over the last several decades formation of localized excita-
tions in dynamical systems has drawn a considerable interest
because solutions of this type describe some fundamental
mechanisms that emerge in many physical settings, including
electrical networks, nonlinear optics, ion acoustic waves in
plasma, dislocations in crystals, dynamics of polymer chains,
granular metamaterials and more [1–3]. Seminal works by
Fermi, Pasta, and Ulam [4] and Zabusky and Kruskal [5]
have initiated the extensive studies of dynamics of monatomic
nonlinear lattices and the related solitonlike excitations. In
particular, the fundamental problem of the formation of
localized excitations (solitary waves, traveling breathers) in
the Fermi-Pasta-Ulam (FPU) models induced by a local initial
perturbation has become one of the broadly studied topics
in dynamics of nonlinear lattices [6]. It is well known that in
many cases the presence of nonlinearity in the FPU models can
balance the dispersive effects and support the formation of co-
herent localized structures such as solitary waves propagating
with a constant amplitude-dependent speed. The existence of
solitary waves in a general class of homogeneous FPU models
was proven by Friesecke and Wattis [7]. It was also shown
that long-wave and short-wave approximations of the infinite
FPU chain result in the well-known nonlinear integrable partial
differential equations, namely, Korteweg de Vries (KdV) and
nonlinear Schrödinger (NLS) equations, respectively, that have
dynamical solitons (KdV) and envelope solitons (NLS) as their
particular solutions [2].

Other fundamental problems of solitary wave excitations
in nonlinear lattices concerned periodically heterogeneous di-
atomic and polyatomic FPU models. These problems have nat-
urally emerged due to their important applications in physics
and mechanics. Models of diatomic lattices have been used as
prototypes to approach the transport of energy [8] and describe
the dynamics of materials (such as ferroelectric perovskites)
that present a quasi-1D diatomic structure along certain
crystallographic directions [9]. For complicated polyatomic
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systems like molecular-hydrogen-bonded chains [10,11], the
problem becomes tractable by selecting the most important
degrees of freedom and using a diatomic model. Propaga-
tion of solitary waves along diatomic chains was analyzed
in [12] and [13], where second-neighbor interactions were
also included. Using a quasicontinuum approximation, the
authors obtained different solutions for solitonlike excitations,
including subsonic and supersonic acoustic kinks and optical
envelope solitons. Rigorous approximation results along these
lines were established in [14–16]. Quasicontinuum approx-
imations were also used to analyze solitarylike excitations
and traveling kinks in diatomic lattices in [17–20]. Numerical
simulations of these systems reveal the existence of small
oscillatory tails in the wake of these solitarylike pulses which
are sometimes referred to as long-lived quasisolitons. Waves
radiated by a propagating solitary pulse and propagating
behind it are known to be a generic feature of diatomic
(and, more generally, polyatomic) systems and are associated
with the optical dispersion branches present in such settings.
They reduce the energy and amplitude of the propagating
pulse, resulting in its permanent distortion [21–24]. This is
illustrated in Fig. 1, showing pulselike solutions in the diatomic
Toda lattice, where one can clearly see two distinct pulses
propagating through the heavy (odd-numbered) and light
(even-numbered) masses. The pulses emit oscillations in their
wake and slightly decrease in amplitude as they move through
the lattice. Emergence of the optical vibrations in the diatomic
problem is not surprising, given that the corresponding optical
linear spectrum is present in the supersonic regime, which in
the monatomic case is associated with formation of genuine
solitary waves due to the absence of resonances with the
acoustic spectrum. One of the most interesting questions which
naturally arises in this context is whether there exist some
special localized solutions in the polyatomic discrete media
that are isolated, i.e., exist for some particular choice of the
system parameters, and propagate with no energy radiation to
the far field.

Following the groundbreaking discovery by Fujioka and
Espinosa [25], formation of the brand-new category of isolated
localized solutions (solitary waves) in dispersive nonlinear
media has become a subject of intense research [26–30]. As
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FIG. 1. (a) Velocity profiles q̇n(t) for light (solid curves) and heavy (dotted curves) masses at n = 199, 200, 201 and n = 209, 210, 211
solving (5) with φ′(r) = 1 − e−r . The amplitude of emitted oscillations is larger for the light masses. (b) A “phase plane” plot of relative
velocity ṙn = q̇n+2 − q̇n between the neighboring heavy (odd n) or light (even n) masses versus the relative displacement rn = qn+2 − qn at
n = 199 (dashed black curve), n = 200 (solid black), n = 299 (dashed gray), n = 300 (solid gray). Here the mass ratio is ε = 0.35, and the
initial condition is determined from (19), (20) with κ = arcsinh(2

√
5).

shown in these works, this special class of solitary waves
can exist under conditions which prior to [25] were thought
to be impossible. In particular, it was believed that for a
soliton to exist, it is absolutely necessary that no resonance
occurs between the soliton and these linear waves. Otherwise,
energy will be radiated from the core of the solitary pulse
through the phononic modes. However, as these studies have
shown, isolated solitary waves, called embedded solitons,
whose wave number is contained (“embedded”) in the linear
spectrum of the system can exist in several variants of NLS
models [25–30]. These special solitary wave solutions are
isolated, i.e., associated with discrete sets of unique amplitudes
and wave numbers that are defined by the system parameters,
and appear to be semistable. However, additional studies of
the embedded soliton solutions in various continuous physical
models (e.g., the interaction of three spatial solitons propagat-
ing in a planar waveguide with a quadratic nonlinearity [31,32],
modified KdV [33], and extended KdV [34]) have indicated
that these waves can exist in continuous families and be
stable. Further studies of the embedded solitons have also
shown their existence in the discrete models [35]. Rigorous
analysis of these solutions in various systems can be found
in [36–38]. In a recent work [39] authors have analyzed a
general class of dispersive nonlinear systems and formulated
sufficient conditions for the existence of a countable infinity
of single humped, embedded solitons. In the same study an
approximate infinite sequence of the system parameter values
corresponding to these unique isolated solutions has been
found using asymptotic methods.

In the context of polyatomic FPU models, the existence of
genuine stable solitary wave solutions that have no oscillatory
tail has also been of considerable interest. The first numerical
observation of such a wave emerging in the diatomic FPU
lattice for a certain mass ratio was reported in [23]. In this
work the author has considered numerically the response of the
diatomic Toda lattice subjected to the initial perturbation in the
form of the solitary wave of the underlying homogeneous Toda
chain [40]. Formation of a localized wave pulse propagating
along the periodic (diatomic) lattice with negligible distortion

has been observed for some particular ratio of the heavy and
the light masses in the chain. Another numerical study of
solitary wave propagation in a nonhomogeneous Toda lattice
with periodic and aperiodic structure reported the formation of
“nearly” genuine stable solitary waves [21]. This observation
of the localized wave existing in the diatomic Toda lattice has
motivated the work [41], where the formation of the discrete
set of such pulses excited in a heterogeneous Toda chain has
been analytically predicted for the hard-core limit. As reported
in [24,42], an infinite set of these localized wave structures can
also be realized in various configurations of highly nonlinear
and nonsmooth polyatomic discrete systems such as diatomic
granular crystals [43,44]. The authors of [24,42] show that
formation of these waves is governed by a peculiar mechanism
of antiresonance established between the phase of the fast
oscillations of the light masses and the phase of the primary
pulse transmission.

Motivated by these results, we analyze the intrinsic mech-
anism of formation of solitary waves in a general class
of diatomic FPU models. We perform singular multiscale
asymptotic analysis in the limit of high mass mismatch
between the alternating elements. In this limit there exists
a separation between slow and fast time scales. The slow time
scale is associated with the propagation of the primary pulse
through the heavy elements, while the fast time scale describes
the oscillations of the light elements inertially excited by
the heavy ones. This fast dynamics of the light masses is
captured by a single oscillator that has a slowly varying natural
frequency and is driven by an external excitation induced by
the solitary wave transmission through the heavy elements.
Using the associated asymptotic equation, we formulate the
antiresonance Fredholm orthogonality condition that approx-
imates the special mass ratio values supporting the formation
of solitary waves. To showcase the validity of the formulated
analytical prediction we then consider the diatomic Toda lattice
in the limit of high mass mismatch. Importantly, in contrast to
the previously considered case of granular crystals [24,42], the
diatomic Toda lattice setting enables us to find exact solutions
of the derived singular asymptotic equations. In particular, the
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Fredholm condition reduces to orthogonality of an explicit odd
solution of the time-independent Schrödinger equation with a
Pöschl-Teller potential and an odd function derived from the
exact solution of the monatomic Toda lattice, yielding special
mass ratios as zeros of a certain function that can be directly
evaluated. Using known asymptotics of the solutions of the
Schrödinger equation, we also obtain a simplified condition
that provides an excellent approximation of the antiresonance
values in a certain parameter regime. The obtained analytical
predictions are supported by numerical simulations of the full
diatomic Toda lattice, which suggest the existence of genuine
solitary waves at certain mass ratios. When the mass ratios
are sufficiently small, the numerically obtained antiresonance
values are close to the analytical predictions.

The structure of the paper is as follows. Section II is devoted
to the general problem statement. In Sec. III we perform
the singular multiscale analysis and formulate the Fredholm
orthogonality condition for mass ratios associated with for-
mation of isolated solitary waves in the general class of FPU
chains. In Sec. IV we show that in the case of the diatomic Toda
lattice these waves are formed when an integral involving two
explicitly known functions vanishes. Derivation of the exact
formula for this integral evaluated at a certain sequence of mass
ratios is presented in the Appendix. A simplified antiresonance
condition is derived in Sec. V. Simulation results for the
full diatomic Toda lattice and verification of the obtained
asymptotic predictions are presented in Sec. VI. We conclude
with Sec. VII, highlighting the most important findings of this
work along with their potential extensions and open problems.

II. PROBLEM FORMULATION

Consider an infinite one-dimensional diatomic lattice with
energy given by the Hamiltonian

H =
∞∑

n=−∞
φ(qn − qn−1) + 1

2
mnq̇

2
n.

Here mn is the mass of nth particle, which alternates between
m2p−1 = m1 and m2p = m2 � m1, qn(t) is the displacement
of nth particle at time t with derivative q̇n, and φ(r) is the
interaction potential. The dynamics of the system is governed
by

mnq̈n = φ′(qn+1 − qn) − φ′(qn − qn−1). (1)

We assume that

φ ∈ C2, φ(0) = φ′(0) = 0, φ′′(r) > 0. (2)

A specific example we consider in what follows is the Toda
interaction potential [40]

φ(r) = a

b
e−br + ar − a

b
, (3)

with a > 0, b > 0. It is convenient to introduce the dimension-
less parameter

ε = m2/m1, (4)

satisfying 0 < ε � 1, and rescale the system (1) using the
dimensionless variables

t̄ = t

√
K

m1
, q̄n = qn

d
, φ̄ = φ

Kd2
,

where d is a relevant length scale and K = φ′′(0) > 0. For the
Toda lattice, we have K = ab and d = 1/b. With the bars on
the new variables dropped, this yields the following system:

q̈2p−1 = φ′(q2p − q2p−1)

−φ′(q2p−1 − q2p−2) (heavy masses),

εq̈2p = φ′(q2p+1 − q2p)

−φ′(q2p − q2p−1) (light masses). (5)

With this rescaling the Toda coefficients in (3) are a = b = 1,
and we have m1 = 1, m2 = ε.

We are interested in deriving the condition for the existence
of solitary wave solutions in the diatomic lattice, i.e., solutions
of (5) that have the form

q2p−1(t) = u(ξ ), q2p(t) = v(ξ ), ξ = p − ct, (6)

where c > 0 is half of the velocity of the wave, with

u′(ξ ), v′(ξ ) → 0 as |ξ | → ∞. (7)

As mentioned in the Introduction, such solutions do not exist
for generic values of ε due to the presence of radiative optical
oscillations propagating behind the moving pulse and reducing
its amplitude and energy (see Fig. 1 for an example). In
the following section, we follow the approach in [24] and
use multiscale asymptotic analysis at small ε to derive the
Fredholm orthogonality condition approximating the special
values εk at which the oscillatory tails disappear, and the
system (5) has solitary wave solutions satisfying (6), (7). We
then analyze in Sec. IV the case of Toda potential, where
the approximate existence condition can be made explicit
due to the availability of exact solutions of the asymptotic
equations.

III. ASYMPTOTIC ANALYSIS

Consider (5) with 0 < ε � 1. For this high mismatch be-
tween the masses, there exists a separation of scales associated
with the slow dynamics of the heavy masses governing the
propagation of the primary pulse and the inertially excited fast
dynamics of the light masses. Following [24], we introduce
the fast time τ = t/

√
ε and seek solutions of (5) in the form

q2p−1 ≈ x2p−1(t) + ε2y2p−1(τ ) (heavy masses),

q2p ≈ x2p(t) + εy2p(τ ) (light masses).

Here the approximation is up to the higher orders of ε.
Substituting this in (5), we obtain, up to the higher-order
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terms,

ẍ2p−1 + εy ′′
2p−1 ≈ φ′(x2p − x2p−1) − φ′(x2p−1 − x2p−2)

+φ′′(x2p − x2p−1)(εy2p − ε2y2p−1)

−φ′′(x2p−1 − x2p−2)(ε2y2p−1 − εy2p−2),

ε(ẍ2p + y ′′
2p) ≈ φ′(x2p+1 − x2p) − φ′(x2p − x2p−1)

+φ′′(x2p+1 − x2p)(ε2y2p+1 − εy2p)

−φ′′(x2p − x2p−1)(εy2p − ε2y2p−1),

where ẍn = d2xn/dt2 and y ′′
n = d2yn/dτ 2. The slow O(1)

dynamics is then described by

ẍ2p−1 = φ′(x2p − x2p−1) − φ′(x2p−1 − x2p−2),

x2p = x2p−1 + x2p+1

2
, (8)

where the second equation follows from φ′(x2p+1 − x2p) =
φ′(x2p − x2p−1) and the assumed monotonicity of φ′(r)
[recall (2)]. Substituting the second equation into the first,
one can see that the slow dynamics of the heavy masses
is governed by the equations for the chain of heavy masses
only:

ẍ2p−1 = φ′
(

x2p+1 − x2p−1

2

)
− φ′

(
x2p−1 − x2p−3

2

)
, (9)

while the dynamics of light masses in slow time is obtained
by averaging over the dynamics of the two neighboring heavy
masses.

Meanwhile, the fast O(ε) dynamics is given by

y ′′
2p−1 = φ′′(x2p − x2p−1)y2p + φ′′(x2p−1 − x2p−2)y2p−2,

ẍ2p + y ′′
2p = −[φ′′(x2p − x2p−1) + φ′′(x2p+1 − x2p)]y2p.

(10)

Observe that the second equation in (10) is decoupled from
the first. Moreover, using the second equation in (8) we can
rewrite the second equation in (10) for the fast dynamics of
the even-numbered light masses in the form

y ′′
2p(τ ) + �2

2p(t)y2p(τ ) = f2p(t), (11)

which describes uncoupled driven harmonic oscillators with
slowly varying natural frequency �2p(t) and driving force
f2p(t) given by

�2
2p(t) = 2φ′′

(
x2p+1 − x2p−1

2

)
, f2p(t) = −ẍ2p(t). (12)

Assume now that the problem (9) for the slow dynamics
of the heavy masses (ε = 0 problem) has a solitary wave
solution

x2p−1(t) = X(ξ0), ξ0 = p − c0t,

X′(ξ0) → 0 for |ξ0| → ∞. (13)

This assumption clearly holds if the monatomic (ε = 1)
problem supports solitary waves, the existence of which, as
proved in [7], is guaranteed for a large class of superquadratic
potentials. Then the slow dynamics of light masses is described

by x2p(t) = [X(ξ0) + X(ξ0 + 1)]/2, and we have

�2
2p(t) = 2φ′′

(
X(ξ0 + 1) − X(ξ0)

2

)
,

f2p(t) = −c2
0

2
[X′′(ξ0) + X′′(ξ0 + 1)],

where we used the second equation in (8) to obtain f2p(t).
Since both �2p and f2p depend on t = τ

√
ε via ξ0, the solution

of (11) is a function of ξ0 = p − c0τ
√

ε. It is convenient to
rewrite (11) in terms of slow time. It also suffices to consider
the dynamics of only one oscillator, e.g., the one at p = 0,
since the rest can be recovered via a time shift. We obtain

ÿ0(t) + �2
0(t)

ε
y0(t) = f0(t)

ε
. (14)

Since X(ξ0) is defined up to an arbitrary translation in its
argument and X(ξ0 + 1) − X(ξ0), X′(ξ0 + 1) + X′(ξ0) have
even symmetry about the same point, it is possible to select
X(ξ0) so that �2

0(t) is even while f0(t) is odd. Note also that
the behavior of X(ξ0) in (13) at infinity implies that f0(t) → 0
and �0(t) → √

2 as |t | → ∞, where we recall that φ′′(0) = 1
after rescaling. Thus, we expect solutions satisfying y0(t) → 0
as t → −∞ to develop oscillations of frequency ω = √

2/ε at
sufficiently large t > 0 for generic values of ε. We thus seek
special values at which the amplitude of these oscillations
is zero. In other words, we need to find ε such that the
corresponding solutions of (14) satisfy the zero conditions
at infinity:

y0(t) → 0 as |t | → ∞. (15)

Let Y1(t ; ε) and Y2(t ; ε) denote two linearly independent
solutions of the homogeneous equation ÿ0 + (�2

0(t)/ε)y0 = 0
that are even and odd, respectively, and let α denote their
(constant) Wronskian. The method of variation of parameters
then yields the following solution of (14) that satisfies y0(t) →
0 as t → −∞:

y0(t ; ε) = 1

αε

(
Y2(t ; ε)

∫ t

−∞
f0(s)Y1(s; ε)ds

−Y1(t ; ε)
∫ t

−∞
f0(s)Y2(s; ε)ds

)
. (16)

Since f0(t) is odd and vanishes at infinity while Y1(t ; ε) is even,
the first term tends to zero as t → ∞. Meanwhile, at large
t > 0 the equation becomes ÿ0 + ω2y0 = 0, with ω = √

2/ε,
and thus

Y1(t ; ε) ∼ A cos(ωt + β1), t → ∞,

for some constant A 
= 0 and β1. This yields

y0(t ; ε) ∼ −2A

αε
cos(ωt + β1)

∫ ∞

0
f0(s)Y2(s; ε)ds, t → ∞,

(17)

where we used the fact that f0(t)Y2(t ; ε) is an even function
of t . Thus we have oscillations of frequency ω at large t > 0
unless

g(ε) ≡
∫ ∞

0
f0(s)Y2(s; ε)ds = 0. (18)

042210-4



SOLITARY WAVES IN DIATOMIC CHAINS PHYSICAL REVIEW E 93, 042210 (2016)

This Fredholm orthogonality condition yields ε such that the
solution (16) has no oscillations at infinity, and hence no such
waves appear in qn(t) up to O(ε2). Physically, it means that
the slow motion of the center of mass of the two neighboring
heavy masses, the acceleration of which equals −f0(t) up
to a time shift, does not excite any fast oscillations of the
light mass in between at large time. We conjecture that under
our assumptions g(ε) has infinitely many zeros in the interval
(0,1) at ε = εk , k = 1,2, . . . , with εk accumulating at zero as
k → ∞.

IV. ASYMPTOTIC ANALYSIS FOR THE DIATOMIC
TODA LATTICE

For the diatomic Toda lattice we can obtain an explicit
Fredholm solvability condition for the problem (14), (15).
Indeed, in this case equations (9) for the slow motion of odd-
numbered heavy masses reduce to the equations governing a
homogeneous Toda lattice with a = 1, b = 1/2 in (3) and have
an exact solitary wave solution [40]:

x2p−1(t) = 2 ln
1 + exp[2κ(p − 1) − t

√
2 sinh κ]

1 + exp[2κp − t
√

2 sinh κ]

= X(p − c0t), c0 = sinh(κ)√
2κ

. (19)

Using the second equation in (8), we then obtain the O(1)
displacement of the even-numbered light masses:

x2p(t) = ln
1 + exp[2κ(p − 1) − t

√
2 sinh κ]

1 + exp[2κ(p + 1) − t
√

2 sinh κ]
. (20)

This yields

�2
2p(t) = 2

{
1 + (sinh2 κ)sech2

(
κp − t√

2
sinh κ

)}
(21)

and

f2p(t) = −4 cosh κ sinh3 κ sinh[2κp − t
√

2 sinh κ]

[cosh(2κ) + cosh(2κp − t
√

2 sinh κ)]2
. (22)

Observe that f0(t) is an odd function, while �2
0(t) is even.

The homogeneous equation corresponding to (14) is then
a classical problem in quantum mechanics that involves a
one-dimensional time-independent Schrödinger equation with
sech-squared potential of Pöschl-Teller type [45–47] first
considered in [48] in the context of wave reflection in an
inhomogeneous medium. It can be written as

ÿ0 +
(

ω2 + ν(ν + 1)α2

cosh2(αt)

)
y0 = 0, (23)

where

α = sinh κ√
2

, ω =
√

2

ε
, ν = 1

2

(
−1 +

√
1 + 16

ε

)
. (24)

Substituting y0(t) = ψ(ζ ), ζ = tanh(αt), we obtain the gen-
eral Legendre equation

d

dζ

(
(1 − ζ 2)

dψ

dζ

)
+

(
ν(ν + 1) + ω2

α2(1 − ζ 2)

)
ψ = 0.

This yields two linearly independent solutions of (23) in terms
of hypergeometric functions [45]:

Y1(t ; ε) = [cosh(αt)]ν+1
2F1

(
1

2

[
ν + 1 + i

ω

α

]
,

1

2

[
ν + 1 − i

ω

α

]
,
1

2
, − sinh2(αt)

)
(25)

and

Y2(t ; ε) = [cosh(αt)]ν+1 sinh(αt)2F1

(
1

2

[
ν + i

ω

α

]
+ 1,

1

2

[
ν − i

ω

α

]
+ 1,

3

2
, − sinh2(αt)

)
, (26)

which are even and odd, respectively, and have the Wronskian
equal to α. We emphasize here that the solutions depend on ε

through ν and ω defined in (24) (they also depend on κ through
α). Substituting these in (16), we obtain the solution of (14)
satisfying y0(t) → 0 as t → −∞. Its asymptotic behavior at
positive infinity is given by (17) with [45]

A = √
π

∣∣∣∣ �(iω/α)e−iω ln 2/α

�
(

1
2

[
ν + 2 + iω

α

])
�

(
1
2

[
1 − ν + iω

α

]) ∣∣∣∣,
β1 = arg

�(iω/α)e−iω ln 2/α

�
(

1
2

[
ν + 1 + iω

α

])
�

( − 1
2

[
ν − iω

α

]) , (27)

and the condition (18) that ensures that y0(t) → 0 as t → ∞
without oscillations. Meanwhile,

Y2(t ; ε) ∼ A cos(ωt + β2), t → ∞,

β2 = arg
�(iω/α)e−iω ln 2/α

�
(

1
2

[
ν + 2 + iω

α

])
�

(
1
2

[
1 − ν + iω

α

]) . (28)

For the diatomic Toda lattice, the function g(ε) is thus defined
by (18), (22), and (26). Letting

Y2(t ; ε) ≡ H (η; ε), η = αt, (29)

we can rewrite it as

g(ε) = 4
√

2 cosh(κ) sinh2(κ)
∫ ∞

0
�(η)H (η; ε)dη, (30)

where we define

�(η) = sinh(2η)

[cosh(2κ) + cosh(2η)]2
. (31)

Observe that �(η) → 0 exponentially fast as η → ∞, H (η; ε)
is bounded for all τ , and for ε ∈ (0,1] and κ > 0, H (η; ε)
depends continuously on ε, and both functions depend con-
tinuously on κ . This implies that g(ε) depends continuously
on ε and κ in this parameter domain. The integral in (30)
can be evaluated numerically for a given ε and κ . The
calculation simplifies for integer ν = N in (24), i.e., when
ε = εN ≡ 4/[N (N + 1)] for some integer N � 2, since in
this case H (η; εN ) reduces to an expression in terms of
elementary functions [47,49], and (30) can be computed using
contour integration and the residue theorem. As shown in the
Appendix, this yields an explicit formula (A7) for g(εN ).

Figure 2 shows the typical oscillatory behavior of g(ε).
Since g(ε) depends continuously on κ , its zeros εk are
continuous functions of κ . The first eight such values and

042210-5



VAINCHTEIN, STAROSVETSKY, WRIGHT, AND PERLINE PHYSICAL REVIEW E 93, 042210 (2016)

0.05 0.10 0.15 0.20 0.25

-1.0

-0.5

0.5

g

ε

FIG. 2. The oscillatory behavior of g(ε) defined by (30). Here
κ = arcsinh(2

√
5).

the corresponding approximate velocity profiles are shown in
Fig. 3. The subscript k in εk denotes the number of local
maxima in the corresponding velocity function ẏ

(k)
0 (t). Note

that the largest of these values, ε1 ≈ 0.993 342, is not small and
thus lies beyond the limits of the applicability of the asymptotic
analysis. The second largest value, ε2 ≈ 0.235 084, is also not
small enough for the two time scales to be well separated,
so we do not expect it to be a good approximation of the
corresponding value in the discrete system (5). But the smaller
εk values in the asymptotic approximation are expected to be
close to the actual ones.

We conjecture that g(ε) has infinitely many zeros εk in (0,1)
such that εk → 0 as k → ∞. This conjecture is supported

by the numerical evaluation of the explicit formula (A7),
which suggests that for fixed κ > 0, sgn[g(4/{N (N + 1)})] =
−sgn[g(4/{(N + 2)(N + 3)})] for integer N � 2. Impor-
tantly, the set of εk such that g(εk) = 0 remains discrete
at any small but nonzero κ , suggesting that even in the
quasicontinuum regime κ ≈ 0 genuine solitary waves can
exist only at certain mass ratios. However, since g(ε; κ) → 0
as κ → 0, the amplitude of the trailing oscillations becomes
exponentially small at κ near zero [50], which explains why
quasicontinuum [17] and KdV [16] approximations of solitary
waves for any ε work well in this regime.

V. APPROXIMATE ANTIRESONANCE CONDITION
AT LARGE κ

In the previous section we derived the necessary and
sufficient asymptotic condition g(εn) = 0, with g(ε) given
by (30), for the antiresonance values εn at which the oscillatory
tails in the wake of the primary front vanish in the O(ε)
approximation of the diatomic Toda lattice. However, finding
these values generally requires numerical evaluation of (30).
In this section we derive a simplified approximate condition
valid at large enough κ and ε > εcr(κ), where the lower bound
εcr decreases as κ grows.

To obtain this condition, we first consider the behavior of the
functions �(η) and H (η; ε) involved in the integrand of (30)
at large κ . Observe that the function �(η) defined in (31) has
a single maximum at

ηmax = arccosh

⎡
⎣

√
4 + 2 cosh2 κ + √

2
√

17 + cosh(4κ) + 2 sinh2 κ

2
√

2

⎤
⎦ ≈ κ, κ � 1.

Moreover, for large κ this function has an exponentially
localized bell-shaped form with an approximate even sym-
metry about its maximum:

�(ηmax − χ ) ≈ �(ηmax + χ ), κ � 1, (32)

because

�(ηmax + χ ) ≈ exp(−2κ)

2 cosh2 χ
, κ � 1.

For κ = 10 this is illustrated by the dashed curve in Fig. 4.
The half-width χw of this pulse, defined by

�(ηmax + χw) = 0.01�(ηmax),

approaches a constant value χw ≈ 2.993 at κ � 1. Meanwhile,
the function H defined in (29) (the solid curve in Fig. 4) has
fast oscillations for small enough η > 0, while for larger η

there are slower oscillations that are asymptotically described
by

H ≈ A(ε,κ) cos

(
2η√

ε sinh(κ)
+ β2(ε,κ)

)
, η � 1, (33)

(gray curve in Fig. 4), where we recall that A, defined in (27),
and β2, given in (28), are functions of ε and κ through α, ω,

and ν defined in (24). In what follows, we fix a small threshold
δ > 0 measuring the accuracy of the approximation (33). The
asymptotic approximation then becomes valid (i.e., its absolute
error is less than δ) for η > ηa(κ,ε), where ηa increases with κ

at fixed ε, approaching a value that depends only on ε for large
enough κ and decreases as ε grows at fixed κ . This implies that
there exist ηcr and εcr, depending on κ , such that for given κ

the approximation error is less than δ for η > ηcr and ε > εcr.
Here εcr decreases as κ is increased.

Suppose now that κ is large enough so that (i) the
approximate even symmetry (32) of �(η) holds and (ii)
the pulse of �(η) is localized inside the region where the
asymptotic approximation (33) accurately describes H (η; ε)
for ε > εcr(κ), i.e., ηmax − χw � ηcr(κ). Both conditions hold,
for example, in Fig. 4, where κ = 10, ηmax − χw ≈ 7.007,
and the absolute error of the asymptotic approximation of H

is less than δ = 2.3 × 10−5 for η > ηcr = 7. Let η0 be such
that η0 > ηcr(κ) and H (η0) = 0. The second condition then
ensures that H has an approximate odd symmetry about η0

since the approximation (33) has an exact odd symmetry about
its zeros. Together with the approximate even symmetry of �

about η = ηmax(κ), this implies that the integral (30) will be
approximately zero if η0 = ηmax, i.e., the peak of � occurs
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FIG. 3. Approximate velocity profiles q̇0(t) ≈ ẋ0(t) + εẏ0(t) in the diatomic Toda lattice at the special values of ε found by solving (14)
subject to (15) (see the text for details): (a) ε8 = 0.015 258 5; (b) ε7 = 0.019 863 3; (c) ε6 = 0.026 920 2; (d) ε5 = 0.038 545 2; (e) ε4 =
0.059 771 2; (f) ε3 = 0.105 242; (g) ε2 = 0.235 084; (h) ε1 = 0.993 342. Here κ = arcsinh(2

√
5) and t0 = 0.

exactly at the point where H vanishes:

H [ηmax(κ); ε] = 0. (34)

Physically, this corresponds to the largest magnitude of the
acceleration of the center of mass between the two heavy
masses occurring precisely at the moment when the free fast
oscillation of the light mass in between goes through zero.
Using the asymptotic approximation (33), the condition (34)
can be further simplified to yield

2ηmax(κ)√
ε sinh(κ)

+ β2(ε,κ) = π

2
sgn[β2(ε,κ)], (35)

where the sign in front of π/2 in the right-hand side is
determined by the (nonzero) phase β2(ε,κ) of the oscillations.

We checked Eqs. (34) and (35) for κ = 10 and verified
that both yield the values of εn that are in an excellent
agreement, up to the relative error of O(10−8), with the
values obtained using the numerical approximation of (30)
[while the relative error of the roots of (35) approximating the
zeros of (34) is O(10−9) for the smaller computed values].

FIG. 4. The functions H (η; ε) (solid curve), its asymptotic
approximation (33) (gray curve), and 8α2�(η) (dashed curve) at
κ = 10. Inset: the asymptotic approximation over a larger interval.
Here ε = 0.012 850 78 and (34) holds.

In all three cases, the first several values are ε2 = 0.310 921 2,
ε3 = 0.127 279 9, ε4 = 0.068 944 26, ε5 = 0.043 181 48, ε6 =
0.029 571 27, ε7 = 0.021 514 89, ε8 = 0.016 354 27, and ε9 =
0.012 850 78. As expected, the approximation error is smaller
for larger εn. At κ = 5 the asymptotic approximation is not
accurate over the entire interval where �(η) is localized for
smaller ε. As a result, the relative errors of the approximations
are larger but still fairly small, up to O(10−3) for the
solutions of (34) approximating the first few roots of (30),
given in this case by ε2 = 0.282 420 0, ε3 = 0.118 439 6, ε4 =
0.064 970 14, ε5 = 0.041 020 20, ε6 = 0.028 250 95, ε7 =
0.020 642 49, ε8 = 0.015 744 31, ε9 = 0.010 028 09, and up to
O(10−4) for the roots of (35) approximating the zeros of (34).

VI. NUMERICAL RESULTS

To find the special values of ε for the discrete system,
we ran the numerical simulations of (5) with φ′(r) = 1 − e−r

employing the symplectic Candy-Rozmus algorithm. The
solution of (8) was used as the initial condition. Recall that
this solution is given by (19) and (20) for heavy odd-numbered
and light even-numbered masses, respectively, and depends on
the parameter κ that determines the amplitude and velocity
of the wave. For given κ we sought the values of ε at which
the energy stored at a fixed site n = n0 was close to zero
at a time instant t = ta after the pulse has left the site. For
example, at κ = arcsinh(2

√
5) we used n0 = 200 and ta = 40.

The results for this value of κ are compared in Table I with the
corresponding values obtained using the asymptotic analysis.
As expected, the approximation works very well for smaller
values of εk , but as εk becomes larger the predicted values
yield progressively poorer approximation. In particular, the
largest value, ε2 ≈ 0.319 089, is not very close to the value
0.235 084 obtained from the asymptotic analysis. At this value
the velocity of the light mass has two maxima. There appears
to be no value ε1 < 1 with a single maximum (although of
course such solutions, Toda solitons, exist in the monatomic
case ε = 1); as discussed above, the spurious value of ε1
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TABLE I. The values of ε obtained from the Fredholm con-
dition (18) and from the numerical solution of (5) with φ′(r) =
1 − e−r and initial conditions determined from (19), (20) at κ =
arcsinh(2

√
5).

k εk from (18) εk from (5)

2 0.235084 0.319089
3 0.105242 0.116993
4 0.0597712 0.0633882
5 0.0385452 0.0402105
6 0.0269202 0.0275323
7 0.0198633 0.0201695
8 0.0152585 0.0154320

obtained from the asymptotic analysis, lies well beyond the
validity domain of the multiscale expansion and thus should
be discarded.

Figures 5 and 6 show the corresponding velocity profiles for
even-numbered light masses (solid curves) and odd-numbered
heavy masses (dotted curves). Note that the light-mass velocity
profiles are similar to the ones shown in Fig. 3, with the
number of local maxima increasing as εk becomes smaller.
Observe also that the velocity of the solitary wave at ε = εk

increases with k and approaches the speed 2c0 = sinh(κ)
√

2/κ

of the ε = 0 chain of only heavy masses described
by (9).

Homoclinic orbits for light (solid curves) and heavy (dotted
curves) masses corresponding to the solutions at ε = ε8 and
ε = ε4 are shown in Fig. 7. One can see that the orbits
corresponding to the light masses exhibit oscillations and, at
larger εk , small loops.

The values of εk change slightly as κ is varied, and their
dependence on κ is nonmonotone, as can be seen in Fig. 8
where the velocity profiles at ε2 for different κ are shown. Note
that while ε2 depends only only weakly on κ , the solitary wave
profiles change significantly as κ is varied. Their amplitude and
the amplitude of oscillations of the light mass grow with κ , as
does the propagation speed.

VII. CLOSING REMARKS

In this work we have focused on the mechanism of
formation of the isolated localized wave structures existing in
the diatomic FPU model of the general type. We demonstrated
numerically that there is a sequence of special mass ratios
at which the diatomic Toda lattice supports formation of
genuine solitary waves. Further, the asymptotic analysis based
on the singular multiscale expansion effectively reduces the
complex structure of the diatomic FPU chain to the externally
driven linear oscillator with time-varying frequency. Using the
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FIG. 5. Velocity profiles q̇n(t) at four smaller special values of ε for light (solid curves) and heavy (dotted curves) masses at n = 199,
200, 201 and n = 209, 210, 211: (a) ε8 = 0.015 432 0; (b) ε7 = 0.020 169 5; (c) ε6 = 0.027 532 3; (d) ε5 = 0.040 210 5. Initial conditions were
determined from (19), (20) with κ = arcsinh(2

√
5).
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FIG. 6. Velocity profiles q̇n(t) at three larger special values of ε for
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(c) ε2 = 0.319 089. Initial conditions were determined from (19), (20)
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√
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derived reduced-order approximation, we formulated the
antiresonance Fredholm orthogonality condition on the mass
ratio supporting the formation of solitary waves in the
general class of the diatomic FPU models and conjectured
the existence of a countable infinite sequence of such ratios.
To illustrate this result, we considered the diatomic Toda lattice
in the limit of high mass mismatch. We showed that in this case
the derived asymptotic equations have exact solutions, reduc-
ing the Fredholm orthogonality condition to the orthogonality
of two explicitly known functions. This is in contrast to the
previously considered case of granular crystals [24], where the

authors had to use the WKB approximation of the fast dynam-
ics and an exponential Padé approximation [51] of the slow
heavy-mass wave in order to obtain the results. Meanwhile, in
the diatomic Toda setting, the problem involves explicit solu-
tions of the Schrödinger equation with Pöshl-Teller type po-
tential and the exact solitary wave solutions of the monatomic
Toda lattice. Using the asymptotic behavior of the former, we
obtained a simplified condition that works extremely well for
large enough values of κ and ε and has a nice physical interpre-
tation. The obtained analytical predictions of the discrete set
of values of the antiresonance mass ratios are in an excellent
agreement with the values obtained from the numerical
simulations of the full diatomic Toda lattice at small enough ε.

The existence of isolated solitary wave solutions in a
diatomic FPU lattice implies that one can tune the mass ratio
to be close to one of the antiresonance values and ensure that
an impact-initiated wave transfers energy through the chain
with minimal loss. One can also tune the mass ratio to a near-
resonance value for maximal energy loss that could be used for
impact mitigation [52]. For strongly nonlinear granular chains,
the existence of such resonance and antiresonance values of
mass ratios was recently experimentally verified in [53]. More
generally, the existence result can be extended to plane solitary
waves in two-dimensional diatomic lattices when the problem
can be reduced to an effective one-dimensional FPU chain
that has isolated solitary wave solutions. For two-dimensional
diatomic granular crystals under planar impact, the existence
of a discrete set of mass ratios in the high-mismatch asymptotic
limit was recently shown in [54] by extending the results
in [24]. Another natural extension of this work is to consider
dimer lattices with each pair of heavy masses separating N � 2
light ones. Granular chains of this type were studied in [42],
where the asymptotic analysis suggests the existence of a
countable infinity of isolated solitary waves in the case N = 2,
while for N > 2 the authors claim nonexistence of such
solutions. It would be interesting to check if the same assertions
hold for the dimer as well as the trimer Toda lattices. Another
important problem to be considered in the future is the analysis
of the similar isolated wave structures in the diatomic and
triatomic FPU models incorporating long-range interactions.

In this work we were able to take full advantage of
the integrability of the monatomic Toda lattice to obtain an
explicit orthogonality condition in the nonintegrable diatomic
case. In the general FPU case, the Fredholm orthogonality
condition (18) requires the knowledge of f0(t) and Y2(t),
which are not typically explicitly available. Using a good
approximation of the slow-time solitary pulse that yields f0(t)
and applying the WKB approach to find Y2(t) may prove
sufficient in such cases, as demonstrated in [24]. Nevertheless,
proving the existence of a countable infinity of isolated solitary
waves in a diatomic FPU lattice, conjectured in this work in
the small-ε asymptotic limit under fairly general assumptions,
remains an open problem. Even in the diatomic Toda case,
the complex nature of the function (30) prevented us from
showing that it has infinitely many roots, although we have
plenty of numerical evidence supporting this claim. An even
more challenging question is showing this result beyond the
asymptotic approximation, which would definitively establish
the existence of such waves even at mass ratios that are not very
small, when separation of time scales no longer takes place.
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APPENDIX: EVALUATION OF g FOR INTEGER ν

Let N � 2 be an integer and let

εN = 4

N (N + 1)
, μN =

√
N (N + 1)

sinh(κ)
. (A1)

Note that ε = εN corresponds to ν = N and ω/α = μN in (24).
Then H (η; εN ) defined in (29) is an odd function of η,
satisfying

d2H

dη2
+ [

μ2
N + N (N + 1)sech2(η)

]
H = 0 (A2)

and

H (0; εN ) = 1. (A3)

Equation (A2) has a non-odd solution in the form [49]

�N (η) = eiμN η

(1 + e−2η)N

N∑
m=0

CN
m

(
N

m

)
e−2mη, (A4)

with

CN
m =

m∏
j=1

iμN + N + 1 − j

iμN − j
, m � 1

and CN
0 = 1. One can show that � ′

N (0) 
= 0. Note that since
sech2(η) is even, �N (−η) is also a solution of (A2). The odd
solution of (A2) satisfying (A3) is then given by

H (η; εN ) = 1

2� ′
N (0)

[�N (η) − �N (−η)].

Using this and (30), we obtain

g(εN ) = 2
√

2 cosh(κ) sinh2(κ)

� ′
N (0)

∫ ∞

−∞
�(η)�N (η)dη. (A5)

The integral in (A5) can be evaluated using contour integration
in the complex plane C. Observe that at κ > 0 the well-known
properties of complex exponentials imply the following:

(a) �(η + iπ ) = �(η) for all η ∈ C.

(b) The singularities of �(η) are located at η = η±1 +
inπ , where n ∈ Z and η±1 = ±κ + iπ

2 . All such singularities
are poles of order 2.

(c) �(η) has simple zeros at η = η0 + inπ , where n ∈ Z
and η0 = iπ

2 .
(d) �N (η + iπ ) = e−μN π�N (η + iπ ) for all η ∈ C.
(e) The singularities of �N (η) are are located at η = η0 +

inπ , where n ∈ Z. All such singularities are poles of order N .
Thus we see that the integrand �(η)�N (τ ) in (A5) has a

pole of order N − 1 at η = η0 defined in (c) and poles of order
2 at η±1 defined in (b). Moreover, one can show that there
exists a constant ρ > 0 such that

|�(±R + iγ )�N (±R + iγ )| � ρe−ρR (A6)

when R > 2κ and γ ∈ [0,π ].
Now let R > 2κ . By the residue theorem,∫

CR

�(η)�N (η)dη = 2πi

1∑
j=−1

Res(��N,ηj ),

where CR is the closed, positively oriented rectangular curve
in C with the bottom side given by the interval [−R,R] along
the real line, right and left sides given by τ = ±R + iγ , γ ∈
[0,π ], and top side given by the horizontal line segment from
−R + iπ to R + iπ . In the limit R → ∞, the estimate (A6)
implies that the integrals over the left and right sides of CR

vanish. The relation (d) implies that the integral over the top
side is −e−μN π times the integral over the bottom side of the
rectangle. Finally, as R → ∞, the integral on the bottom side
converges to the desired integral in (A5). Thus we obtain∫ ∞

−∞
�(η)�N (η)dη = (1 − e−μN π )−12πi

1∑
j=−1

Res(��N,ηj ).

Together with (A5), this yields the following explicit expres-
sion for g(εN ):

g(εN ) = 4
√

2πi cosh(κ) sinh2(κ)

(1 − e−μN π )� ′
N (0)

1∑
j=−1

Res(��N,ηj ).

(A7)
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