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Although the set of permutation symmetries of a complex network could be very large, few of them give
rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling
synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network
permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to
control the large-size complex network by means of pinning coupling. We argue mathematically that for any of
the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous
pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical
simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled
chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled
chaotic oscillators.
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I. INTRODUCTION

Synchronous behaviors are commonly observed in natural
and man-made systems and are widely recognized as important
to the system functionality and operations [1–3]. In theoretical
studies, a popular approach to investigating synchronization
is to couple an ensemble of dynamical oscillators, and one
of the central tasks is to find the necessary conditions under
which the whole system is globally synchronized, or, in some
circumstances, the onset of synchronization occurs [4,5]. From
the viewpoint of synchronization transition, the onset of syn-
chronization and global synchronization stand, respectively,
as the starting and ending points, which are mostly concerned
for the physical and engineering systems [6–8]. However, for
the neuronal and biological systems, experimental evidences
have shown that the system dynamics is normally lying
somewhere in between [9]. Specifically, the oscillators are
found to be organized into different clusters, with the
motions of the oscillators being highly correlated if they
belong to the same cluster, and loosely or not correlated
if they belong to different clusters [10]. Stimulated by
these experimental observations, in the past decades con-
siderable attentions have been given to the study of clus-
ter (partial, group) synchronization in systems of coupled
oscillators [11–23].

Recently, with the discoveries of the small-world and
scale-free properties in many realistic systems [24,25], the
study of complex network synchronization has received
broad interest [26–29]. While most of the synchronization
phenomena observed previously in regular networks have
been successfully reproduced in complex networks, it remains
a challenge to generate cluster synchronization in complex
networks, due to the presence of random connections [30–32].
By the bifurcation theory of pattern formation, the generation
of cluster synchronization relies strictly on the network sym-
metry [33–35], which, at the first glance, is absent in complex
networks. In recent years, with the in-depth studies on the

*wangxg@snnu.edu.cn

relationship between network structure and synchronization,
breakthroughs have been made on this topic, from which
arises the new interest of studying cluster synchronization in
complex networks [15–23]. In particular, using the technique
of computational group theory [36], in a recent study Pecora
et al. are able to identify all the permutation symmetries of
a complex network and, based on the method of eigenvalue
analysis, predict the stable synchronous patterns that can
be generated from the random initial conditions [22]. This
finding extends significantly the conventional understanding
on cluster synchronization, and, more significantly, points out
the “key” to exploring cluster synchronization in complex
networks: the network permutation symmetry [37]. Although
the set of symmetries of a complex network is generally huge,
their corresponding synchronous patterns are mostly unstable,
making cluster synchronization rarely observed in complex
networks [15–22]. Concerning the important implications of
cluster synchronization to the security and functioning of many
realistic networks, a natural question therefore would be: Is
it possible to stabilize the unstable synchronous patterns in
complex networks by some control methods and techniques?

In the present work, we are going to argue and demonstrate
that, by a small-size control network designed according to
the network permutation symmetry, it is indeed possible to
control a large-size complex network to the synchronous
pattern supported by the network symmetry. This finding
sheds new light on the synchronous behaviors of complex
networks and would be helpful to our understanding on the
functioning of neuronal complex systems (e.g., the functioning
of the vertebrate mesencephalic ventral tegmentum, in which
a collection of dopamine (DA)-expressing neurons in the
midbrain DA complex are self-organized into dynamical
patterns according to the functional sectors while each sector
is used to coordinate the collective dynamical behavior of
a specific functional-anatomical macrosystem of the basal
forebrain [38,39]) and be instructive to the design of modern
techniques for controlling dynamical patterns in complex
engineering networks (e.g., the control of the international
(global) power-grid, in which units (power stations) within a
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nation are synchronized to the same frequency and phase, but
may be different among the nations [40,41]).

The rest of the paper is organized as follows. In Sec. II, we
shall present our model of networked oscillators and introduce
the new control method. In Sec. III, based on the method
of eigenvalue analysis, we shall conduct a detail analysis on
the stability of the synchronous patterns and derive explicitly
the necessary conditions for inducing and controlling the
synchronous patterns. In Sec. IV, we shall apply the proposed
control method to different network models, including the
numerical studies of artificial and real-world networks, and the
experimental demonstration of networked electronic circuits.
Discussions and conclusion shall be given in Sec. V.

II. MODEL AND CONTROL METHOD

Our model of networked chaotic oscillators reads [42]

ẋi = F(xi) + ε

N∑
j=1

wij H(xj ), (1)

with i,j = 1,2, . . . ,N the oscillator (node) indices and N the
network size. xi is the state vector associated with the ith
oscillator, and F(x) describes the dynamics of the oscillators
in the isolated form, which, for the sake of simplicity, is set
as identical in the network. ε is the uniform coupling strength.
H(x) denotes the coupling function. The coupling relationship
among the oscillators, i.e., the network topological structure,
is captured by the matrix W = {wij }, with εwij = εwji > 0
the strength that node j is coupled to node i. If there is no
link between nodes i and j , wij = 0. The diagonal elements
are set as wii = −∑

j wij , so as to make W a Laplacian
matrix. Equation (1), or its equivalent forms, describes the
dynamics of a large variety of spatiotemporal systems and has
been employed as one of the standard models in exploring the
synchronization behaviors of coupled oscillators [42].

Before presenting our new control method, we first describe
how to group the network nodes into clusters according
to the network symmetries [22]. Let i and j be a pair of
nodes in the network whose permutation (exchange) does
not change the system dynamical equations [Eq. (1)], we call
(i,j ) a symmetric pair and characterize it by the permutation
symmetry gij . Scanning over all the node pairs in the network,
we are able to identify the whole set of permutation symmetries
{gij }, which forms the symmetry group G. Each symmetry
g can be further characterized by a permutation matrix Rg ,
with rij = rji = 1 if (i,j ) is a symmetric pair, and rij = 0
otherwise. Rg is commutative with the coupling matrix, i.e.,
RgW = WRg , and, after operating on W, it only exchanges
the indices of nodes i and j . The set of permutation symmetries
of a (unweighted) complex network could be large and difficult
to be identified [22], but can be obtained from W by the
technique of computational group theory [36]. (We note
that for large-scale complex network of random link weight
or nonidentical local dynamics, unless the link weight and
local dynamics are specially arranged, it is hard to find any
symmetry in the network.) Having obtained the symmetry
group G, we then can partition the network nodes into clusters
according to the permutation orbits, i.e., the subset of nodes
permuting among one another by the permutation operations

FIG. 1. A schematic plot of the control method. The lower layer
represents the network to be controlled, which consists of M = 3
clusters. Nodes within each cluster are permuting among one another.
The upper layer represents the control network, which consists of
three controllers. Each controller in the control network is coupled
unidirectionally to all nodes in the cluster associated to it.

are grouped into the same cluster. In such a way, the network
nodes are grouped into a small number of clusters {Vl} (see the
lower layer in Fig. 1 for illustration), with Vl the set of nodes
belonging to cluster l. The clusters provide the topological
basis for the formation of synchronous patterns, yet the patterns
might not be stable, due to either the dynamical or topological
instability (more details to be described below).

We now present our control method for stabilizing the
synchronous patterns. First, a small-size, weighted network is
designed according to the cluster information (the upper layer
in Fig. 1). The size of the control network is identical to the
number of clusters in the original network, and the connections
of the control network are weighted as

clm =
∑
i∈Vl

∑
j∈Vm

wij /nl, (2)

with l,m = 1, . . . ,M the cluster indices and M the size of the
control network (also the number of clusters of the original
network). nl represents the size of the lth cluster, and Vl

denotes the set of nodes belonging to cluster l. Physically,
clm can be understood as the average coupling strength that
a node in cluster l is received from cluster m. In general,
we have clm �= cml , i.e., links in the control network are also
directed. The dynamics of the control network is still governed
by Eq. (1), except that the coupling matrix is defined by Eq. (2)
and the network size is changed to M . To implement the
control, we couple unidirectionally each node (controller) in
the control network to all nodes in the cluster associated to
it. More specifically, the lth controller is coupled to all nodes
in Vl , with l ranging from 1 to M . (A schematic plot of the
control method is presented in Fig. 1.)

Unifying the control and original networks into a large-size
network, the dynamics of the enlarged network reads

ẋl = F(xl) +
M∑

m=1

clmH(xm), (3)

ẋi = F(xi) + ε

N∑
j=1

wij H(xj ) + ηε

M∑
l=1

δilH(xl), (4)
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where Eqs. (3) and (4) describes, respectively, the dynamics
of the control and original networks. We set cll = −∑

m clm

in Eq. (3), so as to make C a Laplacian matrix. In Eq. (4), η

denotes the normalized control (pinning) strength, and δ is the
delta function: δil = 1 if i ∈ Vl , and δil = 0 otherwise. For the
system dynamics described by Eqs. (3) and (4), the specific
questions we are interested in are: Can we stabilize the unstable
synchronous patterns by the control network designed as such?
If yes, what is the necessary controlling strength?

III. THEORETICAL ANALYSIS

Due to the network symmetry, the topological clusters
provide naturally a solution for the synchronous pattern. To
be specific, if we set the initial conditions of all nodes inside
the same cluster to be identical, then during the process of
the system evolution, these nodes will be always synchronized
whatever the coupling strength. This is because that nodes
within the same cluster are surrounded by the same set
of neighboring nodes, and thus are perturbed by the same
coupling signals throughout the evolution. The synchronous
pattern defined as such, however, is generally unstable. Let
sl(t) be the synchronous manifold of the lth cluster and
δxi = xi − sl be the infinitesimal perturbations added onto
oscillator i, then whether the oscillators inside cluster l are
synchronizable is basically determined by the following set of
variational equations:

δẋi = DF(sl)δxi + ε
∑
j∈Vl

wijDH(sl)δxj

+ ε
∑
m�=l

∑
j ′∈Vm

wij ′[DH(sm)δxj ′ − DH(sl)δxi], (5)

with i,j = 1, . . . ,nl the oscillators belonging to cluster l. sm

denotes the the synchronous manifold of the mth cluster, and
δxj ′ = xj ′ − sm (with j ′ ∈ Vm) represents the perturbations
of the j ′th oscillator from sm. DF(sl) and DH(sl) are the
Jacobin matrices evaluated on sl . In Eq. (5), the second
term on the righthand side represents the coupling signals
that oscillator i receives from oscillators within the same
cluster, and the third term represents the coupling signals
that i receives from oscillators in other clusters (m �= l). For
the synchronous pattern to be stable, the necessary condition
is that δxi approaches 0 with time for all oscillators in the
network. (Please note that this condition is different from that
of global synchronization, where all the oscillator trajectories
are required to be converged to the same manifold. Here,
oscillators in different clusters are converged to different
manifolds.)

Denoting �X = [�X1,�X2, . . . ,�XM ]T as the network
perturbation vector, with �Xl = [δx1,δx2, . . . ,δxnl

]T the per-
turbation vector associated to cluster l, then the variational
equations of Eq. (5) can be rewritten as

�Ẋ =
[ M∑

l=1

El ⊗ DF(sl) + εW
M∑
l=1

El ⊗ DH(sl)

]
�X. (6)

Here, El is an N -dimensional diagonal matrix, with El
ii = 1 if

i ∈ Vl , and El
ii = 0 otherwise. To analyze the stability of the

synchronous pattern, the key question is how to decouple the

clusters from each other (so that the stability of the clusters
can be treated individually). This can be accomplished by
transforming the variational equations into the mode space
spanned by the eigenvectors of the network permutation ma-
trix, with the details as follows. (The mathematical treatment
to be described below is modified from Ref. [22], but is more
efficient and easier to operate. In Ref. [22], the authors employ
the irreducible representations to diagonalize the transverse
space of the coupling matrix, which relies on a specially
designed code and is computationally costly. In our treatment,
we first transform the coupling matrix to the blocked diagonal
form and then diagonalize the transverse blocks individually,
which can be done by the conventional routine and is much
efficient in simulation.) First, based on the network symmetry,
we can construct the network permutation matrix R, with
rij = rji = 1 if nodes i and j belong to the same cluster, and
rij = rji = 0 otherwise. Second, by finding the eigenvectors
of R, we can construct the transformation matrix T, such
that the transformed matrix R′ = T−1RT is diagonal. Finally,
transforming Eq. (6) to the mode space of T, we obtain

�Ẏ =
[ M∑

l=1

El ⊗ DF(sl) + εG
M∑
l=1

El ⊗ DH(sl)

]
�Y, (7)

with �Y = T−1�X and G = T−1WT. Particularly, in the
mode space the coupling matrix G has the blocked form

G =
(

B 0
0 D

)
, (8)

where B = ⊕M
l=1Bl , with Bl an (nl − 1)-dimensional matrix.

As Bl characterizes the motions transverse to the synchronous
manifold sl [21], we name the associated space the transverse
subspace of cluster l. The M-dimensional matrix D, on
the other hand, characterizes the motions parallel to the
synchronous manifolds {sl}, we thus name the associated space
the synchronous space. Please note that because W and G
are similar matrices, they have the same set of eigenvalues.
In particular, the null eigenvalue, which characterizes the
manifold of the global synchronization, belongs to D. The
significance of this transformation is that the eigenvalues are
now divided into two distinct groups: one for the transverse
subspaces (associated to the matrix B) and one for the
synchronous subspace (associated to the matrix D). More
importantly, the transverse subspaces of the clusters are
decoupled from each other, so that the synchronization stability
of the clusters can be analyzed separately.

Having decoupled the transverse subspaces, the stability of
the lth cluster now is determined by the equation

�Ẏl = [In′
l
DF(sl) + εBlDH(sl)]�Yl , (9)

with n′
l = nl − 1, �Yl = [δyl,1,δyl,2, . . . ,δyl,n′

l
]T the trans-

verse modes of sl , and In′
l

the n′
l-dimensional identity matrix.

To make the lth cluster synchronizable, δyl,i should be
damping with time for all the n′

l transverse modes. Treating
each cluster as an isolated network, this is essentially a
problem of global synchronization, which can be analyzed
by the method of master stability function (MSF) [43–45].
Specifically, projecting �Yl into the eigenspace of Bl (spanned
by the eigenvectors of Bl), then Eq. (9) can be transformed into
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n′
l decoupled equations,

δẏl,i = [
DF(sl) + ελt

l,iDH(sl)
]
δyl,i , (10)

with i ∈ [1,n′
l] and 0 > λt

l,1 � λt
l,2 � · · · � λt

l,n′
l

the eigen-
values of Bl . Let �l,i be the largest Lyapunov exponent
calculated from Eq. (10), then whether δyl,i is damping with
time is determined by the sign of �l,i : the mode is stable
if �l,i < 0, and is unstable if �l,i > 0. Defining σ ≡ −ελt ,
by solving Eq. (10) numerically we can obtain the function
� = �(σ ). Previous studies of MSF have shown that for
the typical nonlinear oscillators [43–45], � is negative when
σ is larger to a critical threshold σc, with σc a parameter
dependent of both the oscillator dynamics and coupling
function. (Another typical situation is that � is negative in
a bounded region (σ1,σ2). Our theoretical analysis, as well
as the control method, can be generalized to this situation
straightforwardly. It should be noted that for such a case, the
stability of the l synchronous cluster is jointly determined by
the modes λl,1 and λl,n′

l
, rendering it relatively difficult to be

generated.) As such, to keep the lth cluster synchronizable,
the necessary condition becomes σl,i > σc for i = 1,2, . . . ,n′

l ;
and, to keep the synchronous pattern stable, this condition
should be satisfied for all the M clusters.

To better describe the mechanism of cluster synchroniza-
tion, we plot Fig. 2, which shows schematically how the
transverse modes are stabilized as the coupling (controlling)
strength is increased. In Fig. 2, each (large) filled circle
represents the transverse modes, {δyl}, of a specific cluster,
and the dotted empty circles represent the synchronous modes

(manifolds), {sl}. Let 0 = λs
1 > λs

2 � · · · � λs
M be the eigen-

values of D and denote λmin as the largest eigenvalue among all
the transverse modes, i.e., λmin = min{|λt

1,1|,l = 1, . . . ,M},
then the scenario of cluster synchronization is dependent on the
relationship between |λs

2| and λmin. If |λs
2| < λmin [as the case

shown in Fig. 2(a1)], cluster synchronization can be achieved
by varying the coupling strength ε. More specifically, given
that all the transverse modes are staying in the stable region
and, in the meantime, at least one of the synchronous modes is
staying in the unstable region, cluster synchronization will be
generated. This requirement thus gives the range for generating
stable synchronous pattern, ε ∈ (ε1,ε2), with ε1 = σc/λmin

and ε2 = σc/|λs
2|. On the other hand, if |λs

2| > λmin [as the
case shown in Fig. 2(b1)], cluster synchronization cannot be
generated by varying ε. This is because that when the most
unstable transverse mode, λmin, is shifted into the stable region,
all the nontrivial synchronous modes will be already in the
stable region, resulting in global synchronization instead of
cluster synchronization. As λs

2 and λmin are determined by only
the network structure, for the latter cluster synchronization
cannot be generated by varying the coupling strength, i.e., the
synchronous pattern is topologically unstable.

We proceed to analyze the stability of the synchronous
pattern when the control network is activated. Regarding
the original and control networks as two connected parts
of an enlarged network, then the control problem is es-
sentially a problem of network synchronization, except that
the synchronous manifolds are predefined by the control
network. Similar to the analysis presented above for cluster

unstable stable unstable stableunstable stable unstable stable

(a1) (b1)no pa�ern no pa�ern(a1) (b1)no pa�ern no pa�ern

,{ }t
l i{ }sl{ }cl ,{ }t

l i{ }sl{ }cl

)2b()2a( pa�ern nrettapdecudni induced

)3b()3a( pa�ern nrettapdellortnoc controlled

FIG. 2. Schematic plots showing the mechanism of cluster synchronization for the cases of dynamically unstable (a1–a3) and topologically
unstable (b1–b3) networks. (a1) Without the control network, the distribution of the eigenmodes in the parameter space of σ . As some transverse
modes are staying in the unstable regime, the synchronous pattern is unstable. (a2) With the control network, synchronous pattern is induced
when the controlling strength η > η1. (a3) η > η2, the synchronous pattern is controlled to the state of the control network. (b1) Without the
control network, the distribution of the eigenmodes. Cluster synchronization cannot be generated by varying the coupling strength, due to the
topological instability. (b2) Cluster synchronization is induced by the control network when η > η1. (b3) The synchronous pattern is controlled
when η > η2. Filled colored circles: the transverse modes associated to different clusters. Dotted empty circles (black): the synchronous modes
{sl}. Dashed empty circles (red): the controlling modes. Modes are stable in the region of σ > σc.
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synchronization, for the control problem we can still decouple
the transverse modes by transforming the variational equations
into the mode space of the permutation matrix of the enlarged
network (which actually is identical to that of the original
network, as the controllers are coupled to the oscillators in
the one-way fashion). After the transformation, the coupling
matrix has the blocked form

G =
⎛
⎝B − ηIN ′ 0 0

0 D − ηIM ηIM

0 0 C

⎞
⎠, (11)

with B and D identical to Eq. (8), C the coupling matrix of
the control network, and η the controlling strength. IN ′ and
IM are identity matrices of dimensions N ′ = N − M and M ,
respectively. From Eq. (11) we see that, with the introduction of
the control network, the eigenvalues of B and D are increased
globally by the amount η. In particular, −λmin and λs

1 are
replaced by −λmin − η and −η, respectively. If the cluster-
synchronization state is dynamically unstable [e.g., Fig. 2(a1)],
the necessary condition for generating cluster synchronization
is replaced by ε| − λmin − η| > σc [Fig. 2(a2)], from which
we obtain the critical controlling strength for inducing cluster
synchronization in the network,

η > η1 = (σc/ε) − λmin. (12)

Increasing η further, the modes associated to D will be shifted
rightward [as depicted in Fig. 2(a3)]. As the controllers are
coupled to oscillators in the original network in the one-way
fashion, the synchronous manifolds therefore is defined by
the control network. That is, the modes associated to D are
switched to transverse modes. Once

η > η2 = σc/ε, (13)

all the transverse modes, {λt
l,i} and {λs

l }, will be shifted into
the stable region, making the cluster-synchronization state
controlled to the pattern defined by the control network. If
the cluster-synchronization state is topologically unstable
[e.g., Fig. 2(b1)], the necessary conditions for inducing
and controlling cluster synchronization are still given by
Eq. (12) [as depicted in Fig. 2(b2)] and Eq. (13) [as depicted
in Fig. 2(b3)], respectively, as the requirement of pattern
stability is not changed. We note that the success of generating
the topologically unstable pattern lies in the switching of the
mode λs

1 from the synchronous to transverse type. That is, the
role of λs

1 is replaced by the mode λc
1 of the control network.

Here, 0 = λc
1 > λc

2 � · · · � λc
M are the eigenvalues of C,

which are independent of η.
The above theoretical analysis thus depicts the following

picture on the control of unstable synchronous patterns. For
η < η1, there are transverse modes in the unstable region, thus
the synchronous pattern is unstable and cannot be generated in
the network. Then, as η exceeds η1, all the transverse modes
are shifted into the stable region and, as a consequence, the
synchronous pattern becomes stable and is emerged. Please
note that in this case the oscillators within the same cluster are
synchronized but not constrained to the controller. It is also
worth mentioning that here the dynamics of this synchronous

pattern is identical to that of the control network; i.e., the
original network is degenerated to a small-size network which
has exactly the same coupling structure as the control network.
As a matter of fact, the coupling matrix of the control network
[as described by Eq. (2)] is designed based on just such a
principle. Finally, as η exceeds η2, the synchronous pattern
of the original network is constrained to the state of the
control network, i.e., the synchronous pattern is controlled.
Accompanying this transition, the synchronous manifolds,
which are associated to D when η ∈ (η1,η2), are replaced by
the manifolds associated to C.

IV. APPLICATIONS

To verify the feasibility of the proposed control method, as
well as to test the theoretical predictions obtained in Sec. III,
we next employ this method to control synchronous patterns in
different networks, including a small-size network of apparent
symmetries, the Nepal power-grid network, and a realistic
network of coupled electronic circuits.

A. Small-size network

We start by applying the control method to control
synchronous patterns in a small-size, artificial network. The
structure of the network is plotted in Fig. 3(a), which is
constructed by a six-node ring network and three nonlo-
cal connections (shortcuts) [21]. To capture the feature of
weighted links widely observed in realistic networks, we set
w1,4 = 0.8 for the connection between nodes 1 and 4, and
w = 1 for the other connections. In simulations, we adopt
the chaotic Lorenz oscillator as the nodal dynamics, which
is described by equations (dx/dt,dy/dt,dz/dt)T = [α(y −
x),rx − y − xz,xy − bz]T . The parameters of the Lorenz
oscillator are chosen as α = 10, r = 35, and b = 8/3, with
which the oscillator presents the chaotic motion [46]. The
coupling function is chosen as H([x,y,z]T ) = [0,x,0]T , i.e.,
the x variable is coupled to the y variable. Having fixed the
nodal dynamics and coupling function, we can obtain the
function � = �(σ ) by solving Eq. (10) numerically, which
shows that � is negative when σ > σc ≈ 8.3 [45].

For the simple network presented in Fig. 3(a), the network
symmetries can be discerned straightforwardly: the reflection
symmetries, S1 and S2, and the rotation symmetry (of 180◦),
S3. As discussed in Sec. III, although each symmetry supports
potentially a synchronous pattern, only the stable ones are
observable. To figure out the stable synchronous patterns nu-
merically, we investigate the variation of the synchronization
relationship among the oscillators as a function of the coupling
strength, ε. The results are presented in Fig. 3(b). The synchro-
nization relationship is characterized by the synchronization
errors δxi = 〈|xi − x2|〉, with 〈· · ·〉 denoting the time average.
Figure 3(b) shows that when 2.6 < ε < 4.5, δx6 = 0 and
δx3 = δx5. That is, two synchronous clusters, (2,6) and (3,5),
are formed on the network. Clearly, the synchronized nodes
satisfy the symmetry S1. [Please note that these two clusters
are dependent with each other (i.e., they are generated or dis-
appeared simultaneously on the network), which in Ref. [42]
are named as intertwined clusters.] At ε ≈ 4.5, δxi = 0 for i =
1, . . . ,6, indicating that the network is globally synchronized.
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FIG. 3. Controlling synchronous patterns in a six-node network of coupled chaotic Lorenz oscillators. (a) The network structure. The
weight of the connection between nodes 1 and 4 is 0.8, and is 1 for the other connections. The network possesses two reflection symmetries,
S1 and S2, and one rotation symmetry, S3 (180◦ ration). (b) In the absence of the control network, the synchronization relationship among
the oscillators, characterized by the variation of the node synchronization errors δxi = 〈|xi − x2|〉, as a function of the coupling strength, ε.
Synchronous pattern associated to S1 is generated in the region ε ∈ (2.6, 4.5). (c) The control network designed according to the symmetry
S1. Controllers 1′, 2′, 3′, and 4′ control, respectively, the nodes 1, (2,6), (3,5), and 4. (d) Fixing ε = 1.0, the variation of the synchronization
relationship among oscillators (controllers) as a function of the controlling strength, η. The synchronous pattern associated to S1 is generated
(stabilized) for η > η1 ≈ 5.0, and is controlled to the control network for η > η2 ≈ 8.6. (e) The control network designed according to the
symmetry S3. Controllers 1′, 2′, and 3′ control, respectively, the symmetric pairs (1,4), (2,5), and (3,6). (f) Fixing ε = 1.0, the variation of
the synchronization relationship among oscillators (controllers) as a function of η. The synchronous pattern associated to S3 is generated
(stabilized) for η > η1 ≈ 5.7, and is controlled to the control network for η > η2 ≈ 8.6. In (d) and (f), δxl′ = 〈|xl′ − x2|〉, with l′ the controller
index.

We thus infer from Fig. 3(b) that among the three symmetries,
only the synchronous pattern associated to S1 is observable
by varying the coupling strength. In what follows, we are
going to demonstrate that, with the help of the control network,
the synchronous patterns associated to S2 and S3 can also be
generated when the controlling strength is sufficiently large.

To investigate, we set ε = 1.0 < ε1, with which no syn-
chronous cluster is formed on the network. Our first attempt
is to generate the synchronous pattern associated to S1.
(Although this pattern is topologically stable, it is dynamically
unstable due to the weak coupling among the oscillators.)
Based on the symmetry S1, we can construct the control
network shown in Fig. 3(c). According to Eq. (2), the coupling
matrix of the control network reads

C =

⎛
⎜⎝

−2.8 2 0 0.8
1 −2 1 0
0 1 −2 1

0.8 0 2 −2.8

⎞
⎟⎠. (14)

In implementing the control, controllers 1′, 2′, 3′, and 4′
are coupled unidirectionally to nodes 1, (2,6), (3,5), and 4

in the original network, respectively. By solving Eqs. (3)
and (4) numerically, we plot in Fig. 3(d) the variation of
the synchronization relationship among the oscillators as a
function of the controlling strength, η. Figure 3(d) shows
clearly that at η1 ≈ 5.0, the synchronous pattern associated
to S1 is successfully induced (δx2 = δx6 = 0 and δx3 = δx5);
and, at η2 ≈ 8.6, the synchronous pattern is controlled to
the control network (δx2 = δx6 = δx2′ = 0, δx3 = δx5 = δx3′ ,
δx1 = δx1′ , and δx4 = δx4′ ), i.e., nodes 2 and 6 (nodes 3 and
5) are synchronized to controller 2′ (controller 3′).

The critical controlling strengths, η1 and η2, can be analyzed
by the theory presented in Sec. III, as follows. Corresponding
to the network symmetry S1, we have the permutation matrix

R =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (15)
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from which we can obtain transformation matrix (constructed
by the eigenvectors of R), which reads

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0.71 0 0 0.71 0

−0.71 0 0 0 0 0.71
0 0 0 1 0 0

0.71 0 0 0 0 0.71
0 −0.71 0 0 0.71 0

⎞
⎟⎟⎟⎟⎟⎠

. (16)

The coupling matrix of the original network is

W =

⎛
⎜⎜⎜⎜⎜⎝

−2.8 1 0 0.8 0 1
1 −3 −1 0 0 1
0 1 −3 1 1 0

0.8 0 1 −2.8 1 0
0 0 1 1 −3 1
1 1 0 0 1 −3

⎞
⎟⎟⎟⎟⎟⎠

, (17)

which, after the transformation operation G = T−1WT, has
the blocked form as shown in Eq. (8), with

B =
(−4 −1

−1 −4

)
(18)

and

D =

⎛
⎜⎝

−2.8 0.8 1.41 0
0.8 −2.8 0 1.41
1.41 0 −2 1

0 1.41 1 −2

⎞
⎟⎠. (19)

For the matrix B (which characterizes the transverse spaces
of the synchronous pattern), we have the eigenvalues
(λt

1,λ
t
2) = (−3,−5); for the matrix D (which characterizes

the synchronous spaces of the synchronous pattern), we
have the eigenvalues (λs

1,λ
s
2,λ

s
3,λ

s
4) = (0,−1.85,−3,−4.75).

(Please note that, as (2,6) and (3,5) are intertwined clusters,
the matrix B is not diagonalized [42].) According to Eqs. (12)
and (13), we thus have η1 = (σc/ε) − λmin = 8.3 − |λt

1| = 5.3
and η2 = σc/ε = 8.3, which are in good agreement with the
numerical results shown in Fig. 3(d).

Our second attempt is to generate the synchronous pattern
associated to S3, which, according to the our definitions in
Sec. III, is classified as topologically unstable (i.e., λmin <

|λs
2|). The control network is presented in Fig. 3(e), in which

controllers 1′, 2′, and 3′ are used to control the symmetric pairs
(1,4), (2,5), and (3,6), respectively. The coupling matrix of the
control network reads

C =
⎛
⎝−2 1 1

1 −3 2
1 2 −3

⎞
⎠. (20)

Figure 3(f) shows the variation of the synchronization rela-
tionship of the oscillators as a function of the controlling
strength, η. It is seen that when η > η1 ≈ 5.7, δx1 = δ4,
δx2 = δx6, and δx3 = δx5. That is, the synchronous pattern
defined by S3 is generated on the network. Increasing η further
to η2 ≈ 8.6, we have δx1′ = δx1 = δ4, δx2′ = δx2 = δx6, and
δx3′ = δx3 = δx5, i.e., the synchronous pattern is controlled.

Still, the critical controlling strengths, η1 and η2, can be
analyzed by the theory presented in Sec. III. For the network

symmetry S3, we have the permutation matrix

R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (21)

Transforming the coupling matrix W [Eq. (17)] into the mode
space spanned by the eigenvectors of R, we have the blocked
matrix G [of the form shown in Eq. (8)], with

B =
⎛
⎝−3 1 0

1 −3.6 −1
0 −1 −3

⎞
⎠, (22)

and

D =
⎛
⎝−3 2 1

2 −3 1
1 1 −2

⎞
⎠. (23)

For the matrix B, we have the eigenvalues (λt
1,λ

t
2,λ

t
3) =

(−1.85,−3,−4.75). (Again, the matrix B is not diagonalized,
due to the intertwined clusters [42].) For the matrix D, we have
the eigenvalues (λs

1,λ
s
2,λ

s
3) = (0,−3,−5). As λmin = 1.85 <

|λs
2|, the synchronous pattern thus is judged as topologically

unstable, i.e., it cannot be generated by varying the coupling
strength [Fig. 2(b)]. According to the theoretical predications,
i.e., Eqs. (12) and (13), we have η1 = (σc/ε) − λmin = 6.4 and
η2 = σc/ε = 8.3, which agree with the numerical results well
[Fig. 3(f)]. (The synchronous pattern associated to S2 also can
be controlled, with the results similar to that of S3. Here we
omit the details for saving the space.)

B. Power-grid network

While the symmetries of a small-size network can be
discerned by inspection, the complete set of permutation
symmetries of a large-size complex network can only be
identified with the help of some sophisticated techniques, e.g.,
by the tools of computational group theory [36]. Besides,
due to the large number of symmetries, the scenario of
cluster synchronization in complex network is much more
complicated than the small-size ones. For instance, the
network may stay on a surprising state where one or more
clusters lose synchronization while the remaining clusters
are still synchronized, namely the phenomenon of isolated
desynchronization [22].

To verify the feasibility of the proposed control method
further, we next employ the Nepal power-grid as the network
model [47], and investigate the controllability of the syn-
chronous patterns associated to the network symmetries. This
may have implications to the functioning of the international
(global) power grid [40,41], where the power generators within
the same nation are synchronized in both frequency and
phase, while the frequency and phase are different among
the nations. That is, the functioning of the global grid is based
on the synchronous pattern consisting of many synchronized
national grids. To make the global grid functioning properly,
a crucial issue thus is how to coordinate the synchronous
clusters and keep the synchronous pattern stable by some kinds
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of central controlling systems. (The similar concerns arise
also for the functioning of the interconnection power-grid,
where high-voltage direct current lines are used to connect
alternating current grids that are not synchronized with each
other [48].) The structure of the Nepal power-grid is presented
in Fig. 4(a), which consists of 15 nodes (power stations)
and 62 links (power lines). For the sake of simplicity, here
we treat the network links as nonweighted and nondirected,
i.e., wij = wji = 1. By the technique of computational group
theory, we are able to figure out all the network permutation
symmetries (totally 86 400), and, according to the permutation
orbits, partition the nodes into 5 clusters: V1 = {1,2,3,4,5},
V2 = {6,7,8}, V3 = {9,10,11,12,13}, V4 = {14}, and V5 =
{15} [22]. Among them, the 4th and 5th clusters are trivial,
as each one contains only a single node.

Employing still the chaotic Lorenz oscillator as the nodal
dynamics, we plot in Fig. 4(b) the variation of the syn-
chronization relationship among the oscillators as a function
of the coupling strength, ε. Here, to better demonstrate the
formation of the synchronous clusters, we monitor only the
averaged synchronization error of the nontrivial clusters, δx̂l =∑

i〈|xi − x̄l|〉/nl , with x̄l = ∑
i xi/nl the averaged state of

the oscillators in cluster l. Clearly, if the lth cluster is
synchronized, we have δx̂l = 0. Figure 4(b) shows that, with
the increase of ε, cluster 1 is first synchronized (ε1 ≈ 0.4),
followed by cluster 2 (ε2 ≈ 0.8) and then cluster 3 (ε3 ≈ 1.1).
(Please note that different from the case of small-size network,
here the clusters are not intertwined.) To exclude the possibility
of global network synchronization, we plot in Fig. 4(b) also
the variation of the network-averaged synchronization error,
δx̂net = ∑

i〈|xi − x̄|〉/N , with x̄ = ∑
i xi/N the network-

averaged state. As δx̂net = 0 at ε4 ≈ 8.9, we thus confirm
that cluster synchronization is generated within the range
ε ∈ (ε3,ε4). (Here cluster synchronization refers specifically
to the state that all the nontrivial clusters are synchronized. If
only part of the clusters are synchronized, we call it the state

of isolated desynchronization [22]. The formation of this state
will be discussed later in this section.)

The reference state to be controlled is generated by ε =
0.3 < ε1, with which no synchronous cluster is formed on the
network. Based on the cluster information, we can construct
the control network shown in Fig. 4(c), which consists of 5
controllers and 5 weighted links. According to Eq. (2), we can
construct the coupling matrix of the control network as

C =

⎛
⎜⎜⎜⎜⎜⎝

−3 3 0 0 0
5 −11 5 1 0
0 3 −4 1 0
0 3 5 −9 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

. (24)

Controlling the reference state by the scheme proposed in
Sec. II, we plot in Fig. 4(d) the variation of the averaged
synchronization errors of the nontrivial clusters, δx̂l , as a
function of the controlling strength, η. It is seen that as
η increases, the clusters 2, 3, and 1 are synchronized at
η1 ≈ 13, η2 ≈ 15, and η3 ≈ 16, respectively. In particular, in
the regime η > η3, the synchronous pattern, which is unstable
without the control, is successfully induced on the network.
Increasing η further to η4 ≈ 29, in Fig. 4(d) it is seen that
the synchronous pattern is controlled to the control network,
i.e., each synchronous cluster is synchronized to its controller.
(The control efficiency is measured by the cluster-controller
synchronization errors, δx̃l = ∑

i〈|xi − xl′ |〉/nl , with xl′ the
state of the controller l′, and i = 1, . . . ,nl the oscillators in
cluster l.)

The critical controlling strengths, η3 and η4, can also be
analyzed theoretically, based on the method presented in
Sec. III. According to the network cluster information, we
have the following permutation matrix (rij = rji = 1 if nodes
i and j belong to the same cluster, and rij = 0 otherwise)

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)
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FIG. 4. Controlling synchronous pattern in the Nepal power-grid network. The nodal dynamics and coupling function are the same
as described in the caption to Fig. 3. (a) The network structure and the distribution of the clusters. The nodes are partitioned into three
nontrivial clusters [V1 = {1,2,3,4,5} (red), V2 = {6,7,8} (blue), and V3 = {9,10,11,12,13} (green)] and two trivial clusters [V4 = {14} (pink)
and V5 = {15} (yellow)]. (b) The variations of the cluster synchronization errors, δx̂l with l = 1,2,3, and the network synchronization error,
δx̂net, as a function of the coupling strength, ε. Clusters 2, 3, and 1 are synchronized at ε1 ≈ 0.4, ε2 ≈ 0.8, and ε3 ≈ 1.1, respectively. For
ε > ε4 ≈ 8.9, the network is globally synchronized. (c) The control network. Controller l′ is coupled unidirectionally to all oscillators in
cluster l of the original network. (d) For ε = 0.3, the variations of the cluster synchronization errors, δx̂l , as a function of the controlling
strength, η. Synchronization is induced in clusters 2, 3, and 1 at η1 ≈ 13, η2 ≈ 15, and η3 ≈ 16, respectively. Dashed lines: the variation of the
cluster-controller synchronization errors, δx̂l , with respect to η. For η > η4 ≈ 29, δx̃l = 0, indicating that the synchronous pattern is controlled
to the state of the control network.

based on which we can obtain the transformation matrix T. By T, we then are able to transform the coupling matrix into the
blocked form, with

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8 0 0 0 0 0 0 0 0 0
0 −8 0 0 0 0 0 0 0 0
0 0 −8 0 0 0 0 0 0 0
0 0 0 −8 0 0 0 0 0 0
0 0 0 0 −14 0 0 0 0 0
0 0 0 0 0 −14 0 0 0 0
0 0 0 0 0 0 −9 0 0 0
0 0 0 0 0 0 0 −9 0 0
0 0 0 0 0 0 0 0 −9 0
0 0 0 0 0 0 0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

and

D =

⎛
⎜⎜⎜⎝

−9 1 1.73 0 2.24
1 −1 0 0 0

1.73 0 −11 3.87 3.87
0 0 3.87 −3 0

2.24 0 3.87 0 −4

⎞
⎟⎟⎟⎠. (27)
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From the matrix B we have λmin = 8, which, according to
Eq. (12), gives the critical controlling strength for inducing
the synchronous pattern, η3 ≈ 20. Meanwhile, according to
Eq. (13), we also have the critical controlling strength for
controlling the synchronous pattern, η4 ≈ 28. As depicted
in Fig. 4(d), these theoretical results agree well with the
numerical results.

Besides the critical strengths η3 and η4, the other two critical
controlling strengths observed in numerical simulations, i.e.,
η1 and η2, can also be analyzed. Noticing that B can be
rewritten in the blocked form

B =
⎛
⎝B1 0 0

0 B2 0
0 0 B3

⎞
⎠, (28)

with Bl the transverse space of the lth (nontrivial) cluster.
[Please note that for the general complex networks, the matrix
B has the blocked form shown in Eq. (28). But for the specific
network of Nepal power-grid, B is diagonal.] According to
the scenario of cluster synchronization depicted in Fig. 2, the
lth cluster is synchronized when σl,1 = ε|λt

l,1| > σc, with λt
l,1

the largest eigenvalue of Bl . When control is added, λt
l,1 is

replaced by λt
l,1 − η (as analyzed in Sec. III). The condition

for cluster synchronization thus becomes ε|λt
l,1 − η| > σc.

That is, to make the lth cluster synchronizable (despite the
synchronization relationship of the remaining oscillators), the
controlling strength should be larger to

ηl = (
σc/ε − ∣∣λt

l,1

∣∣). (29)

For the matrices B2 and B3 in Eq. (28), we have λt
1,1 = −14

and λt
2,1 = −9, respectively. According to Eq. (29), we thus

have η1 = 14 (cluster 1 is synchronized) and η2 = 19 (cluster
2 is synchronized), which agree with the numerical results very
well (numerically we have η1 ≈ 13 and η2 ≈ 15).

From the viewpoint of practical applications, a commonly
interested issue is the dependence the critical controlling
strength, η4, on the system coupling strength, ε, as both quan-
tities reflect the cost for generating the desired synchronous
pattern. To investigate, we plot in Fig. 5 the variation of
η4 as a function of the normalized coupling strength, ε/ε4,
with ε4 = 8.9 the critical coupling strength for generating
global synchronization [see Fig. 4(b)]. It is seen in Fig. 5
that, as the coupling strength increases, the value of η4 is
gradually decreased. That is, the stronger the coupling among
the oscillators is, the smaller is the strength needed to control
the network to the desired pattern. A fitting of the numerical
data shows that η ∝ 1/ε, which is exactly what we have
obtained by the method of eigenvalue analysis [i.e., Eq. (13)].

C. Experimental demonstration

Can synchronous patterns be controlled in realistic sys-
tems? In our theoretical and numerical studies, it is assumed
that the nodal dynamics is identical and the network structure
is of perfect symmetry. In a realistic situation, parameter
mismatch and noise perturbations are unavoidable. To check
the feasibility of the control method to realistic networks,
we finally investigate the control of cluster synchronization
in network of coupled electronic circuits. Specifically, we
adopt still the network structure of Fig. 3(a), but employ
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10

15
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ε/ε
4

η 4

 

 

simulation
theory

FIG. 5. For the Nepal power-grid network, the variation of the
critical controlling strength for pattern control, η4, as a function of
the normalized coupling strength, ε/ε4, with ε4 the critical coupling
strength for global synchronization [see Fig. 4(b)]. Open circles: the
numerical results. Solid line: the theoretical results given by Eq. (13).

the Hindmarsh-Rose (HR) neuronal circuit as the nodal
dynamics [49,50]. The HR circuit is described by equations

ẋ = y − ax3 + bx2 − z + Ie,

ẏ = c − dx2 − y,

ż = r[s(x + 1.6) − z], (30)

with (a,b,c,d,r,s) the system parameters, and Ie the external
forcing current. This model has been widely employed in
literature for modeling the firing activities of neurons, and
its experimental realizations by electronic circuits have been
well designed and investigated. Here, we adopt the circuit
diagram designed in Ref. [50] and couple the circuits through
the x variable, i.e., H([x,y,z]T ) = [x,0,0]T . We set the
system parameters as (a,b,c,d,r,s) = (1,3,1,5,6 × 10−3,4),
and choose the external current Ie = 320 μA, with which the
circuit shows the chaotic motion [49]. The whole experimental
process is controlled and monitored by the virtual interface of
the software MULTISIM 12.0.

To demonstrate, we choose Fig. 3(e) as the control network.
That is, we are trying to control the network to the synchronous
pattern associated to S3, which, according to the eigenvalue
analysis, is topologically unstable [Fig. 2(b)]. We fix the
coupling strength among the circuits in the original network
as ε = 1.53, with which no synchronization is observed
between any two circuits. Using this nonsynchronous state
as the reference state, we activate the control and record the
synchronization relationship among the circuits under different
controlling strengths, η. The typical results are plotted in Fig. 6.
When η is too weak, e.g., η = 1.0 in Fig. 6(a), it is seen that
the circuits in the original network are neither synchronized
in pairs [Fig. 6(a1)] nor controlled to their corresponding
controllers [Fig. 6(a2)]. Increasing the controlling strength
to η = 4.5 [Fig. 6(b)], it is seen that circuits 1, 2, and
3 are synchronized with circuits 4, 5, and 6, respectively,
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FIG. 6. Experimental demonstrations on the control of syn-
chronous pattern in network of coupled chaotic HR circuits. The
network structure is the same as described in the caption to Fig. 3(a),
and the coupling strength is fixed as ε = 1.53. The control network is
the same as described in the caption to Fig. 3(e). The variations of the
synchronization relationship among the oscillators (controllers) for
different controlling strengths. (a) η = 1.0. No synchronous cluster
is formed. (b) η = 4.5. Cluster synchronization is induced but is not
controlled. (c) η = 6.9. Cluster synchronization is both induced and
controlled. δxi,j = xi − xj denotes the synchronization error between
circuits i and j . δxi,l′ = xi − x′

l denotes the control error between
circuit i and controller l′.

i.e., the cluster-synchronization state is induced [Fig. 6(b1)].
However, as depicted in Fig. 6(b2), the synchronized pairs
are not controlled to their corresponding controllers, i.e.,
the cluster-synchronization state is not controlled. Increasing
η further to 6.9 [Fig. 6(c)], it is seen that not only the
cluster-synchronization state is induced in the original network
[Fig. 6(c1)], but also it is controlled to the state of the control
network [Fig. 6(c2)].

For the HR circuits described by Eq. (30), numerically we
find that the largest Lyapunov exponent of the MSF curve
is negative in the regime σ > σc ≈ 9.5. As the structures of
the original and control networks are the same as described
in the captions to Figs. 3(a) and 3(e), the eigenvalues of
the transverse and synchronous modes therefore are also
given by Eqs. (22) and (23), respectively. According to the

theoretical predications, i.e., Eqs. (12) and (13), we thus have
η1 ≈ 4.4 (for inducing cluster synchronization) and η2 ≈ 6.2
(for controlling cluster synchronization). As depicted in Fig. 6,
these theoretical predictions agree with the experimental
results very well.

V. DISCUSSIONS AND CONCLUSION

We would like to make the following remarks. First, the
current study is inspired by the recent progress of cluster
synchronization in complex networks [15–22]. In particular,
in Ref. [22] the authors have proposed a numerical method
for identifying the topological clusters, which paves the way
to the investigation of cluster synchronization in large-size
complex networks. However, different from previous studies,
which emphasize the emergence of cluster synchronization
by varying the coupling strength, here we focus on how
to control the unstable cluster-synchronization states by an
elaborately designed small-size network. As we have argued
and demonstrated, with the help of the control network, not
only the dynamically unstable patterns can be generated on the
network, but also the topologically unstable ones. Regarding
the significance of synchronous patterns to the functioning of
many realistic complex networks, e.g., the neuronal network
and the global grid, the control method proposed in the present
work may have broad applications.

Second, the present work is essentially different from the
existing studies of controlling network synchronization. In
parallel with the investigations of network synchronization,
in the past years considerable attentions have been also given
to the synchronization of complex networks driven by an
externally added controller, namely the scheme of pinning
synchronization [51–53]. In the general picture of pinning
synchronization, a controller, which has the identical dynamics
as the network node, is coupled to some of the network
nodes unidirectionally (pinning coupling), and the central
task there is to control the network to the uniform state of
global synchronization [51–53]. As the controller has the
same dynamics and coupling function as the network nodes,
the study of pinning synchronization is essentially a problem
of global synchronization if treating the controller as an
additional node to the exiting network. Different from pinning
synchronization, in our present work the control network itself
is a spatially extended system, which is designed according to
the network symmetries. To control the network to different
synchronous patterns, different control networks should be
designed. More importantly, in this new control scheme the
targeting state is spatially nonuniform, i.e., the synchronous
pattern, instead of the uniform state of global synchronization.
For this difference, the stability analysis of cluster synchro-
nization is also essentially different from that of pinning
(global) synchronization, as has been discussed in Sec. III.

Third, the proposed method might be also used to con-
trol the chimera-like synchronization states [54,55]. This
interesting state can be observed in Fig. 4(b) in the range
ε ∈ (ε1,ε2), where only the nodes within the first cluster
are synchronized, while the remaining nodes in the net-
work are desynchronized. As such, the synchronous and
nonsynchronous motions coexist in the network. This feature
is very similar to that of the chimera state observed recently in
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the lattices of coupled periodic oscillators [54,55] and is named
isolated desynchronization in Ref. [22]. As depicted in Fig. 2,
the isolated-desynchronization state could be unstable, due to
either the weak coupling strength [Fig. 2(a)] or the network
structure [Fig. 2(b)]. To control the isolated-desynchronization
states, we can simply replace the control network by a single
controller and couple it unidirectionally to all nodes within
the targeting cluster. The stability analysis will be identical
to that of cluster synchronization given in Sec. II, except that
the synchronous manifold is now defined by the controller,
and only the transverse modes of the targeting cluster are
concerned.

Finally, the proposed control method is expected as ap-
plicable to the general complex network. As the underlying
mechanism of pinning control is governed by synchronization,
the proposed control method, in principle, can be applied
to the general network showing synchronization behaviors.
Besides, after some modifications, the control method could
be also used to control cluster synchronization in complex
networks consisting of nonidentical oscillators. This idea is
inspired by the isolated-desynchronization state described
above [22], where a synchronous cluster appeared on the
desynchronization background. Given that nodes within the
same cluster are of identical dynamics, the network symmetry
will still be satisfied, and the same control method will be
applied. In realistic situations, time delay is unavoidable in
signal propagating and processing, which may influence the
stability of the synchronous patterns. Our preliminary results
show that given the time delay is small enough (e.g., smaller
to 3 × 10−2 in networked Lorenz oscillators), synchronous

patterns can still be successfully induced and controlled. We
hope to solidify the idea of nonidentical oscillators and conduct
a detail analysis on the impacts of time delay on synchronous
patterns in our future studies.

In summary, we have proposed a general framework for
controlling synchronous patterns in symmetric complex net-
works. We have given the details on how to design the control
network based on the information of the network symmetries,
analyzed the underlying mechanism for this control method,
and obtained explicitly the formula for the critical controlling
strengths. The efficiency of the control method has been
justified by numerical simulations of both artificial and realistic
network models, and demonstrated by realistic experiment of
networked electric circuits. Our studies highlight the control-
lability of synchronous patterns in complex networks, which
might be helpful to our understanding of the functioning of
some realistic complex systems, e.g., the DA complex [38,39],
and to the design of modern control techniques, e.g., the
management of the global power grid [40,41].
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